FONCTIONS À CROISSANCE RÉGULIÈRE



Documents pareils
Suites numériques 3. 1 Convergence et limite d une suite

Continuité en un point

Image d un intervalle par une fonction continue

Limites finies en un point

3 Approximation de solutions d équations

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

D'UN THÉORÈME NOUVEAU

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Théorème du point fixe - Théorème de l inversion locale

Développements limités. Notion de développement limité

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

LE PROBLEME DU PLUS COURT CHEMIN

Cours 02 : Problème général de la programmation linéaire

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Structures algébriques

Résolution d équations non linéaires

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Suites numériques 4. 1 Autres recettes pour calculer les limites

Université Paris-Dauphine DUMI2E 1ère année, Applications

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Les indices à surplus constant

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Chapitre 1 Régime transitoire dans les systèmes physiques

Correction de l examen de la première session

Pour l épreuve d algèbre, les calculatrices sont interdites.

Calcul différentiel sur R n Première partie

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Probabilités sur un univers fini

Capes Première épreuve

Exercices - Polynômes : corrigé. Opérations sur les polynômes

La mesure de Lebesgue sur la droite réelle

IV- Equations, inéquations dans R, Systèmes d équations

Cours d Analyse. Fonctions de plusieurs variables

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

CHAPITRE VIII : Les circuits avec résistances ohmiques

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Développements limités, équivalents et calculs de limites

Chapitre 6. Fonction réelle d une variable réelle

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Équations non linéaires

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

A. QuiQUET (Paris - Francia) SUR DES CARRÉS PARFAITS VIAGERS

Probabilités sur un univers fini

Rappels sur les suites - Algorithme

Chapitre 2 Le problème de l unicité des solutions

Précision d un résultat et calculs d incertitudes

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Continuité d une fonction de plusieurs variables

Carl-Louis-Ferdinand von Lindemann ( )

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Moments des variables aléatoires réelles

Commun à tous les candidats

Les travaux doivent être remis sous forme papier.

Chapitre 2. Eléments pour comprendre un énoncé

Développements limités

Comparaison de fonctions Développements limités. Chapitre 10

Théorie de la Mesure et Intégration

Raisonnement par récurrence Suites numériques

Texte Agrégation limitée par diffusion interne

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Calcul fonctionnel holomorphe dans les algèbres de Banach

CCP PSI Mathématiques 1 : un corrigé

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Équations non linéaires

Chapitre 4: Dérivée d'une fonction et règles de calcul

choisir H 1 quand H 0 est vraie - fausse alarme

F411 - Courbes Paramétrées, Polaires

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Continuité et dérivabilité d une fonction

III- Raisonnement par récurrence

Chapitre 0 Introduction à la cinématique

6. Les différents types de démonstrations

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

Leçon 01 Exercices d'entraînement

La fonction exponentielle

Sur certaines séries entières particulières

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Fonctions de plusieurs variables

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

NOTATIONS PRÉLIMINAIRES

Complément d information concernant la fiche de concordance

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

Chapitre VI - Méthodes de factorisation

OM 1 Outils mathématiques : fonction de plusieurs variables

3. Conditionnement P (B)

FONCTION EXPONENTIELLE ( ) 2 = 0.

Espérance conditionnelle

Axiomatique de N, construction de Z

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Correction du Baccalauréat S Amérique du Nord mai 2007

Chapitre 7 : Intégration sur un intervalle quelconque

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Le produit semi-direct

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

Transcription:

