CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P ) 0 et n est nul que si i [ 0, n ], P (x i ) 0. Si P R n [X], on peut en déduire que P 0 (un polynôme non nul de degré n admettant au plus n racines). Ainsi, B est un produit scalaire sur R n [X]. Le résultat est faux sur C(R, R) car P n (X x ) C(R, R) est non nul mais vérifie B(P, P ) 0... On a immédiatement On en déduit que L (x j ) δ,j { si j 0 sinon ) }, i [ 0, n ], B(L, L i ) L i (x ) δ j,i ce qui montre que (L 0,..., L n ) est une famille orthonormée de R n [X]. C est en particulier une famille et comme elle a n + dim(r n [X]) éléments qui sont dans R n [X], c est une b.o.n. de R n [X]. Définition de P n (f)... Avec la question., on a On en déduit que [0, n ], B(f, L ) f(x ) [ 0, n ], P n (f)(x ) B(f, L ) f(x ).. P n (f) est, on vient de le voir, un polynôme convenable. Si P en est un autre alors P P n est nul car c est un élément de R n [X] qui a strictement plus de n racines..3. Les règles de calcule en b.o.n. montre que f R n [X], f B(f, L i )L i P n (f) i0 P n L R n [X] et i, P (x i ). D après la question précédente, P car est un autre élément de R n [X] ayant les mêmes propriétés. Ainsi, x R, L (x) Une application linéaire. 3.. Soit f C([a, b], R) telle que N (f). En particulier, i, f(x i ) et donc x [a, b], Λ(f)(x) f(x i ) L i (x) Φ(x) N (Φ) i0 Le majorant est indépendant de x et un passage à la borne supérieure donne N (Λ(f)) N (Φ). Cette fois, le majorant est indépendant de f et en passant à la borne supérieure, on obtient Λ N (Φ)
3.. t Φ(t) est continue et est donc bornée sur le SEGMENT [a, b] ET elle atteint ses bornes. On a donc τ [a, b], N (Φ) Φ(τ) 3.3. On a Λ(ψ)(τ) ψ(x )L (τ) L (τ) Φ(τ) N (Φ) Ainsi, Λ(ψ)(τ) N (Λ(ψ)). Par ailleurs, ψ est continue sur [a, b] et est comprise entre et de par sa définition (son graphe est composé de segment reliant des points d ordonnées e ou ). On a donc N (Λ(ψ)) Λ, on en déduit que N (Φ) Λ. L autre inégalité ayant été prouvée, on a finalement Λ N (Φ) Un résultat auxiliaire. 4.. On peut appliquer le théorème de Rolle à la fonction g sur [c i, c i+ ] pour obtenir un point d annulation de g sur ]c i, c i+ [. On a ainsi p points d annulation distincts (les intervalles ouverts sont disjoints) pour g. 4.. On montre par récurrence que la propriété g () s annule au moins p + fois sur [a, b] est vraie pour tout [ 0, p ]. - Initialisation : le résultat est vrai par hypothèse sur g au rang 0 (et on vient même de le prouver au rang ). - Hérédité : soit n [ 0, p ] tel que le résultat est vrai au rang n. g (n) s annulant au moins p + n fois, on peut comme à la question précédente utiliser le théorème de Rolle pour montrer que sa dérivée s annule au moins p n fois. On a donc g (p+) qui s annule au moins p + (n + ) fois et le résultat est vrai au rang n. En particulier, l hypothèse au rang p montre que g (p) s annule au moins fois. Une expression de f P n. 5.. P n+ P n est un polynôme de R n+ [X] s annulant en x 0,..., x n. Il est factorisable par T n+ et, par degré, il existe une constante r telle que P n+ P n rt n+ 5.. g f P n+ s annule au au moins n + points distincts (x 0,..., x n et y) et il existe donc, avec 4., β [a, b] tel que g (n+) (β) 0. Par ailleurs, P n+ est de degré n + et sa dérivée n + -ième est donc une constante égale à son coefficient en x n+ fois (n + )!. Ce coefficient vaut r d après la question précédente et on a donc On en déduit alors que β [a, b]/ f (n+) (β) r(n + )! x R, P n+ (x) P n (x) (n + )! T n+(x)f (n+) (β) En appliquant ce résultat avec x y, on obtient le résultat voulu dans le cas où y [a, b] est différent des x i. Si y est égal à l un des x i, il reste vrai (il se lit 0 0 et on peut choisir n importe quel β). 5.3. La question précédente traitait déjà le cas où y x i (elle stipulait y [a, b] et les x i sont dans [a, b]).
