Analyse fréquentielle : le signal carré
|
|
|
- Jean-Philippe Lamothe
- il y a 10 ans
- Total affichages :
Transcription
1 Analyse fréquenielle : le signal carré 1. V() Domaine emporel 1. Domaine fréqueniel composane coninue (moyenne) T Tracés pour E = 1V. V() = E 2
2 Analyse fréquenielle : le signal carré Domaine emporel V() Domaine fréqueniel fondamenal T Tracés pour E = 1V. V() = E 2 + 2E ( ) sin π
3 Analyse fréquenielle : le signal carré Domaine emporel V() Domaine fréqueniel harmonique de rang T Tracés pour E = 1V. V() = E 2 + 2E ( sin + 1 ) π 3 sin
4 Analyse fréquenielle : le signal carré Domaine emporel V() Domaine fréqueniel harmonique de rang T Tracés pour E = 1V. V() = E 2 + 2E ( sin + 1 π 3 sin3 + 1 ) 5 sin5
5 Analyse fréquenielle : le signal carré Domaine emporel V() Domaine fréqueniel harmonique de rang T Tracés pour E = 1V. V() = E 2 + 2E ( π 3 sin sin5 + 1 ) 7 sin7
6 Analyse fréquenielle : le signal carré Domaine emporel V() Domaine fréqueniel harmonique de rang T Tracés pour E = 1V. V() = E 2 + 2E ( π 5 sin sin7 + 1 ) 9 sin9
7 Analyse fréquenielle : le signal carré Domaine emporel V() Domaine fréqueniel harmonique de rang T Tracés pour E = 1V. V() = E 2 + 2E ( π 7 sin sin9 + 1 ) 11 sin11
8 Analyse fréquenielle : le signal carré Domaine emporel V() Domaine fréqueniel a 1 décroissance en 1 n Tracés pour E = 1V. T.5 a 1 3 a 1 5 a 1 7 a 1 9 a V() = E 2 + 2E ( + 1 π n= 2n + 1 sin( (2n + 1) ))
9 Analyse fréquenielle : le signal riangulaire Domaine emporel Domaine fréqueniel V() pas de composane coninue T Tracés pour E = 1V. V() =
10 Analyse fréquenielle : le signal riangulaire Domaine emporel Domaine fréqueniel V() T 1. fondamenal Tracés pour E = 1V. V() = 8E ( ) π 2 cos
11 Analyse fréquenielle : le signal riangulaire Domaine emporel Domaine fréqueniel V() T 1..5 Tracés pour E = 1V. V() = 8E ( π 2 cos + 1 ) 3 2 cos3 harmonique de rang
12 Analyse fréquenielle : le signal riangulaire Domaine emporel Domaine fréqueniel V() T 1..5 harmonique de rang Tracés pour E = 1V. V() = 8E ( π 2 cos cos3 + 1 ) 5 2 cos5
13 Analyse fréquenielle : le signal riangulaire Domaine emporel Domaine fréqueniel V() T 1..5 harmonique de rang Tracés pour E = 1V. V() = 8E ( π cos cos5 + 1 ) 7 2 cos7
14 Analyse fréquenielle : le signal riangulaire Domaine emporel Domaine fréqueniel V() T 1..5 harmonique de rang Tracés pour E = 1V. V() = 8E ( π cos cos7 + 1 ) 9 2 cos9
15 Analyse fréquenielle : le signal riangulaire Domaine emporel Domaine fréqueniel V() Tracés pour E = 1V. V() = 8E π 2 ( + n= T 1..5 a 1 1 (2n + 1) 2 cos( (2n + 1) )) décroissance en 1 n 2 a a a a
16 Analyse fréquenielle On remarque : si le signal emporel es pair (f () = f ( )), la série de Fourier ne conien que des ermes en cosinus (pair); si le signal emporel es impair (f () = f ( )), la série de Fourier ne conien que des ermes en sinus (impair); plus il y a des penes fores dans le signal emporel, plus le specre es riche en harmonique (voir signal carré). On pourra aussi aller voir les sies : cours de PCSI (O. Granier) animaion flash
17 Analyse fréquenielle On remarque : si le signal emporel es pair (f () = f ( )), la série de Fourier ne conien que des ermes en cosinus (pair); si le signal emporel es impair (f () = f ( )), la série de Fourier ne conien que des ermes en sinus (impair); plus il y a des penes fores dans le signal emporel, plus le specre es riche en harmonique (voir signal carré). On pourra aussi aller voir les sies : cours de PCSI (O. Granier) animaion flash
