Sixième. La bissectrice d un angle est la demi-droite qui partage cet angle en deux angles de même mesure.

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "Sixième. La bissectrice d un angle est la demi-droite qui partage cet angle en deux angles de même mesure."

Transcription

1 Sixième Si deux droites sont parallèles à une même droite, alors elles sont parallèles entre elles. Si deux droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si deux droites sont parallèles, toute perpendiculaire à l une est alors perpendiculaire à l autre. La bissectrice d un angle est la demi-droite qui partage cet angle en deux angles de même mesure. P = π d = 2 π r Définition : La médiatrice d un segment est la droite qui coupe ce segment perpendiculairement en son milieu. Propriété : la médiatrice d un segment est constituée de tous les points situés à égale distance des extrémités de ce segment

2 Définition : Un losange a quatre côtés de même longueur. Propriété : Un losange a ses diagonales qui se coupent en leur milieu et qui sont perpendiculaires. Définition 1 : Un rectangle a 4 angles droits. Définition 2 : Un rectangle a ses diagonales qui se coupent en leur milieu et ont la même longueur. Définition 1 : Un carré a ses 4 angles droits et ses 4 côtés de même longueur. Définition 2 : Un carré a ses diagonales qui se coupent en leur milieu, qui sont perpendiculaires et qui ont la même longueur. Volume d un parallélépipède rectangle : h L l V = L l h (d) A B Deux figures sont symétriques par rapport à une droite (d) lorsque par pliage autour de la droite (d) elles se superposent. Propriété : La symétrie axiale conserve les longueurs, l alignement, les angles et les aires. A B K D C C K Définition : Si A n est pas un point de la droite (d) : le symétrique du point A par rapport à la droite (d) est le point A tel que (d) soit la médiatrice du segment [ AA ']. Si A est un point de la droite (d) : le symétrique du point A par rapport à la droite (d) est le point A lui-même

3 Cinquième : - 3 -

4 La somme des angles d un triangle vaut toujours 180 Deux angles sont complémentaires si la somme de leurs mesures vaut 90 Deux angles sont supplémentaires si la somme de leurs mesures vaut

5 - 5 -

6 Propriété : la longueur du côté d un triangle est toujours inférieur à la sommes des longueurs des deux autres côtés

7 Aire du parallélogramme : Base hauteur Aire du carré : 2 côté côté = c Aire du triangle : Base hauteur 2 Aire du losange : Grande diagonale petite diagonale 2 Aire du disque : π r r = π r 2-7 -

8 Volume d un prisme droit : Volume = Base hauteur Quatrième : Soustraire un nombre relatif revient à additionner son opposé. Le produit de deux nombres relatifs de même signe est positif Le produit de deux nombres relatifs de signe contraire est négatif Le carré d un nombre est toujours positif. Le quotient de deux nombres relatifs de même signe est toujours positif Le quotient de deux nombres relatifs de signes contraires est toujours négatif La vitesse est la distance parcourue par unité de temps : vitesse distance v = temps d t k, a et b désignent des nombres; k 0 et b 0. On a : a a k a a k = et = b b k b b k Pour additionner ou soustraire deux fractions, on les réduit au même dénominateur, puis on utilise les relations: a c a + c + = et b b b a c a c = b b b a, b, c et d désignent des nombres; b 0 et d 0. On a : a c ac = b d bd On suppose que b 0, c 0 et d 0 sont non nuls. On a : a a c b a d = = b d c b c d - 8 -

9 Théorème de Pythagore : Si un triangle est rectangle, alors le carré de la longueur de son hypoténuse est égal à la somme des carrés des longueurs des côtés de l angle droit. Réciproque du théorème de Pythagore : Si la somme des carrés des longueurs de deux côtés d un triangle est égale au carré de la longueur du 3 e côté, alors ce triangle est rectangle. Dans un triangle rectangle, le milieu de l'hypoténuse est le centre du cercle circonscrit à ce triangle. Dans un triangle rectangle, la longueur de la médiane issue de l angle droit vaut la moitié de la longueur de l hypoténuse. Si un triangle est inscrit dans un cercle en ayant un diamètre du cercle pour côté, alors ce triangle est rectangle. Si, dans un triangle, la longueur d une médiane vaut la moitié de la longueur de son côté relatif, alors ce triangle est rectangle

10 cosinus d un angle aigu : Définition : Étant donné un angle aigu xoy, si A est un point d un côté de l angle et H le pied de la perpendiculaire menée de A à l autre côté, alors le quotient OH OA est indépendant du choix de A. Ce quotient s appelle le cosinus de l angle xoy ; on écrit cos OH xoy = OA Propriétés de la droite des milieux : Propriété 1 : Dans un triangle, la droite qui joint les milieux de deux côtés est parallèle au troisième côté. Propriété 2 : la longueur du segment joignant les milieux de deux côtés d un triangle est égale à la moitié de la longueur du troisième côté. Propriété 3 : La droite qui passe par le milieu d un côté d un triangle, parallèlement à un second côté, coupe le troisième côté en son milieu