Seconde partie. Etude du maximum de ϕ... ϕ est continue sur le SEGMENT [0, n] et admet donc un maximum sur ce segment... Soit t [0, n] ; on a (on pose j n ) n ϕ(n t) ((n t) ) n t j t (t j) ϕ(t).3. Pour tout t, on a (en posant j + ) ϕ(t ) t t n t j j0 j Pour t / N, ϕ(t) est non nul et en divisant par ϕ(t) on obtient j0 t / N, ϕ(t ) ϕ(t) t n t On a t n t n+ t qui croît sur R +. Sur [, n/], elle varie entre n et n une valeur absolue plus grande que : t [, n ], ϕ(t ) ϕ(t) et a donc Il suffit de multiplier par ϕ(t) 0 pour obtenir l inégalité demandée..4. D après la question., le maximum de ϕ sur [0, n] est atteint en un point x 0 de [0, n/] (quand t varie dans [0, n/], n t varie dans [0, n/] aussi et on a donc ϕ([0, n/]) ϕ([n/, n])). Si x 0 alors la question précédente montre que ϕ(x 0 ) ϕ(x 0 ) et, en itérant le processus, que ϕ(x 0 E(x 0 )) ϕ(x 0 ). Comme ϕ(x 0 E(x 0 )) est le maximum de ϕ sur [0, n] et que x 0 E(x 0 ) [0, [ [0, n], l inégalité est une égalité. Dans les deux cas, on a trouvé un point de [0, ] où ϕ atteint son maximum. Abscisse du maximum de ϕ... Pour t / N, les propriétés de morphisme de ln sur R + donnent ln(ϕ(t)) ln( t ) En dérivant cette expression sur l interalle ]E(t), E(t) + [, on a alors ϕ (t) ϕ(t) t.. Si t < et alors t < 0. On en déduit que n Par ailleurs (termes pour 0 et ), t + sommant, on obtient t t t t(t ) [ [,, ϕ (t) < 0 t < 0 (somme de tels termes). est négatif quand t [/, [. En 3
.3. La fonction g : t n t est dérivable sur ]0, [ de dérivée g : t n. (t ) g est donc strictement décroissante sur ]0, [ (dérivée strictement négative sur l intervalle). g admet donc au plus un point d annulation (la stricte monotonie entraîne l injectivité). Avec la question., il en est de même pour ϕ..4. ϕ atteint son maximum en un point de [0, ] mais ce n est ni en 0 ni en (car en ces points ϕ est nulle et il existe des points où elle est > 0). Elle atteint donc son maximum en un point de l ouvert ]0, [. Comme ϕ est dérivable sur cet ouvert, le maximum est atteint en un point critique (de dérivée nulle) et ce n est pas sur [/, [ avec la question.. C est donc un point de ]0, /[ et il y en a au plus un d après.3. Finalement, ϕ atteint son maximum en un unique point t n ]0, /[. En ce point, ϕ est de dérivée nulle et donc t n 0 Etude de l abscisse t n du maximum de ϕ. 3.. Pour, t n tn ( t n) > 0 et donc Comme n t n 0, on en déduit que t n t n > t n > 3.. (/) est une série de Riemann divergente. Comme elle est positive, ses sommes partielles tendent vers + et on a donc, par minoration Une majoration de ϕ. lim n + 4.. t étant décroissante sur R+, on a t n + puis lim t n 0 n +, t [, + ], t En intégrant cette ingéalité puis en sommant de à n, on obtient De plus t 4.. On en déduit alors que n+ t ln() < car e > et donc, en ajoutant cette inégalité stricte n+ ln(n + ) n+ t < t < < t n Le passage à l inverse étant une opération strictement décroissante sur R + on a finalement t n < ln(n + ) 4