P. LEVY (Paris - Francia) FONCTIONS À CROISSANCE RÉGULIÈRE ET ITÉRATION D'ORDRE FRACTIONNAIRE 1. - Une fonction teue que ^c+e~ x sin log x, malgré la lenteur et la petitesse de ses osciuations, nous apparaît comme irréguuère, parce qu'eue osciue entre deux fonctions, 2 ch x et 2 sh x, qui sont plus réguhères qu'eue; d'exemples de cette nature résulte la notion intuitive, mais jusqu'ici peu précise, de fonction parfaitement régulière, ou plus simplement régulière, d'une variable x indéfiniment croissante. Je me propose d'exposer le résultat de recherches que j'ai entreprises pour préciser cette notion ( l ) ; je me suis laissé guider dans ces recherches par des considérations intuitives. Aussi, à côté de résultats précis et démontrés, il m'arriverà d'énoncer des résultats plus généraux, que je ne peux donner que comme probables; mais précisément à cause de cela mes recherches posent de nouveaux problèmes, sur lesquels je désire appeler l'attention. Les considérations intuitives dont je viens de parler m'ont d'abord conduit à cette idée qu'u était possible de donner une définition de la régularité vérifiant les conditions suivantes: 1 ) Les fonctions réguhères constituent une échelle complète de croissance, c'est-à-dire que d'une part, si deux fonctions sont réguhères, leur différence est différente de zéro et d'un signe bien déterminé pour x assez grand; d'autre part, si une fonction g(x) n'est pas réguhère, on peut trouver une fonction réguhère f(x) teue que la différence f(x) g(x) change de signe une infinité de fois. 2 ) Les fonctions réguhères sont continues et monotones pour x assez grand ; h en est de même de toutes leurs dérivées ; U est à noter qu'une fonction comme e" 2 est réguhère, bien que la valeur à partir de laqueue sa n ième dérivée est monotone augmente indéfiniment avec n. 3 ) Certaines opérations analytiques, que nous appeuerons opérations régulières, ne peuvent donner que des fonctions réguhères si on les effectue sur des fonctions réguuères. Ces opérations comprennent au moins la dérivation, l'intégration, les opérations élémentaires de l'algèbre, et, dans le cas d'une fonction O Quelques indications sur ces recherches ont déjà paru dans des notes présentées à l'académie des Sciences de l'institut de France en 1926 et 1927.

278 COMUNICAZIONI réguuère f(x) indéfiniment croissante, la formation de la fonction inverse et ceue des fonctions réguuères de f(x). Par ces opérations réguhères, on peut former des ensembles étendus de fonctions réguhères; ainsi toute détermination, réeue pour x assez grand, d'une fonction algébrique de x, ef, ou log x, est réguuère. Mais on ne peut arriver ainsi à former une écheue complète de croissance. Il faut introduire une opération d'une nature essentieuement différente: l'itération régulière. 2. - Considérons une fonction f(x) continue, croissante, et supérieure à x pour x> a. Le problème de l'itération consiste dans la recherche d'une fonction f a (x), continue et croissante aussi bien par rapport à a que par rapport à x, teue que fi(x)=f(x) et (i) f*a*)-f f im\\ cette fonction doit être bien définie, d'abord pour a>0 et x>a, ensuite pour o!= a et x>f a (a). Les itérées d'ordre entier se déduisent sans difficulté de la formule de récurrence f / \ /r/* / AI cas particuuer de (1). Pour définir /"«(#), nous choisirons d'abord une valeur de x, et prendrons pour f a (è)=<p(a), a variant de 0 à 1, une fonction croissant d'une manière continue de <p(0) = à cp(l)=f(è), à cela près quelconque. La fonction 99(a) est alors bien définie, pour a quelconque, par la formule. v. v r. fv_ (f(a) =fn+aizo) =fn[<p(a )], n étant la partie entière de a, de sorte que a'=a n est compris entre 0 et 1. Cette fonction 99(a) varie en croissant de f à l'infini, de sorte que, si z> 9 1>é< l uation f a (Ç) = <p( a )=x a une racine positive a=x(x) bien déterminée. La formule <p{a + ß) -f ß [fm\ -/>(*) définit alors la fonction itérée pour des valeurs quelconques de ß et x. En particuher la fonction initiale f(x) peut, par cette formule, se retrouver en partant de cp(d) ; ü y a Ueu de remarquer que, si on ne connaît pas f(x), on peut prendre pour 99(a) une fonction croissant d'une manière continue de f à l'infini quand a varie de zéro à l'infini, à cela près quelconque. Il est commode d'introduire l'indice d'itération ou logarithme d'itération a=la.(y), racine de l'équation f a (x)=y; avec cette notation la relation fonctionneue (1) prend la forme (2) X x (y)=x(y)-x{x),