PROPRIETES, THEOREME DE GEOMETRIE

PROPRIETES, THEOREME DE GEOMETRIE PROPRIETES, THEOREME DE GEOMETRIE Droites Si deux droites sont parallèles à une même troisième, alors elles sont parallèles entre elles. (6ème) Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale Géométrie plane I - Symétries 1 - Symétrie axiale Définition : Deux figures géométriques sont symétriques par rapport à une droite (d) si, en pliant la feuille suivant la droite (d), les deux figures se

Plus en détail

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme

SOMMAIRE. Fiche 2 : Démontrer que deux droites sont perpendiculaires. Fiche 6 : Démontrer qu un quadrilatère est un parallélogramme SOMMAIRE Fiche 1 : Démontrer que deux droites sont parallèles Fiche 2 : Démontrer que deux droites sont perpendiculaires Fiche 3 : Démontrer qu un triangle est équilatéral Fiche 4 : Démontrer qu un triangle

Plus en détail

Comment démontrer que deux droites sont parallèles

Comment démontrer que deux droites sont parallèles F1 Comment démontrer que deux droites sont parallèles P : Si deux droites sont parallèles, alors toute parallèle à l une est parallèle à l autre. P : Si deux droites sont perpendiculaires à une même troisième,

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

Les triangles : droites et points remarquables

Les triangles : droites et points remarquables Fiche de cours : Configurations du plan. Les triangles : droites et points remarquables Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et

Plus en détail

Rappels de collège sur la géométrie dans le plan

Rappels de collège sur la géométrie dans le plan Rappels de collège sur la géométrie dans le plan I Rappels sur les symétries : I 1 Symétrie axiale : On note I le milieu de On appelle médiatrice du segment la droite perpendiculaire en I à Propriétés

Plus en détail

Proprié té s dé gé omé trié plané

Proprié té s dé gé omé trié plané Proprié té s dé gé omé trié plané Droites Si deux droites sont parallèles à une même troisième alors elles sont parallèles entre elles (fig.1). Si deux droites sont perpendiculaires à une même troisième

Plus en détail

Fiche de cours : Configurations du plan.

Fiche de cours : Configurations du plan. Fiche de cours : Configurations du plan. Les triangles. Médianes et centre de gravité : Soit un triangle ABC, on appelle médiane issue de A la droite qui passe par A et coupe le côté [BC] en son milieu.

Plus en détail

(AH) est une hauteur de ABC. H est orthocentre d'un triangle si et seulement si H est le point d'intersection de 2 hauteurs du triangle

(AH) est une hauteur de ABC. H est orthocentre d'un triangle si et seulement si H est le point d'intersection de 2 hauteurs du triangle FICHE G - CONFIGURATIONS du PLAN (théorèmes importants) A savoir : On peut remplacer une définition par une équivalence : «A B». Le triangle: droites et points remarquables.. Hauteurs et orthocentre. Définition:

Plus en détail

Triangle isocèle et équilatéral

Triangle isocèle et équilatéral Collège Ferdinand Sarrien Bourbon-Lancy Classe de 6 ème Classe de 5 ème Classe de 4 ème Classe de ème Droites Si deux droites sont parallèles à une même droite alors ces deux droites sont parallèles entre

Plus en détail

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE.

Seconde chap1 Géométrie plane 1/6 GEOMETRIE PLANE. Seconde chap Géométrie plane /6 GEOMETRIE PLNE. I. Repère et coordonnées. oordonnées. Si O, I et J sont trois points non alignés du plan, alors (O I J) est un repère du plan d origine O. Si (OI) et (OJ)

Plus en détail

Propriétés de géométrie plane vues au collège

Propriétés de géométrie plane vues au collège Propriétés de géométrie plane vues au collège Théorème de Pythagore Théorème de Pythagore : Dans un triangle rectangle, le carré de la longueur de l hypoténuse est égal à la somme des carrés des longueurs

Plus en détail

Cours configurations du plan

Cours configurations du plan I Polygones a) Polygones particuliers triangles Propriété : La somme des angles d un triangle est égale à 180. Définition : Un triangle isocèle a deux côtés de même longueur. Propriétés caractéristiques

Plus en détail

Répertoire de la classe de Quatrième

Répertoire de la classe de Quatrième Répertoire de la classe de Quatrième Dans ce répertoire, vous trouverez l'essentiel du vocabulaire et des propriétés qu'un élève de quatrième doit savoir en fin d'année Lexique par ordre alphabétique Agrandissement