4.3. On a alors t [0, n], ϕ(t) ϕ(t n ) Une majoration de N (f P n ). 5.. On a T n+ (x) n n t n t n ( t n ) t n n!t n < n a + ht a ih h n+ t i h n+ ϕ(t) i0 5.. D après la relation () de la question I.5. on a N (f P n ) i0 (n + )! N (T n+ )N (f (n+) ) n! ln(n + ) Les questions précédentes indiquent que N (T n+ ) h n+ N (ϕ) h n+ ϕ(t n ) hn+ n! ln(n+) et ainsi h n+ N (f P n ) (n + ) ln(n + ) N (f (n+) ) Troisième partie.. On a directement T n+ (x) w L (x)(x x ). On a, avec I.. et la question précédente, Par ailleurs, avec la partie I, P n (x) f(x )L T n+ (x) w x x w f(x ) T n+ (x) x x L (x) et on en déduit en combinant les deux précédentes relations que P n (x) w f(x ) x x w x x 3. 3.. On a x x i h( i) et donc et ainsi w i h( i) h n i0 ( i) n i+ ( i) h n! w ( )n h n n!w ( ) ( n ) ( ) n (n )! 5
3.. On reprend la formule (4) en remplaçant w par ( ) n w P n (x) w f(x ) x x w x x ( ) ( n ( ) ( n 4. 4.. On a a x 0 n, b x 4n n et h b a 4n et donc x a + h n + h n n! : ) f(x ) x x ) x x 4.. Si on choisit f(x) cos(πx/), on a f(x ) cos( nπ + π ) ( )n cos( π ) et donc f(x ) ( ) n+ et f(x + ) 0. Si on applique la formule de III.3. avec la fonction f et les points ( n + j) pour j 0..4n, on obtient le polynôme P 4n (x) ( ) j( ) 4n ( ) n+j j x x j ( ) j( ) 4n ( ) n+j j x ( n+j) j0 j0 4 ( ) j( ) 4n 4 j x x j ( ) j( ) 4n j x ( n+j) j0 j0 On pose j n au numérateur et j n au dénominateur : ( ) +n( ) 4n ( ) +n ( ) ( 4n 4.3. On a n P 4n (x) x +n x n ( ) +n( ) 4n +n x j n p n (x ) p+ ( x) n j n p n ( ) ( 4n (p + ) ) +n x ) +n x p+ ( p) Dans le premier produit, on multiplie les etiers entre et n + p + et dans le second entre et n p et on a donc x (n + p + )!(n p)! n 4.4. On utilise la formule () de I.5. pour obtenir (sachant que f () (x) ( π donc N (f () ) ( π ) ) f(x) P 4n (x) (4n + )! 4 x x N (f (4n+) ) (4n + )! 4 ) cos( πx + π) et ( π ) 4n+ x + n Dans le produit, on pose j n pour se ramener à la question précédente et obtenir ( π ) 4n+ f(x) P 4n (x) (4n + )! (n + p + )!(n p)! θ(n, p) On a θ(n +, p) θ(n, p) (n) 4 π 4 n + (4n) 4 4 π4 4 4 qui est une suite de limite <. Par règle de D Alembert, (θ(n, p)) n 0 est une séie absolument convergente. En particulier, elle ne diverge pas grossièrement et lim θ(n, p) 0 n + 6