Interféromètre de Fabry-Perot par Gilbert Gastebois
|
|
|
- Coralie Léger
- il y a 8 ans
- Total affichages :
Transcription
1 Interféromètre de Fabry-Perot par Gilbert Gastebois 1. Schéma L'interféromètre de Fabry-Perot est constitué de deux lames semi-réfléchissantes parallèles séparées d'une distance L ( Le coefficient de réflexion des lames est voisin de 95% Un rayon qui entre entre les deux lames se réfléchit un très grand nombre de fois avant de sortir. A chaque réflexion, une portion R de l'intensité est réfléchie et une portion (1 - R est transmise. Les rayons qui sortent interfèrent à l'infini ou dans le plan focal d'une lentille. L'interférence multiple ne peut être constructive que si tous les rayons sont approximativement en phase et ceci d'autant plus que le nombre de rayons est important donc que R est grand. Les rayons ne sont en phase que pour certains angles θ particuliers qui dépendent de λ et de L
2 2. Différence de marche entre deux rayons consécutifs Le premier rayon parcourt 2Ltanθsinθ Le deuxième rayon parcourt 2L/cosθ La différence de marche entre les deux est donc δ = 2L/cosθ -2Ltanθsinθ = 2L/cosθ -2Lsinθ/cosθ sinθ δ = 2L/cosθ ( 1 - sin²θ = 2Lcosθ 3. Intensité de la lumière sortante Soit A 0 l'amplitude de la lumière entrante. A chaque réflexion l'intensité est multipliée par R donc l'amplitude est multipliée par R ½ et à chaque transmission, l'amplitude est multipliée par (1 - R ½ Donc après n allers-retours entre les deux lames ( et 2 transmissions, A n R n e -jnφ φ étant le déphasage entre deux rayons sortants successifs. φ = 2π δ/λ = 4π Lcosθ/λ A n R n e -jnφ (R e-jφ n A = Σ A n (1 - R N e -jnφ / (1 - R e-jφ N est le nombre maximal d'allersretours, ce nombre étant très grand car L est très petit, on arrondit à : A / (1 - R e-jφ I = AA* = (1 - R² A 0 ² /((1 - R e-jφ (1 - R ejφ = (1 - R² I 0 /((1 - R( e jφ + e-jφ + R² I I = (1 - R² I 0 /((1-2Rcosφ + R² I = (1 - R² I 0 /((1 + R² - 2R(1-2sin²(φ/2 = (1 - R² I 0 /((1 - R² +4Rsin²(φ/2 /(1 + 4R/(1 - R² sin²(φ/2 /(1 + 4R/(1 - R² sin²(2πlcosθ/λ
3 1 I/I 0 R = 0,85 0, (rd Positions des franges brillantes I est maximal quand sin(2π Lcosθ/λ = 0, on alors La lumière est entièrement transmise même si le coefficient de réflexion avoisine 100%! Le sinus est nul si 2π Lcosθ/λ = kπ ( k entier cosθ = kλ/(2l θ est petit donc cosθ est voisin de 1 - θ²/2 et donc k ~ 2L/λ. On pose = Ent(2L/λ Ent étant la partie entière cosθ 0 = λ/(2l cosθ = ( - n λ/(2l = cosθ 0 - nλ/(2l n = 0, 1, 2, 3,... cosθ = cosθ0 nλ/(2l si θ est petit, cosθ est voisin de 1 - θ²/2 donc θ² = θ 0 ² + nλ/l θ = (θ 0 ² + n λ/l ½ Exemple: λ = 589 nm et L = 50 µm = 169 donc θ 0 = 9, rd = 5,5 θ = 5,5, 8,3, 10,4, 12,1, 13,6... Remarque : Comment se peut-il qu'une lumière qui rencontre deux surfaces presque totalement réfléchissantes puisse entièrement traverser l'interféromètre? On pourrait penser qu'elle ne peut même pas pratiquement entrer entre les deux lames puisqu'elle est quasiment entièrement réfléchie par la première lame... C'est que le rayon subit à chaque réflexion sur la première lame, une transmission vers l'arrière et tous ces rayons interfèrent. Il se trouve que pour les longueurs d'ondes transmises, tous les rayons rétro-diffusés sont en phase entre eux et en opposition de phase avec le premier rayon réfléchi qui n'est pas entré. La somme des amplitudes donne une somme nulle et ainsi, il n'y a pas de lumière réfléchie, elle est donc entièrement transmise. Voir paragraphe 7.