P. LEVY: Fonctions à croissance régulière 279 X(x) désignant, comme ci-dessus, la fonction inverse de #=99(a) =/ a (f), c'est-à-dire le logarithme d'itération par rapport à f. Au heu de choisir arbitrairement 99(a) de 0 à 1, on peut choisir X(x) de f à /(!). La détermination de la fonction itérée introduit donc une fonction arbitraire; deux déterminations différentes f a (x) et e? a (#) étant égales pour toutes les valeurs entières de a, l'une au plus de ces fonctions est réguhère, et les autres ont par rapport à eue des osciuations périodiques, la différence étant une fonction périodique de a. Précisons bien que, si l'on peut choisir pour 99(a)=/«( ) une fonction réguhère de a, la détermination de f a (x) qui en résulte par les formules indiquées ci-dessus est réguhère, aussi bien par rapport à a pour x quelconque que par rapport à x ; on l'étabht en n'utilisant qu'une partie des conditions imposées au N 1 à la définition de la régularité, à savoir qu'eue se conserve par l'addition d'une constante, la formation des fonctions inverses, et ceue des fonctions de fonctions. En particuuer, pour a=l, on voit que f(x) est une fonction réguuère. La condition nécessaire pour l'existence d'une fonction itérée réguhère est donc la régularité de f(x). Cette condition semble aussi suffisante; si je n'ai pu étabhr ce résultat rigoureusement, des considérations intuitives sur lesqueues je ne peux insister ici font que je ne peux guère douter de son exactitude. C'est la formation de cette itérée réguuère qui constitue ce que j'appeue l'itération régulière. Il reste à la définir, en partant de f(x), par des formules permettant un calcul précis et ne supposant pas acquise une définition préalable de la régularité; c'est que nous auons faire maintenant, ces formules étant appucables, non seulement aux fonctions parfaitement régulières, mais aussi à des fonctions vérifiant des conditions de régularité beaucoup moins restrictives. Ces formules reposent sur le fait que l'on a nécessairement (3) X x (y)=x(y) -X(x)=X(y n ) ~X(x n ), x n et y n désignant les nombres itérés x n =f n (x) et y n =fn(y)- 3. - Supposons d'abord que f(x) soit, pour x infini, équivalent à x. On démontre aisément dans ces conditions, si cette fonction est régulière, que l'itérée réguuère est caractérisée par la condition (4) f a (x)~-x^a[f(x)-x], de sorte que l'on peut déterminer a=x x (y) par la formule (5) a= Um *«"*" ; n-~*00 x n+i ^n on connaît, ainsi l'indice d'itération, et par suite l'itérée réguuère f a (x). D'aiUeurs

280 COMUNICAZIONI la formule (5) converge, et conduit à une définition de la fonction itérée f a (x) vérifiant la relation asymptotique (4), toutes les fois que l'on prend pour f(x) une fonction continue à dérivée monotone tendant vers l'unité; l'itération régulière est bien définie pour ces fonctions. Pour toute autre itérée $r a (x), le rapport $r a (x) x f(x) x ne tendra pas vers a, mais osculerà indéfiniment entre deux valeurs distinctes; d'une manière précise, il sera de la forme P[l(x)] + e, P[...] désignant une fonction périodique et s tendant vers zéro. Le problème de l'itération n'est pas changé si l'on effectue un même changement sur x et f(x). Il en résulte que le problème de l'itération réguhère se ramène au précédent pour les fonctions croissant plus vite que x mais moins vite qu'une certaine puissance de x; en effet dans ces cas log y ou log x log log y log log X tendent vers l'unité. L'itération régulière est alors résolue par des formules élémentaires. Pour les fonctions croissant plus rapidement, e? par exemple, des formules de cette nature ne s'apphquent pas. Il faut alors introduire la notion de fonctions équivalentes au point de vue de l'itération. Considérons deux fonctions f(x) et g(x), continues, monotones, et teues que g(x)>f(x)>x. EUes sont équivalentes au point de vue de l'itération si g(x) est de la forme f i+e (x), s tendant vers zéro; cela revient à dire que X[g(x)]-X]f(x)] tend vers zéro; contrairement à ce qu'on pourrait penser, c'est là une propriété indépendante du choix de la fonction itérée f a (x). D'aiUeurs, indépendamment de toute détermination de cette fonction, on peut former une condition nécessaire, qui est aussi suffisante sauf pour certaines fonctions manifestement irréguhères, pour que les fonctions f(x) et g(x) soient équivalentes au point de vue de l'itération. C'est que g(x) soit de la forme y>[f(x)\ <p(x) désignant une fonction dont toutes les itérées d'ordre entier croissent moins vite que f(x): au heu de <p[f(x)] on peut aussi écrire f[<p(x)]. Cette condition étant réalisée, il existe entre les fonctions itérées f a (x) et g a (z) une relation teue qu'à toute détermination d'une de ces fonctions, f a (x) par exemple, corresponde une détermination de l'autre, et une seule, de la forme ga(z)=f a +e(z)j e tendant vers zéro pour x infini. L'itération régulière d'une de ces fonctions entraîne alors ceue de l'autre. La formule étabussant cette relation et