Plus en détail

Chapitre 7. Géométrie plane

Chapitre 7. Géométrie plane Chapitre 7 Géométrie plane Hauteurs Ce sont les perpendiculaires aux côtés, issues du sommet opposé. Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. Médianes

Plus en détail

PARALLELES ET PERPENDICULAIRES

PARALLELES ET PERPENDICULAIRES GEOMETRIE : RAPPELS PARALLELES ET PERPENDICULAIRES Théorème 1: Si deux droites sont parallèles à une même troisième. Alors elles sont parallèles entre elles. Théorème 2: Si deux droites sont perpendiculaires

Plus en détail

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés.

TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. TRIANGLES Inégalité triangulaire : Th Dans un triangle, la longueur de chaque côté est inférieure à la somme des longueurs des deux autres côtés. Th Trois longueurs étant données, Si la plus grande est

Plus en détail

Aide mémoire Géométrie 4 ème

Aide mémoire Géométrie 4 ème ide mémoire Géométrie 4 ème Si un triangle est rectangle, alors la longueur de la médiane relative à l'hypoténuse est égale à la moitié de la longueur de l'hypoténuse. Triangle rectangle et cercle circonscrit:

Plus en détail

BOITE A OUTILS. 3ème

BOITE A OUTILS. 3ème BOITE A OUTILS 3ème 2014/2015 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles

Plus en détail

Configuration du plan

Configuration du plan onfiguration du plan I - Les triangles 1 - Rappels La somme des angles d un triangle est égale à 180 Si le triangle est rectangle en, alors d après le théorème de Pythagore 2 = 2 + 2. Réciproquement, si

Plus en détail

THEOREMES DE GEOMETRIE

THEOREMES DE GEOMETRIE THEOREMES DE GEOMETRIE DROITES REMARQUABLES D'UN TRIANGLE Hauteurs : On appelle hauteur d'un triangle une droite qui passe par un sommet du triangle et qui est perpendiculaire au coté opposé à ce sommet.

Plus en détail

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale

Géométrie plane. I - Symétries. 1 - Symétrie axiale. 2 - Symétrie centrale Géométrie plane Ce chapitre sur la géométrie plane va récapituler toutes les notions de géométrie que vous avez apprises au collège jusqu en classe de seconde. Nous passerons entre autre par les symétries,

Plus en détail

FORMULAIRE pour le BREVET des COLLEGES. Algèbre

FORMULAIRE pour le BREVET des COLLEGES. Algèbre Priorités opératoires Algèbre Dans une expression, on effectue d'abord les calculs entre les parenthèses les plus intérieures puis les multiplications et les divisions de gauche à droite et, enfin, les

Plus en détail

Boîte à outils (collège)

Boîte à outils (collège) Boîte à outils (collège) Fiche 0 Notations et symboles Notations : Symboles : Fiche 1 Démontrer que deux droites sont parallèles Deux droites qui ne sont pas sécantes sont parallèles. Si deux droites sont

Plus en détail

L essentiel des notions

L essentiel des notions L essentiel des notions Sésamath Quatrième L essentiel des notions http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Adaptation réalisée par Marie-Laure Besson Table des matières

Plus en détail

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD].

GÉOMÉTRIE PLANE. On écrit : AB = 4cm et pas [AB] = 4cm On écrit : (AB) l (CD) et pas [AB] l [CD]. GÉOMÉTRIE PLANE Langage géométrique : notations et vocabulaire. [ ] = segment [AB] = segment d extrémités A et B. AB = longueur du segment AB (ou parfois la distance de A à B). ( ) = droite (AB) = droite

Plus en détail

Symétrie axiale cours 6e

Symétrie axiale cours 6e Symétrie axiale cours 6e F.Gaudon 24 février 2004 Table des matières 1 Axes de symétrie 2 1.1 Approche expérimentale..................... 2 1.2 Axes de symétrie particuliers................... 2 1.2.1

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

Fiche -Géométrie. 1 Triangle. 1.1 Triangle isocèle

Fiche -Géométrie. 1 Triangle. 1.1 Triangle isocèle Fiche -Géométrie 1 Triangle Définition 1. Un triangle est une figure plane, formée par trois points appelés sommets. Les côtés sont les segments qui joignent les sommets deux à deux. Remarque 1. Un triangle,

Plus en détail

Classeur de géométrie 4 ème

Classeur de géométrie 4 ème - 1 - lasseur de géométrie 4 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD]

Donc O est le milieu de segment [MM ] Donc I est le milieu de [AB] Donc I est le milieu de [BC] Donc O est le milieu de [AC] et [BD] COMMENT DEMONTRER Pour démontrer qu'un point est le milieu d'un segment On sait que I appartient au segment [AB] et IA = IB Propriété :Si un point appartient à un segment et est équidistant des extrémités

Plus en détail

Cours de mathématiques de quatrième

Cours de mathématiques de quatrième Cours de mathématiques de quatrième Bertrand Carry http://blitz10.free.fr SOMMAIRE 1. Proportionnalité... 1 1.1 Rappels... 1 1.1.1 Premier exemple :... 1 1.1.2 Deuxième exemple :... 1 1.2 Pourcentage,

Plus en détail

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle.