18 Analyse fréquenielle On remarque : si le signal emporel es pair (f () = f ( )), la série de Fourier ne conien que des ermes en cosinus (pair); si le signal emporel es impair (f () = f ( )), la série de Fourier ne conien que des ermes en sinus (impair); plus il y a des penes fores dans le signal emporel, plus le specre es riche en harmonique (voir signal carré). On pourra aussi aller voir les sies : cours de PCSI (O. Granier) animaion flash
19 Analyse fréquenielle On remarque : si le signal emporel es pair (f () = f ( )), la série de Fourier ne conien que des ermes en cosinus (pair); si le signal emporel es impair (f () = f ( )), la série de Fourier ne conien que des ermes en sinus (impair); plus il y a des penes fores dans le signal emporel, plus le specre es riche en harmonique (voir signal carré). On pourra aussi aller voir les sies : cours de PCSI (O. Granier) animaion flash
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Développements limités usuels en 0
Développements limités usuels en 0 e x sh x ch x sin x cos x = + x! + x! + + xn n! + O ( x n+) = x + x3 3! + + xn+ (n + )! + O ( x n+3) = + x! + x4 4! + + xn (n)! + O ( x n+) = x x3 3! + + ( )n xn+ (n
Fonction réciproque. Christelle MELODELIMA. Chapitre 2 :
UE4 : Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Analyse Chapitre 2 : Fonction réciproque Christelle MELODELIMA Année universitaire 2011/2012 Université Joseph
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Utiliser des fonctions complexes
Chapitre 5 Utiliser des fonctions complexes Construire une formule conditionnelle avec la fonction SI Calculer un remboursement avec la fonction VPN Utiliser des fonctions mathématiques Utiliser la fonction
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
5.2 Théorème/Transformée de Fourier a) Théorème
. Théorème de Fourier et Transformée de Fourier Fourier, Joseph (788). Théorème/Transformée de Fourier a) Théorème Théorème «de Fourier»: N importe quelle courbe peut être décomposée en une superposition
Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION
2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le
Caractéristiques des signaux électriques
Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Développement en Série de Fourier
F-IRIS-5.ex Développeme e Série de Fourier Développer e série de Fourier les focios de période T défiies aisi : a b { f impaire T = f = si ] ; { f paire T = f = si ; ] Faire das chaque cas ue représeaio
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t
3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Une fréquence peut-elle être instantanée?
Fréquence? Variable? Instantané vs. local? Conclure? Une fréquence peut-elle être instantanée? Patrick Flandrin CNRS & École Normale Supérieure de Lyon, France Produire le temps, IRCAM, Paris, juin 2012
Glossaire des nombres
Glossaire des nombres Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008 Nombre : Objet mathématique qui représente une valeur numérique. Le chiffre est le symbole utilisé pour
Chapitre 2 Les ondes progressives périodiques
DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................
Didier Pietquin. Timbre et fréquence : fondamentale et harmoniques
Didier Pietquin Timbre et fréquence : fondamentale et harmoniques Que sont les notions de fréquence fondamentale et d harmoniques? C est ce que nous allons voir dans cet article. 1. Fréquence Avant d entamer
Les travaux doivent être remis sous forme papier.
Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24
Nathalie Barbary SANSTABOO. Excel 2010. expert. Fonctions, simulations, Groupe Eyrolles, 2011, ISBN : 978-2-212-12761-4
Nathalie Barbary Nathalie Barbary SANSTABOO Excel 2010 Fonctions, simulations, bases bases de de données expert Groupe Eyrolles, 2011, ISBN : 978-2-212-12761-4 Du côté des mathématiciens 14 Il n est pas
On ne peut pas entendre la forme d un tambour
On ne peut pas entendre la forme d un tambour Pierre Bérard Institut Fourier Laboratoire de Mathématiques Unité Mixte de Recherche 5582 CNRS UJF Université Joseph Fourier, Grenoble 1 Introduction 1.1 Position
LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION
LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
Cours de tracés de Charpente, Le TRAIT
Page 1/5 Cours de tracés de Charpente, Le TRAIT Recherches de vraies grandeurs, angles de coupes, surfaces. Les Méthodes : Le tracé et les calculs Chaque chapitre ou fichier comportent une explication
Utilisation du logiciel ModellingSpace
Utilisation du logiciel ModellingSpace 1. Pour ouvrir le logiciel, cliquer deux fois sur l icône de ModellingSpace se trouvant sur le bureau. N ouvrez pas d autres applications en même temps que ModellingSpace.
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Systèmes asservis non linéaires
Christian JUTTEN Systèmes asservis non linéaires Université Joseph Fourier - Polytech Grenoble Cours de troisième année du département 3i Options Automatique Août 2006 1 Table des matières 1 Introduction
Traitement du signal avec Scilab : la transformée de Fourier discrète
Traitement du signal avec Scilab : la transformée de Fourier discrète L objectif de cette séance est de valider l expression de la transformée de Fourier Discrète (TFD), telle que peut la déterminer un
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
SOMMAIRE. 1. Préambule...2. 2. Le calendrier...2. 3. Trajectoire d un objet lancé...6. 4. Régression linéaire...9
SOMMAIRE 1. Préambule...2 2. Le calendrier...2 3. Trajectoire d un objet lancé...6 4. Régression linéaire...9 5. Calcul de commissions par tranches...12 6. Base de données...16 7. Valeur cible...19 ATTENTION
Calculs de probabilités
Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
Développements limités
Université Joseph Fourier, Grenoble Maths en Ligne Développements limités Bernard Ycart Les développements limités sont l outil principal d approximation locale des fonctions. L objectif de ce chapitre
Initiation à la programmation OEF pour Wims (exercices).
page 1 sur 9 Initiation à la programmation OEF pour Wims (exercices). Les titres des différentes parties de ce document, en grisé, sont donnés en référence au document Wims «DocAide Exercices OEF» rédigé
1.1.1 Signaux à variation temporelle continue-discrète
Chapitre Base des Signaux. Classi cation des signaux.. Signaux à variation temporelle continue-discrète Les signaux à variation temporelle continue sont des fonctions d une ou plusieurs variables continues
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Mais comment on fait pour...
Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition
Cours 7 : Utilisation de modules sous python
Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est
Calcul Formel et Numérique, Partie I
Calcul Formel et Numérique N.Vandenberghe [email protected] Table des matières 1 Introduction à Matlab 2 1.1 Quelques généralités.......................... 2 2 Où trouver des informations 2 3 Opérations
Analyse spectrale. jean-philippe muller. version juillet 2002. jean-philippe muller
Analyse spectrale version juillet 2002 Analyse spectrale des signaux continus 1) La représentation temporelle d un signal 2) La représentation fréquentielle d un signal simple 3) Exemples de spectres de
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3
Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)
La fonction d onde et l équation de Schrödinger
Chapitre 1 La fonction d onde et l équation de Schrödinger 1.1 Introduction En physique classique, une particule est décrite par sa position r(t). L évolution de sa position (la trajectoire de la particule)
B34 - Modulation & Modems
G. Pinson - Physique Appliquée Modulaion - B34 / Caracérisiques d'un canal de communicaion B34 - Modulaion & Modems - Définiions * Half Duplex ou simplex : ransmission un sens à la fois ; exemple : alky-walky
Cours d Analyse I et II
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres
CANAUX DE TRANSMISSION BRUITES
Canaux de ransmissions bruiés Ocobre 03 CUX DE TRSISSIO RUITES CORRECTIO TRVUX DIRIGES. oyer Canaux de ransmissions bruiés Ocobre 03. RUIT DE FOD Calculer le niveau absolu de brui hermique obenu pour une
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
NOMBRES COMPLEXES. Exercice 1 :
Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1
Chapitre I La fonction transmission
Chapitre I La fonction transmission 1. Terminologies 1.1 Mode guidé / non guidé Le signal est le vecteur de l information à transmettre. La transmission s effectue entre un émetteur et un récepteur reliés
2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.