4 5. Longueurs d'ondes transmises à θ donné I est maximal quand sin(2π Lcosθ/λ = 0, on alors Le sin est nul si 2π Lcosθ/λ = k π ( k entier λ = 2Lcosθ/k = 2Lcosθ/( + n n =... -3, -2, -1, 0, 1, 2, 3,... = Ent(2Lcosθ = 2Lcosθ 0 λ = 2Lcosθ 0 /( + n >> n donc λ = 2Lcosθ 0 ( 1 - n = 2Lcosθ 0 - n 2Lcosθ 0 ² = λ 0 - n λ 0 λ = λ 0 - n δλ avec δλ = λ 0 = λ 0 ²/(2Lcosθ 0 Exemple: λ 0 = 589 nm, θ 0 = 5,5 et L = 50 µm = 169 δλ = 3,485nm λ = ,7 nm 582,1 nm 585,5 nm 589 nm 592,5 nm 596,0 nm 599,6 nm Finesse des raies 6.1 Expression de la finesse La finesse F est par définition le rapport entre l'intervalle δλ entre deux λ successifs pour le même θ 0 et la largeur Δλ d'une raie pour /2 δλ = 2Lcosθ 0 /( -1-2Lcosθ 0 = 2Lcosθ 0 (1/( -1-1 = 2Lcosθ 0 ² ( >>1 = 2Lcosθ 0 donc δλ = λ 0 ²/(2Lcosθ 0 /2 si 4R/(1 - R² sin²(2πlcosθ 0 /λ = 1 donc si sin(2 πlcosθ 0 /λ I = (1 - R/(2R ½ Quand /2, par définition λ = λ 0 + Δλ/2 donc sachant que Δλ << λ 0 sin(2 πlcosθ 0 /λ = sin(2 πlcosθ 0 /(λ 0 + Δλ/2 = sin(2 πlcosθ 0 (1 - Δλ/(2λ 0 = sin(πlcosθ 0 Δλ ² car 2πLcosθ 0 = kπ Δλ << λ 0 donc sin( πlcosθ 0 Δλ ² = πlcosθ 0 Δλ ² = π Lcosθ 0 Δλ/(2Lcosθ 0 δλ = π Δλ/(2δλ donc π Δλ/(2 δλ = (1 - R/(2R ½ F = δλ/δλ = πr ½ /(1 - R F = πr½/(1 - R ( valable pour R assez grand
5 6.2 Pouvoir séparateur de l'interféromètre Le pouvoir séparateur exprime l'intervalle minimal en longueur d'onde qui peut être observé dans l'interféromètre On peut considérer que cet écart vaut Δλ = δλ/f = λ 0 ²/(2LFcosθ 0 ~ λ 0 ²/(2LF car θ 0 est petit Δλ = (1 - R λ 0 ²/(2πR½L PS = λ 0 /Δλ = 2πR½L/((1 - R λ 0 Exemple : λ 0 = 589 nm, L = 50 µm et R = 95% Δλ = 0,057 nm PS = Valeurs qui sont un maximum pour un interféromètre parfait. Les valeurs pratiques sont inférieures, mais restent remarquables. 7. Absence de lumière réfléchie à la résonance Tous les rayons se trouvant entre les deux lames qui se réfléchissent sur la lame inférieure donnent une composante transmise vers le bas. La situation est l'exact symétrique de la lame supérieure pour laquelle on a : A /(1 - Re jφ ( Cf : 3. et ainsi on a, pour l'amplitude transmise vers le bas : A = R ½ (1 - R A 0 /(1 - Re jφ Le facteur R ½ vient du fait que le rayon s'est réfléchi une fois de plus par rapport aux rayons transmis vers le haut. A la résonance, φ = 2kπ donc e jφ = 1 et ainsi, A = R ½ A 0 Ces rayons interfèrent avec le premier rayon qui s'est réfléchi sur la lame du bas au moment de l'entrée dans l'interféromètre. Son amplitude vaut A 1 = R ½ A 0 e jδ donc A t = A + A 1 Le premier rayon s'est réfléchi sur une limite verre-air, ce qui se fait sans déphasage, tandis que les rayons qui ont pénétré entre les lames se sont réfléchis un nombre impair de fois sur une limite air-verre, ce qui se fait avec un déphasage de π donc à leur sortie, les rayons sont déphasés de π par rapport au rayon réfléchi donc Δ = π et A 1 = - R ½ A 0 donc A t = A + A 1 = R ½ A 0 - R ½ A 0 = 0 Il n'y a donc aucune lumière réfléchie à la résonance, toute la lumière traverse même si le coefficient de réflexion vaut 99,99%, ce qui n'est vraiment pas intuitif. En fait, la lumière «s'accumule» entre les deux lames. A la résonance, l'intensité lumineuse entre les lames vaut I 0 /(1 - R, ce qui permet d'obtenir I 0 à la sortie. Remarque pour les puristes : Il est clair, d'après le raisonnement précédent que c'est A qui est déphasé de π et A 1 qui n'est pas déphasé, mais cela ne change rien au résultat.
PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau
PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative
Interférences et applications
Interférences et applications Exoplanète : 1ère image Image de la naine brune 2M1207, au centre, et de l'objet faible et froid, à gauche, qui pourrait être une planète extrasolaire Interférences Corpuscule
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
1 Systèmes triphasés symétriques
1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 2012 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND
LE PHYSICIEN FRANCAIS SERGE HAROCHE RECOIT CONJOINTEMENT LE PRIX NOBEL DE PHYSIQUE 0 AVEC LE PHYSICIEN AMERCAIN DAVID WINELAND SERGE HAROCHE DAVID WINELAND Le physicien français Serge Haroche, professeur
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Les interférences lumineuses
Les interférences lumineuses Intérêt de l étude des interférences et de la diffraction : Les interférences sont utiles pour la métrologie, la spectrométrie par transformée de Fourier (largeur de raie),
PRINCIPE MICROSCOPIE CONFOCALE
PRINCIPE MICROSCOPIE CONFOCALE Un microscope confocal est un système pour lequel l'illumination et la détection sont limités à un même volume de taille réduite (1). L'image confocale (ou coupe optique)
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Sujet. calculatrice: autorisée durée: 4 heures
DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Spectrophotomètre à réseau...2 I.Loi de Beer et Lambert... 2 II.Diffraction par une, puis par deux fentes rectangulaires... 3
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
NOMBRES COMPLEXES. Exercice 1 :
Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1
GELE5222 Chapitre 9 : Antennes microruban
GELE5222 Chapitre 9 : Antennes microruban Gabriel Cormier, Ph.D., ing. Université de Moncton Hiver 2012 Gabriel Cormier (UdeM) GELE5222 Chapitre 9 Hiver 2012 1 / 51 Introduction Gabriel Cormier (UdeM)
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Sujet. calculatrice: autorisée durée: 4 heures
DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Approche d'un projecteur de diapositives...2 I.Questions préliminaires...2 A.Lentille divergente...2 B.Lentille convergente et
AiryLab. 12 impasse de la Cour, 83560 Vinon sur Verdon. Rapport de mesure
AiryLab. 12 impasse de la Cour, 83560 Vinon sur Verdon Rapport de mesure Référence : 2010-44001 FJ Référence 2010-44001 Client Airylab Date 28/10/2010 Type d'optique Lunette 150/1200 Opérateur FJ Fabricant
PHYSIQUE 2 - Épreuve écrite
PHYSIQUE - Épreuve écrite WARIN André I. Remarques générales Le sujet de physique de la session 010 comprenait une partie A sur l optique et une partie B sur l électromagnétisme. - La partie A, à caractère
G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction
DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner
INTRODUCTION. 1 k 2. k=1
Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à
CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.
XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
ÉPREUVE COMMUNE DE TIPE 2008 - Partie D. TITRE : Comment s affranchir de la limite de la diffraction en microscopie optique?