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle. 1 / 6 I. Polygones : Un polygone est une figure fermée dont les côtés sont des segments. II. Triangles : 1) Un triangle est un polygone à trois côtés. Les segments [AC], [AB] et [BC] sont les trois côtés

Plus en détail

CONFIGURATIONS DU PLAN

CONFIGURATIONS DU PLAN onfiguations du plan - Théorème de Pythagore ONFGURTONS DU PLN Théorème de Pythagore Si un triangle est rectangle, alors le carré de son hypoténuse est égal à la somme des carrés des deux autres côtés

Plus en détail

ANNEXE. PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT (N os 1 à 55)

ANNEXE. PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT (N os 1 à 55) ANNEXE PREMIÈRE PARTIE : ÉNONCÉS EXTRAITS DU COURS MAT - 4111-2 (N os 1 à 55) ANGLES 1. Des angles adjacents qui ont leurs côtés extérieurs en ligne droite sont supplémentaires. 2. Les angles opposés par

Plus en détail

A retenir : Chapitre 1

A retenir : Chapitre 1 A retenir : Chapitre 1 C1 * 1 et * 2 Définition de division euclidienne et vocabulaire Effectuer la DIVISION EUCLIDIENNE de D par d non nul, c est trouver le quotient q et le reste r tel que : D = d. q

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer...

Fiches de géométrie. Pour démontrer que deux droites sont parallèles. Pour démontrer... 3 Pr démontrer... Fiches de géométrie Niveau 3ème...que deux droites sont parallèles... Fiche...que deux droites sont perpendiculaires... Fiche 2...que deux longueurs sont égales... Fiche 3...que deux

Plus en détail

L essentiel des notions

L essentiel des notions L essentiel des notions Sésamath Cinquième L essentiel des notions http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Adaptation réalisée par Marie-Laure Besson Table des matières

Plus en détail

LA GEOMETRIE DU COLLEGE

LA GEOMETRIE DU COLLEGE L GEETRIE DU LLEGE I. Le triangle : 1 ) Triangles particuliers Un triangle isocèle a deux côtés égaux Un triangle équilatéral a tous ses côtés égaux Un triangle rectangle a un angle droit ) Droites remarquables

Plus en détail

CONFIGURATIONS PLANES. Médiatrice d un segment. Vous savez donc construire : Le milieu d'un segment Une droite perpendiculaire à une droite donnée.

CONFIGURATIONS PLANES. Médiatrice d un segment. Vous savez donc construire : Le milieu d'un segment Une droite perpendiculaire à une droite donnée. Médiatrice d un segment Définition : La médiatrice d'un segment [] est la droite perpendiculaire à [] et passant par son milieu. Un point est sur la médiatrice de [] si et seulement si il est équidistant

Plus en détail

VOCABULAIRE DE GEOMETRIE PLANE

VOCABULAIRE DE GEOMETRIE PLANE Fiche de vocabulaire VOCABULAIRE DE GEOMETRIE PLANE Généralités... 2 1) Nom des polygones courants... 2 2) Qu est-ce qu un polygone?... 2 La médiatrice d un segment... 3 Cercle et disque... 3 1) Le disque?

Plus en détail

points alignés points alignés

points alignés points alignés angle angle points alignés points alignés bissectrice bissectrice centre centre consécutifs consécutifs côté côté demi-droite demi-droite diagonale diagonale distance distance angle droit angle droit droite

Plus en détail

Cours de GEOMETRIE PLANE

Cours de GEOMETRIE PLANE Institut municipal : JM Labatte Géométrie plane. 1/8 Cours de GEOMETRIE PLANE I Droites Notations : Un point du plan est représenté par une lettre majuscule : A, B Une droite est notée (d), d, (D) ou (AB)

Plus en détail

Chapitre 3 triangle rectangle et perpendicularite : on vous dit tout!