1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%
Signalisation, codage, contrôle d'erreurs
Signalisation, codage, contrôle d'erreurs Objectifs: Plan Comprendre les mécanismes utilisés pour transmettre des informations sur un support physique Comprendre la nécessité de regrouper les informations
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Fonction dont la variable est borne d intégration
[hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
Calcul Formel et Numérique, Partie I
Calcul Formel et Numérique NicolasVandenberghe [email protected] Table des matières 1 Introduction à Matlab 2 1.1 Quelques généralités.......................... 2 1.2 Où trouver des informations......................
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef
Automatique des systèmes linéaires continus
MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE DES SCIENCES ET DE LA TECHNOLOGIE D ORAN-M B- FACULTE DE GENIE ELECTRIQUE DEPARTEMENT D AUTOMATIQUE Polycopié de : Automatique
V 1.0 2006 corr. 2009. Jacques Ferber. LIRMM - Université Montpellier II 161 rue Ada 34292 Montpellier Cedex 5
V 1.0 2006 corr. 2009 Jacques Ferber LIRMM - Université Montpellier II 161 rue Ada 34292 Montpellier Cedex 5 Email: [email protected] Home page: www.lirmm.fr/~ferber Problématique: Comment créer des sons
Exemples de résolutions d équations différentielles
Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................
Fonctions Analytiques
5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,
CODAGE DES SMS. 2 Commandes «AT» 25 3 Matériels utilisés 55 4 Interfacer un téléphone GSM 73 5 Réalisations électroniques 101
1 CODAGE DES SMS PAGE 1.1 Introduction 6 1.2 Généralités 6 1.3 Mode PDU 6 1.4 Codage/décodage par logiciel 21 2 Commandes «AT» 25 3 Matériels utilisés 55 4 Interfacer un téléphone GSM 73 5 Réalisations
Ce document s adresse à ceux qui n ont encore aucun plan de garde formalisé.
Ce document s adresse à ceux qui n ont encore aucun plan de garde formalisé. MyFamilink est essentiellement utilisé pour formaliser un calendrier issu de la négociation entre les parents ou décidé par
CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.
XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
Traitement du signal avec Scilab : transmission numérique en bande de base
Traitement du signal avec Scilab : transmission numérique en bande de base La transmission d informations numériques en bande de base, même si elle peut paraître simple au premier abord, nécessite un certain
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Logiciel. Table de matières I Environnement requis...2
1 Table de matières I Environnement requis...2 I 1 - Configuration minimum conseillée...2 I 2 - Désinstallation de l application...2 I 3 - Lancement de l application...2 II Installation du logiciel...2
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Cours C6 : Vibrations non linéaires
Vibrations non linéaires Bruno COCHELIN Laboratoire de Mécanique et d Acoustique, CNRS UPR 751 Ecole Centrale Marseille Acoustique non linéaire et milieux complexes -6 Juin 14 - Oléron Acoustique non linéaire
Traceur de courbes planes
Traceur de courbes planes Version 2.5 Manuel d utilisation Patrice Rabiller Lycée Notre Dame Fontenay le Comte Mise à jour de Janvier 2008 Téléchargement : http://perso.orange.fr/patrice.rabiller/sinequanon/menusqn.htm
Oscillations libres des systèmes à deux degrés de liberté
Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
Signaux numériques : Multiplexage temporel : TDM
Signaux numériques : Multiplexage temporel : TDM Pour la hiérarchie TDM, il y a deux catégorie : Le multiplexage dans les systèmes informatiques : La transmission TDM dans des lignes haute vitesse à partir