ÉPREUVE COMMUNE DE TIPE 2008 - Partie D TITRE : Comment s affranchir de la limite de la diffraction en microscopie optique? Temps de préparation :...2 h 15 minutes Temps de présentation devant le jury
Voir un photon sans le détruire
Voir un photon sans le détruire J.M. Raimond Université Pierre et Marie Curie UPMC sept 2011 1 Un siècle de mécanique quantique: 1900-2010 Planck (1900) et Einstein (1905): Quanta lumineux la lumière est
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
DIFFRACTion des ondes
DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Physique: 1 er Bachelier en Medecine. 1er juin 2012. Duree de l'examen: 3 h. Partie 1: /56. Partie 2 : /20. Nom: N ō carte d étudiant:
Nom: Prénom: A N ō carte d étudiant: Physique: 1 er Bachelier en Medecine 1er juin 2012. Duree de l'examen: 3 h Avant de commencer a repondre aux questions, identiez-vous en haut de cette 1ere page, et
AiryLab. 34 rue Jean Baptiste Malon, 04800 Gréoux les Bains. Rapport de mesure
AiryLab. 34 rue Jean Baptiste Malon, 04800 Gréoux les Bains Rapport de mesure Référence : 2014-07001 FJ Référence 2014-07001 Client xxx Date 14/02/2014 Type d'optique Triplet ED Opérateur FJ Fabricant
Convertisseurs statiques d'énergie électrique
Convertisseurs statiques d'énergie électrique I. Pourquoi des convertisseurs d'énergie électrique? L'énergie électrique utilisée dans l'industrie et chez les particuliers provient principalement du réseau
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :
Titre : SSNL16 - Flambement élastoplastique d'une poutre [...] Date : 15/1/011 Page : 1/6 Responsable : Nicolas GREFFET Clé : V6.0.16 Révision : 8101 SSNL16 - Flambement élastoplastique d'une poutre droite
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
IUT DE NÎMES DÉPARTEMENT GEII ÉLECTRONIQUE DE PUISSANCE CONVERSION AC/DC AMÉLIORATION DU FACTEUR DE PUISSANCE
IU DE NÎMES DÉPAREMEN GEII ÉLECRONIQUE DE PUISSANCE AMÉLIORAION DU FACEUR DE PUISSANCE Yaël hiaux [email protected] 13 septembre 013 able des matières 1 Généralités 3 1.1 Historique........................................
Variation de vitesse des machines à courant alternatif. par
Variation de vitesse des machines à courant alternatif. par Philippe Ladoux Variation de vitesse des machines à courant alternatif. Introduction. Sommaire A : Principe de fonctionnement des machines à
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
Nombres complexes. cours, exercices corrigés, programmation
1 Nombres complexes cours, exercices corrigés, programmation Nous allons partir des nombres réels pour définir les nombres complexes. Au cours de cette construction, les nombres complexes vont être munis
CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté
CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons
Electron S.R.L. - MERLINO - MILAN ITALIE Tel (++ 39 02) 90659200 Fax 90659180 Web www.electron.it, e-mail [email protected]
Electron S.R.L. Design Production & Trading of Educational Equipment B3510--II APPLIICATIIONS DE TRANSDUCTEURS A ULTRASONS MANUEL D IINSTRUCTIIONS POUR L ETUDIIANT Electron S.R.L. - MERLINO - MILAN ITALIE
SCOLARITE Services. Guide pour les Parents et les Elèves. Version 15.1. Dernière Mise à jour 26 Juin 2015. Scolarité services guide de l utilisateur
SCOLARITE Services Guide pour les Parents et les Elèves Version 15.1 Dernière Mise à jour 26 Juin 2015 1/18 Table des matières 1. Généralités...3 2. Création du compte...4 1- Première Connexion...5 2-
Caractérisation non linéaire de composants optiques d une chaîne laser de forte puissance
Caractérisation non linéaire de composants optiques d une chaîne laser de forte puissance Stéphane Santran Co-tutelle : Centre de Physique Moléculaire Optique et Hertzienne (CPMOH), Talence Laurent Sarger
Microscopie de fluorescence Etat de l art
Etat de l art Bibliométrie (Web of sciences) CLSM GFP & TPE EPI-FLUORESCENCE 1 Fluorescence Diagramme de JABLONSKI S2 S1 10-12 s Excitation Eex Eem 10-9 s Émission Courtoisie de C. Spriet
Quelleestlavaleurdel intensitéiaupointm?
Optique Ondulatoire Plan du cours [1] Aspect ondulatoire de la lumière [2] Interférences à deux ondes [3] Division du front d onde [4] Division d amplitude [5] Diffraction [6] Polarisation [7] Interférences
MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .
MESURE ET PRECISIO La détermination de la valeur d une grandeur G à partir des mesures expérimentales de grandeurs a et b dont elle dépend n a vraiment de sens que si elle est accompagnée de la précision
III. Transformation des vitesses
9 III Transformation des vitesses La transformation de Lorentz entraîne de profondes modifications des règles de cinématique: composition des vitesses, transformation des accélérations. 1. Règle de composition
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
SYSTÈMES ASSERVIS CORRECTION
SYSTÈMES ASSERVIS CORRECTION //07 SYSTÈMES ASSERVIS CORRECTION ) Introduction... 3.) Les différents systèmes de commande... 3.2) Performances des systèmes asservis... 4.3) Fonction de transfert en boucle
EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)
BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
La Mesure du Temps. et Temps Solaire Moyen H m.
La Mesure du Temps Unité de temps du Système International. C est la seconde, de symbole s. Sa définition actuelle a été établie en 1967 par la 13 ème Conférence des Poids et Mesures : la seconde est la
Ecole Centrale d Electronique VA «Réseaux haut débit et multimédia» Novembre 2009
Ecole Centrale d Electronique VA «Réseaux haut débit et multimédia» Novembre 2009 1 Les fibres optiques : caractéristiques et fabrication 2 Les composants optoélectroniques 3 Les amplificateurs optiques
IR Temp 210. Thermomètre infrarouge. Des techniques sur mesure
IR Temp 210 Thermomètre infrarouge Contenu 1. Spécifications...26 2. Touches et affichages...28 3. Utilisation...30 4. Entretien...31 5. Elimination des piles et de l appareil...31 6. Tableau de facteur
Caractéristiques des ondes
Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
ELEC2753 Electrotechnique examen du 11/06/2012
ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes
REPRESENTER LA TERRE Cartographie et navigation
REPRESENTER LA TERRE Seconde Page 1 TRAVAUX DIRIGES REPRESENTER LA TERRE Cartographie et navigation Casterman TINTIN "Le trésor de Rackham Le Rouge" 1 TRIGONOMETRIE : Calcul du chemin le plus court. 1)
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
Chapitre 2 : communications numériques.
Chapitre 2 : communications numériques. 1) généralités sur les communications numériques. A) production d'un signal numérique : transformation d'un signal analogique en une suite d'éléments binaires notés
La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)
La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA) I. L'intérêt de la conversion de données, problèmes et définitions associés. I.1. Définitions:
Le concept cellulaire
Le concept cellulaire X. Lagrange Télécom Bretagne 21 Mars 2014 X. Lagrange (Télécom Bretagne) Le concept cellulaire 21/03/14 1 / 57 Introduction : Objectif du cours Soit un opérateur qui dispose d une
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Représentation d un entier en base b
Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir
Bandes Critiques et Masquage
Bandes Critiques et Masquage A. Almeida Licence Pro Acoustique et Vibrations Octobre 2012 Au Menu Au programme 1 Observations du masquage 5 Application du masquage 2 Conséquences du Masquage 3 Interprétation
CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES
CHAPITRE Le mouvement en deux dimensions CORRIGÉ DES EXERCICES Exercices. Les vecteurs du mouvement SECTION. 5. Une montgolfière, initialement au repos, se déplace à vitesse constante. En 5 min, elle
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION
LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
CHAPITRE IX : Les appareils de mesures électriques
CHAPITRE IX : Les appareils de mesures électriques IX. 1 L'appareil de mesure qui permet de mesurer la différence de potentiel entre deux points d'un circuit est un voltmètre, celui qui mesure le courant
ÉPREUVE COMMUNE DE TIPE - PARTIE D. Mesures sur les fibres optiques
ÉPREUVE COMMUNE DE TIPE - PARTIE D TITRE : Mesures sur les fibres optiques 0 Temps de préparation :... h 5 minutes Temps de présentation devant le jury :.0 minutes Entretien avec le jury :..0 minutes GUIDE
TEMPÉRATURE DE SURFACE D'UNE ÉTOILE
TEMPÉRATURE DE SURFACE D'UNE ÉTOILE Compétences mises en jeu durant l'activité : Compétences générales : Etre autonome S'impliquer Elaborer et réaliser un protocole expérimental en toute sécurité Compétence(s)
Circuits intégrés micro-ondes
Chapitre 7 Circuits intégrés micro-ondes Ce chapitre sert d introduction aux circuits intégrés micro-ondes. On y présentera les éléments de base (résistance, capacitance, inductance), ainsi que les transistors
OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF
OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 15 mars 2006 CLASSE DE PREMIERE ES, GMF Durée : 4 heures Les quatre exercices sont indépendants Les calculatrices sont autorisées L énoncé comporte trois pages Exercice
SYSTEMES LINEAIRES DU PREMIER ORDRE
SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle
Étoiles doubles par Interférométrie des tavelures au T60 du pic du midi
Étoiles doubles par Rappels historiques Analyse Harmonique : la transformée de Fourier FOURIER, Jean Baptiste Joseph (21 Mars 1768, Auxerre, France - 16 Mai 1830, Paris, France) Expérience des trous d
Créer et modifier un fichier d'importation SAU avec Excel
Créer et modifier un fichier d'importation SAU avec Excel Manuel d'utilisation Date : 26.03.2015 Version: 1.0 Collaborateur /-trice : Urs Matti Statut : en cours d élaboration validé Classification : public
A chaque couleur dans l'air correspond une longueur d'onde.