Chapitre 3 triangle rectangle et perpendicularite : on vous dit tout! Chapitre 3 triangle rectangle et perpendicularite : on vous dit tout! I l égalité de Pythagore : rappels Si ABC est un triangle rectangle en A, alors BC²=AB²+AC² 1 ) l égalité de Pythagore pour calculer

Plus en détail

Classeur de géométrie 3 ème

Classeur de géométrie 3 ème - 1 - lasseur de géométrie 3 ème Pour démontrer que. Un point est le milieu d un segment Un point est sur un cercle Un point est l image d un autre par es distances sont égales eux angles ont la même mesure

Plus en détail

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles

DEMONTRER. 1) Démontrer qu un point est le milieu d un segment. 2) Démontrer que deux droites sont parallèles DEMONTRER 1) Démontrer qu un point est le milieu d un segment 2) Démontrer que deux droites sont parallèles 3) Démontrer que deux droites sont perpendiculaires 4) Démontrer qu un triangle est rectangle

Plus en détail

ESSENTIEL DE GEOMETRIE PLANE

ESSENTIEL DE GEOMETRIE PLANE ESSENTIEL DE GEOMETRIE PLNE I ngles - Somme des angles d un triangle Théorème : Quel que soit le triangle BC, + B + C = 80 - ngles opposés par le sommet On considère deux droites sécantes en O Définition

Plus en détail

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle.

5. Définition. Arc de cercle. Un arc de cercle est une portion de cercle comprise entre deux points quelconques de ce cercle. 6 e Décrire des figures usuelles Objectif 04 Livre 12 Mots clefs. Cercle Rayon, diamètre, corde et arc d un cercle Équidistance Triangle, triangle isocèle, triangle rectangle, triangle équilatéral Base

Plus en détail

Si A (d), alors le symétrique du point A par rapport à la droite (d) est lui-même.

Si A (d), alors le symétrique du point A par rapport à la droite (d) est lui-même. I. Figures symétriques Définition : CHAPITRE : SYMETRIE AXIALE Deux figures sont symétriques par rapport à une droite, si en pliant autour de cette droite, les deux figures se superposent. Cette droite

Plus en détail

5ème - Parallélogramme

5ème - Parallélogramme 5ème - Parallélogramme I Reconnaître un parallélogramme éfinition : parallélogramme Un parallélogramme est un quadrilatère qui a ses côtés opposés parallèles deux à deux i-contre, le quadrilatère est un

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

Abrégé de mathématiques

Abrégé de mathématiques brégé de mathématiques roite emi-droite Segment Vecteur (Point d'application, sens direction) 1 a (côté) Périmètre = 4 x a = 4a ire = a x a L (longueur) l (largeur) Périmètre = L + l ire = L x l arré Triangle

Plus en détail

Fiche -Géométrie. 1 Triangle. 1.1 Triangle isocèle

Fiche -Géométrie. 1 Triangle. 1.1 Triangle isocèle Fiche -Géométrie 1 Triangle Définition 1. Un triangle est une figure plane, formée par trois points appelés sommets. Les côtés sont les segments qui joignent les sommets deux à deux. Remarque 1. Un triangle,

Plus en détail

CONFIGURATIONS PLAN ET REPÉRAGE

CONFIGURATIONS PLAN ET REPÉRAGE ours NFGURTNS U PLN ET REPÉRGE 1 Triangles 1.1 Théorèmes des milieux Théorème 1 La droite qui joint les milieux de deux côtés d un triangle est parallèle au troisième côté. La droite qui passe par le milieu

Plus en détail

Copyright 2012 PLANETE WORK

Copyright 2012 PLANETE WORK Page 1 sur 36 TABLE DES MATIÈRES CALCUL LITTÉRAL... 5 DÉVELOPPER UNE EXPRESSION LITTÉRALE... 5 FACTORISER UNE EXPRESSION LITTÉRALE... 6 SUPPRESSION DE PARENTHÈSES DEVANT DES SOMMES ALGÉBRIQUES... 6 RÉDUCTION

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN 1 sur 5 REPERAGE DANS LE PLAN I. Coordonnées de points du plan a) Repère du plan Définition : un repère orthonormé d origine O est un triplet (O ;I,J) de points tels que le triangle OIJ est rectangle isocèle

Plus en détail

Chapitre 11 : Symétrie axiale.

Chapitre 11 : Symétrie axiale. Chapitre 11 : Symétrie axiale. I Approche expérimentale. Définition : Deux figures sont symétriques par rapport à une droite si, en pliant suivant cette droite, les deux figures se superposent. Cette droite

Plus en détail

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème.