P. LEVY: Fonctions à croissance régulière 281 permettant de déterminer en fonction de X(x) le logarithme d'itération fi(x) relatif à la fonction g(x) est (6) ju(y)-ju(x) hm \X[g n (y)\-x[g n (x)]\. Cette formule converge bien, et donne une détermination acceptable de /*(#), non seulement pour les fonctions parfaitement régulières, mais toutes les fois que, f(x) et g(x) étant continus, monotones, et supérieurs à x, X[g(x)] X[f(x)] tend vers zéro d'une manière monotone. Le cas des fonctions f(x) dont la dérivée reste finie étant déjà résolu, nous supposerons f f (x) monotone et augmentant indéfiniment; nous pouvons alors faire n'importe quel changement linéaire, soit sur la variable, soit sur la fonction ; toutes les fonctions obtenues sont équivalentes à f(x) au point de vue de l'itération. Nous prendrons en particuher t étant au moins égal à la plus grande racine de f"(x). Alors les fonctions itérées de g(f) d'ordres négatifs très grands tendent vers zéro, et en posant x n '=g_ n (x), yn=g-n(y)j on obtient une itérée bien déterminée de g(x), définie par la formule (7) My)-M*)-mii J;," 3 ;, W-*-00 yv*«/ *n analogue à la formule (5). Pour des raisons intuitives, on peut penser, si f(x) et par suite g(x) sont des fonctions parfaitement réguhères, que l'itérée réguhère g a (x) de g(x) est réguhère de zéro à l'infini; la formule (7), qui définit la fonction itérée régulière à l'origine, définit alors aussi ceue qu'u faut considérer comme réguuère à l'infini ; on en déduit X(x), et par suite f a (x), par la formule X(y)-X(x) = lim lf4fn(lf)] /4.fn{x)]l, déduite de (6) en intervertissant les rôles de f(x) et g(x). L'itération réguhère est ainsi définie dans tous les cas, et cela donne de nouveaux procédés pour former des fonctions réguhères. Mais ce qui précède nous donne tout autre chose qu'un procédé qui, indéfiniment répété, ferait connaître des ensembles de plus en plus étendus de fonctions réguhères. Nous avons obtenu une fonction X(x, t) dont la définition dépend du paramètre t, et ü est essentiel dans la théorie qui précède d'admettre qu'en réahté, si la fonction f(x) est parfaitement réguhère, X(x, t) ne dépend pas de t. Il est facile démontrer qu'u en est bien ainsi dans le cas de fonctions f(x) simples comme e 35 ou ax 2 + bx + c. D'autre part l'étude générale des diverses circonstances possibles montre que, si la fonction X(x, t) dépend effectivement

282 COMUNICAZIONI de t, elle ne peut pas être réguuère; une opération réguuère ne pouvant pas introduire d'irrégularité, ü faut admettre dans ce cas que la fonction initiale f(x) est irrégulière. @es considérations conduisent à penser qu'on peut définir la régularité de f(x), dans le cas où f(x) augmente indéfiniment, par le fait que X(x, t) ne dépende pas de t, et dans tous les autres cas par des règles faciles à déduire de la précédente. Il s'agit alors de montrer que les fonctions réguhères ainsi définies vérifient bien les conditions générales indiquées au N 1. Le problème est très difficüe, mais l'importance de la question me paraît justifier de nouveues recherches, que je serais heureux de provoquer. J'indique en terminant, qu'un exposé plus complet des considérations que je viens de résumer et des apphcations possibles à la sommation des séries divergentes et à l'inversion des relations fonctioneues, paraîtra ultérieurement dans les AnnaU di Matematica.