CC4 LA SPECTROPHOTOMÉTRIE I) POURQUOI UNE SUBSTANCE EST -ELLE COLORÉE? 1 ) La lumière blanche 2 ) Solutions colorées II)LE SPECTROPHOTOMÈTRE 1 ) Le spectrophotomètre 2 ) Facteurs dont dépend l'absorbance
Module : propagation sur les lignes
BS2EL - Physique appliquée Module : propagation sur les lignes Diaporama : la propagation sur les lignes Résumé de cours 1- Les supports de la propagation guidée : la ligne 2- Modèle électrique d une ligne
Molécules et Liaison chimique
Molécules et liaison chimique Molécules et Liaison chimique La liaison dans La liaison dans Le point de vue classique: l approche l de deux atomes d hydrogd hydrogènes R -0,9-1 0 0,5 1 1,5,5 3 3,5 4 R
Dérivation : Résumé de cours et méthodes
Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers
DÉCLARATION RELATIVE AUX ORGANES DE DIRECTION, SURVEILLANCE, CONTRÔLE DE LA PERSONNE MORALE
1 2 3 M3 N 113*02 POUR DÉCLARATION DE MODIFICATION Date Nouveau Partant Remplir cadre Modification de la situation personnelle Maintenu ancienne qualité DÉCLARATION RELATIVE AUX ORGANES DE DIRECTION, SURVEILLANCE,
Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année
Cours d électricité Circuits électriques en courant constant Mathieu Bardoux [email protected] IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre
Analyse statique d une pièce
Analyse statique d une pièce Contrainte de Von Mises sur une chape taillée dans la masse 1 Comportement d un dynamomètre On considère le dynamomètre de forme globalement circulaire, excepté les bossages
1STI2D - Les ondes au service de la santé
1STI2D - Les ondes au service de la santé De nombreuses techniques d imagerie médicale utilisent les ondes : la radiographie utilise les rayons X, la scintigraphie utilise les rayons gamma, l échographie
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
Pour commencer : Qu'est-ce que la diffraction? p : 76 n 6 : Connaître le phénomène de diffraction
Compétences exigibles au baccalauréat Savoir que l'importance du phénomène de diffraction est liée au rapport de la longueur d'onde aux dimensions de l'ouverture ou de l'obstacle. Exercice 19 p : 78 Connaître
ANALYSE SPECTRALE. monochromateur
ht ANALYSE SPECTRALE Une espèce chimique est susceptible d interagir avec un rayonnement électromagnétique. L étude de l intensité du rayonnement (absorbé ou réémis) en fonction des longueurs d ode s appelle
Comprendre l Univers grâce aux messages de la lumière
Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,
Piloter un avion : les questions les plus fréquemment posée En fin de document, les spécificités propres aux Ailes Soissonnaises
Piloter un avion : les questions les plus fréquemment posée En fin de document, les spécificités propres aux Ailes Soissonnaises 1) C est quoi un brevet de pilote avion? Quelles sont les étapes? Pour pouvoir
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