Transmission des signaux numériques
Transmission des signaux numériques par Hikmet SARI Chef de Département d Études à la Société Anonyme de Télécommunications (SAT) Professeur Associé à Télécom Paris. Transmission en bande de base... E
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles
Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique, chimie et sciences de l ingénieur (PCSI) Discipline : Mathématiques Première année Classe préparatoire
SOUS TITRAGE DE LA WEBÉMISSION DU PROGRAMME DE MATHÉMATIQUES 11 e ET 12 e ANNÉE
SOUS TITRAGE DE LA WEBÉMISSION DU PROGRAMME DE MATHÉMATIQUES 11 e ET 12 e ANNÉE Table de matières INTRODUCTION 2 ITINÉRAIRE MEL3E/MEL4E 6 ITINÉRAIRE MBF3C/MAP4C 9 ITINÉRAIRE MCF3M/MCT4C 12 ITINÉRAIRE MCR3U/MHF4U
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
n 159 onduleurs et harmoniques (cas des charges non linéaires) photographie Jean Noël Fiorina
n 159 photographie onduleurs et harmoniques (cas des charges non linéaires) Jean Noël Fiorina Entré chez Merlin Gerin en 1968 comme agent technique de laboratoire au département ACS - Alimentations Convertisseurs
Exemples de stratégies
Exemples de stratégies Additionne en commençant par la gauche S-1 Lorsque tu additionnes à l aide d une feuille de papier et d un crayon, tu commences habituellement par la droite et tu calcules en allant
NOTE SUR LES METHODES UNIVARIEES
BRUSSELS EONOMI REVIEW - AHIERS EONOMIQUES DE BRUXELLES VOL 5 N 3 AUTUMN 7 NOTE SUR LES METHODES UNIVARIEES D EXTRATION DU YLE EONOMIQUE ANNA SESS ET MIHEL GRUN-REHOMME (UNIVERSITE PARIS, ERMES- NRS- UMR78)
Manuel de démarrage rapide de la calculatrice financière
HP 20b Business Consultant Manuel de démarrage rapide de la calculatrice financière Pour obtenir une formation gratuite, rendez-vous à l adresse www.hp.com/go/calctraining Référence HP : F2219-90001 Première
M1107 : Initiation à la mesure du signal. T_MesSig
1/81 M1107 : Initiation à la mesure du signal T_MesSig Frédéric PAYAN IUT Nice Côte d Azur - Département R&T Université de Nice Sophia Antipolis [email protected] 15 octobre 2014 2/81 Curriculum
Nombres complexes. cours, exercices corrigés, programmation
1 Nombres complexes cours, exercices corrigés, programmation Nous allons partir des nombres réels pour définir les nombres complexes. Au cours de cette construction, les nombres complexes vont être munis
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
Algorithmes et mathématiques. 1. Premiers pas avec Python. Exo7. 1.1. Hello world!
Exo7 Algorithmes et mathématiques Vidéo partie 1. Premiers pas avec Python Vidéo partie 2. Ecriture des entiers Vidéo partie 3. Calculs de sinus, cosinus, tangente Vidéo partie 4. Les réels Vidéo partie
Méthode de l équilibrage harmonique généralisé
Méthode de l équilibrage harmonique généralisé Application à l interaction modale rotor/stator Sébastien Roques * Mathias Legrand * Christophe Pierre ** Bernard Peseux * Patrice Cartraud * * GeM, Pôle
C2AI 9 rue de Catalogne 69153 Décines cedex Tél. : 04 72 15 88 70 - Fax : 04 78 26 41 35
C2AI 9 rue de Catalogne 69153 Décines cedex Tél. : 04 72 15 88 70 - Fax : 04 78 26 41 35 1 Table de matières I Environnement requis...2 I 1 - Configuration minimum conseillée...2 I 2 - Désinstallation
DES SERVICES EN LIGNE POUR VOUS ACCOMPAGNER AU QUOTIDIEN
DES SERVICES EN LIGNE POUR VOUS ACCOMPAGNER AU QUOTIDIEN Commencer la découverte En créant votre compte en ligne, vous pouvez accédez librement à de nombreux services en quelques clics. Votre compte en
Calculatrice financière HP 10bII+ Manuel de l'utilisateur
Calculatrice financière HP 10bII+ Manuel de l'utilisateur Référence HP : NW239-90003 Édition 1, Mai 2010 i Avis légal Ce manuel et tous les exemples contenus dans celui-ci sont fournis «tels quels» et