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Mathématiques Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Il pourra aussi servir plus tard au lycée pour des révisions.. A1 p1 Les nombres A2 p2

Plus en détail

PARALLÈLES Parallèles, droite, construction 52

PARALLÈLES Parallèles, droite, construction 52 PERPENDICULAIRES Perpendiculaire, droite, angle droit, construction 51 On a une droite A ; On appuie l un des petits côtés de l équerre sur la droite A (fig. 1) ; On plaque le dos de la règle contre le

Plus en détail

PROGRESSION «SPECIALE » EN CLASSE DE QUATRIEME

PROGRESSION «SPECIALE » EN CLASSE DE QUATRIEME PROGRESSION «SPECIALE 2014-2015» EN CLASSE DE QUATRIEME THEME 1 : CALCUL NUMERIQUE (1) ECRITURES FRACTIONNAIRES (1) ECRITURES FRACTIONNNAIRES DE NOMBRES POSITIFS Connaissances et capacités Opérations (+,,

Plus en détail

Cours 6ème Chapitre VIII. La symétrie axiale. Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par

Cours 6ème Chapitre VIII. La symétrie axiale. Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par La symétrie axiale I. Figures symétriques Définition 1 : Deux figures sont symétriques par rapport à une droite (d) lorsque par pliage autour de la droite (d), elles se superposent. Ex : (d) (F 1 ) (F

Plus en détail

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net :

Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : Troisièmes : formulaire de révision pour le brevet et la seconde. Cours disponibles sur le net : http://titaile.free.fr (sans le www) I. Calcul. Revoir impérativement «développer, factoriser, résoudre

Plus en détail

Niveau 4 ème. Démonstrations

Niveau 4 ème. Démonstrations Niveau 4 ème Titres Définitions Vocabulaire Démonstrations Les situations types, Les «incontournables» 1.1 Utilisation de la proportionnalité 1.2. Traitement des données - Déterminer une quatrième proportionnelle.

Plus en détail

Progression 4e - MATHEMATIQUES

Progression 4e - MATHEMATIQUES PREMIER TRIMESTRE ADDITION ET SOUSTRACTION DES NOMBRES RELATIFS (Chap1) I) Addition de deux nombres relatifs II) Soustraction de deux nombres relatifs III) Notation simplifiée Activités : CALCUL MENTAL,

Plus en détail

LA DEMONSTRATION EN GEOMETRIE PLANE

LA DEMONSTRATION EN GEOMETRIE PLANE LA DEMONSTRATION EN GEOMETRIE PLANE I. Le débat Pour discuter de la validité d'énoncés mathématiques, les mathématiciens ont mis en place des règles de débat. En mathématiques, ces principales règles sont

Plus en détail

Chapitre I Configurations du plan et géométrie repérée

Chapitre I Configurations du plan et géométrie repérée I. Rappels sur les symétries 1. Symétries axiales Chapitre I Configurations du plan et géométrie repérée Méd iatric e de Définition : Médiatrice d un segment On note I le milieu de. On appelle médiatrice

Plus en détail

Symétrie centrale: AB = A'B' Figures symétriques

Symétrie centrale: AB = A'B' Figures symétriques Symétrie centrale: Figures symétriques ide mémoire Géométrie 5 ème Le symétrique d'un segment par rapport à un point est un segment de même longueur. La symétrie centrale conserve les longueurs. ' = ''

Plus en détail

Droites sécantes: Droites parallèles // :

Droites sécantes: Droites parallèles // : ide mé mo i r e Géomé t r i e 6 è m e à 3 è m e Points alignés: roite, demi-droite et segment de droite: droite: () es points sont alignés lorsqu'ils appartiennent à la même droite. ( ) ( ) ( ) demi-droite:

Plus en détail

Chapitre 6 Triangle rectangle et cercle circonscrit

Chapitre 6 Triangle rectangle et cercle circonscrit Chapitre 6 Triangle rectangle et cercle circonscrit Compétences : Exemples d'activités, commentaires :. Ex N 1,,13,31,37,56 p175 Interrogation I 6 DST n 6 poly DM6 + sur chapitre et chapitre 6 ( IUFM)

Plus en détail

Cours de Mathématiques classe de 4e. F.Gaudon

Cours de Mathématiques classe de 4e. F.Gaudon Cours de Mathématiques classe de 4e F.Gaudon 15 août 2005 Table des matières 1 Opérations sur les nombres relatifs 4 1.1 Multiplication des nombres relatifs................. 5 1.1.1 Règle des signes......................

Plus en détail

Axes de symétrie. Exemple : Considérons cette figure constituée de deux cercles C1 et C2 de même rayon.

Axes de symétrie. Exemple : Considérons cette figure constituée de deux cercles C1 et C2 de même rayon. Axes de symétrie I) Axes de symétrie d une figure : Définition : Une droite (d) est un axe de symétrie d une figure si, par pliage suivant cette droite, les deux parties de la figure se superposent. Considérons

Plus en détail

Géométrie synthétique plane Rappel de quelques propriétés et théorèmes

Géométrie synthétique plane Rappel de quelques propriétés et théorèmes Géométrie synthétique plane Rappel de quelques propriétés et théorèmes Notes : REC indique que la réciproque est vraie. La plupart des théorèmes ont leur équivalent en géométrie dans l espace. Généralités

Plus en détail

Repérage dans le plan Cours

Repérage dans le plan Cours Repérage dans le plan Cours Objectifs du chapitre Savoir repérer la position d un point à l aide de ses coordonnées dans un repère. Savoir calculer les coordonnées du milieu d un segment. Savoir calculer

Plus en détail

OPERATIONS AVEC NOMBRES RELATIFS

OPERATIONS AVEC NOMBRES RELATIFS 1 OPERATIONS AVEC NOMBRES RELATIFS 1) Addition et soustraction de nombres relatifs : a) Pour additionner deux nombres relatifs de même signe, le résultat prend le signe des deux nombres et pour distance

Plus en détail

Chapitre 2 : Transformations du plan.

Chapitre 2 : Transformations du plan. Chapitre : Transformations du plan. 1. Les symétries orthogonales : Par une symétrie orthogonale, une figure se déplace en se retournant. Une symétrie orthogonale est caractérisée par une droite appelée

Plus en détail

Parallélogrammes Particuliers

Parallélogrammes Particuliers Parallélogrammes Particuliers I) Définitions et propriétés Les parallélogrammes particuliers étudiés sont les rectangles, les carrés et les losanges. 1) Le rectangle a) Définition : Un rectangle est un

Plus en détail

ÉLÉMENTS DE GÉOMÉTRIE PLANE

ÉLÉMENTS DE GÉOMÉTRIE PLANE ÉLÉMENTS DE GÉOMÉTRIE PLANE I. DROITE ET SEGMENT 1. Généralités Il existe une droite et une seule passant par deux points A et B distincts donnés, on la note (AB). On peut dire que la droite passe par

Plus en détail

Chapitre 5 : Géométrie plane

Chapitre 5 : Géométrie plane Chapitre 5 : Géométrie plane Objectifs : *Connaitre et savoir utiliser les propriétés de géométrie du collège. * Connaitre la définition d un vecteur. * Savoir résoudre un problème de géométrie à l aide

Plus en détail

Extrait CNED. Configuration du plan. Sommaire. 1. Prérequis 2. Les théorèmes à connaître, à savoir utiliser. Séquence 7 MA20. Cned Académie en ligne

Extrait CNED. Configuration du plan. Sommaire. 1. Prérequis 2. Les théorèmes à connaître, à savoir utiliser. Séquence 7 MA20. Cned Académie en ligne Extrait NED onfiguration du plan Sommaire 1. Prérequis 2. Les théorèmes à connaître, à savoir utiliser Séquence 7 M20 1 ned cadémie en ligne 1 Prérequis Médiatrice Définition Définition Soient et deux

Plus en détail

Chapitre 1 - Repérage et configurations du plan

Chapitre 1 - Repérage et configurations du plan nde hapitre 1 - Repérage et configurations du plan 01-013 hapitre 1 - Repérage et configurations du plan ctivités d approche 1. (a) Deux points et ont pour abscisses 7 3 et. alculer la distance. et sur

Plus en détail

CORRIGE DU DEVOIR. Exercice 1. 1 ) On obtient la figure suivante : 2 ) I est le milieu du segment [BD] et C est le milieu du segment [AD].

CORRIGE DU DEVOIR. Exercice 1. 1 ) On obtient la figure suivante : 2 ) I est le milieu du segment [BD] et C est le milieu du segment [AD]. CORRIGE DU DEVOIR Exercice 1 1 ) On obtient la figure suivante : 2 ) I est le milieu du segment [BD] et C est le milieu du segment [AD]. On en déduit, en utilisant le théorème réciproque du théorème de

Plus en détail

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e

Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers. Objectif 20 Livre e 5 e Utiliser les propriétés des parallélogrammes et des parallélogrammes particuliers Objectif 20 Livre 23.4 Mots clefs. Parallélogramme Rectangle Losange Carré Côté Diagonale Axe de symétrie Centre de

Plus en détail

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point

SYMETRIE AXIALE. 1 ) symétrie axiale. a) symétrique d'un point 1 ) symétrie axiale SYMETRIE AXIALE a) symétrique d'un point Définition : A' est le symétrique du point A par rapport à la droite (d) si (d) est la médiatrice du segment [AA'] (C'est à dire si la droite

Plus en détail

CLASSE DE SECONDE ACTIVITES GEOMETRIQUES. Si M est le milieu de [AB], et si N est le milieu de [AC], alors les droites (MN) et (BC) sont parallèles?

CLASSE DE SECONDE ACTIVITES GEOMETRIQUES. Si M est le milieu de [AB], et si N est le milieu de [AC], alors les droites (MN) et (BC) sont parallèles? LSSE DE SEDE TIVITES GEETRIQUES. LES FIGURTIS DU PL. Le triangle.. Théorèmes des milieux... Version Si est le milieu de [], et si est le milieu de [], alors les droites () et () sont parallèles?.. Version

Plus en détail

Chapitre Les quadrilatères usuels

Chapitre Les quadrilatères usuels apitre 4 Géométrie 2 4.1 Les quadrilatères usuels éfinition 4.1 Un quarilatère est la donnée de quatre points tels que trois points consécutifs ne soient pas alignés. es points sont appelés sommets. Un

Plus en détail

CALCUL LITTERAL Calculer la valeur d une expression littérale en donnant aux variables des valeurs numériques.

CALCUL LITTERAL Calculer la valeur d une expression littérale en donnant aux variables des valeurs numériques. 1 PROGRESSION 4 EME 1) OPERATIONS AVEC LES NOMBRES RELATIFS CALCUL NUMERIQUE Opérations (+,,, ) sur les nombres relatifs en écriture décimale. Enchainement d opérations. Calculer le produit de nombres

Plus en détail

PROGRESSION 4 EME 1) OPERATIONS AVEC LES NOMBRES RELATIFS 1/2

PROGRESSION 4 EME 1) OPERATIONS AVEC LES NOMBRES RELATIFS 1/2 1 PROGRESSION 4 EME 1) OPERATIONS AVEC LES NOMBRES RELATIFS 1/2 CALCUL NUMERIQUE Opérations (+, ) sur les nombres relatifs en écriture décimale. Calculer la somme et la différence de nombres relatifs simples.

Plus en détail

L essentiel des notions

L essentiel des notions L essentiel des notions Sésamath Sixième L essentiel des notions http://www.sesamath.net/ Association Sésamath http://manuel.sesamath.net/ Adaptation réalisée par Marie-Laure Besson Table des matières

Plus en détail

I. Les figures élémentaires :

I. Les figures élémentaires : I. Les figures élémentaires : A. Les triangles : Triangle isocèle Un triangle isocèle est un triangle qui a deux de ses côtés de. un triangle est isocèle les deux côtés issus du sommet principal ont. un

Plus en détail

GÉOMÉTRIE PLANE : GÉNÉRALITÉS

GÉOMÉTRIE PLANE : GÉNÉRALITÉS GÉOMÉTRIE PLANE : GÉNÉRALITÉS 1 Un peu d histoire 3000 à 500 La géométrie est purement utilitaire (calculs d aires, de distances, architecture..), on ne s intéresse pas du tout à l aspect démonstration.

Plus en détail

chap. 3G2 :La trigonométrie

chap. 3G2 :La trigonométrie chap. 3G2 :La trigonométrie 1 Rappel de quatrième sur le triangle rectangle 1.1 Le théorème de Pythagore et sa réciproque Théorème de Pythagore : Si un triangle est rectangle alors le carré de son est

Plus en détail

L'essentiel des propriétés et des définitions utiles aux démonstrations

L'essentiel des propriétés et des définitions utiles aux démonstrations L'essentiel des propriétés et des définitions utiles aux démonstrations émontrer qu'un point est le milieu d'un segment P 1 Si un point est sur un segment et à égale distance de ses extrémités, alors ce

Plus en détail

Rationnels: Entiers, décimaux, fractions, nombre dont sa suite décimale est illimitée et logique

Rationnels: Entiers, décimaux, fractions, nombre dont sa suite décimale est illimitée et logique Les réels Rationnels: Entiers, décimaux, fractions, nombre dont sa suite décimale est illimitée et logique Tout rationnels s écrit sous la forme d une fraction a b Irrationnels : Nombre dont sa suite décimale

Plus en détail

Résumé de cours de mathématiques. Cinquième

Résumé de cours de mathématiques. Cinquième 1 Algèbre Résumé de cours de mathématiques 1.1 Opérations 1.1.1 Règles de calcul Cinquième Dans un calcul sans parenthèses et formé uniquement d'additions et de soustractions, on effectue les calculs de

Plus en détail

LES BASES DE LA GEOMETRIE

LES BASES DE LA GEOMETRIE Chapitre 2. GEOMETRIE 1 ) Les triangles. Condition d existence: la somme de la mesure de deux côtés est toujours supérieure à la mesure du troisième côté. Exemples : le triangle tel que AB=10cm, AC=3cm

Plus en détail