Licence Sciences de l Ingénieur et Licence Informatique. Niveau L2 (= 2ème année)



Documents pareils
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Chapitre 2. Matrices

Résolution de systèmes linéaires par des méthodes directes

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Cours d analyse numérique SMI-S4

Cours 02 : Problème général de la programmation linéaire

Démonstration de la conjecture de Dumont

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Cours d Analyse. Fonctions de plusieurs variables

Angles orientés et trigonométrie

Exercices - Polynômes : corrigé. Opérations sur les polynômes

physicien diplômé EPFZ originaire de France présentée acceptée sur proposition Thèse no. 7178

Groupe symétrique. Chapitre II. 1 Définitions et généralités

1.The pronouns me, te, nous, and vous are object pronouns.

Exercices Corrigés Premières notions sur les espaces vectoriels

Polynômes à plusieurs variables. Résultant

Correction de l examen de la première session

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

Évaluation de la régression bornée

Physique quantique et physique statistique

1S Modèles de rédaction Enoncés

Structures algébriques

Représentation géométrique d un nombre complexe

Pour l épreuve d algèbre, les calculatrices sont interdites.

Probabilités sur un univers fini

I. Programmation I. 1 Ecrire un programme en Scilab traduisant l organigramme montré ci-après (on pourra utiliser les annexes):

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Calcul différentiel sur R n Première partie

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe

Mathématiques appliquées à l'économie et à la Gestion

Eteindre. les. lumières MATH EN JEAN Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

Chapitre 2 Le problème de l unicité des solutions

I. Polynômes de Tchebychev

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Introduction à MATLAB R

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

APPENDIX 6 BONUS RING FORMAT

Développement décimal d un réel

3 Approximation de solutions d équations

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Exemple PLS avec SAS

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Programmes des classes préparatoires aux Grandes Ecoles

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Application Form/ Formulaire de demande

Compter à Babylone. L écriture des nombres

Théorème du point fixe - Théorème de l inversion locale

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Corrigé du baccalauréat S Asie 21 juin 2010

Fonctions de plusieurs variables

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Problème 1 : applications du plan affine

I. Ensemble de définition d'une fonction

DOCM Solutions officielles = n 2 10.

Programmation linéaire et Optimisation. Didier Smets

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

RULE 5 - SERVICE OF DOCUMENTS RÈGLE 5 SIGNIFICATION DE DOCUMENTS. Rule 5 / Règle 5

LES DÉTERMINANTS DE MATRICES

Introduction à l étude des Corps Finis

Forthcoming Database

ONTARIO Court File Number. Form 17E: Trial Management Conference Brief. Date of trial management conference. Name of party filing this brief

Principe de symétrisation pour la construction d un test adaptatif

The new consumables catalogue from Medisoft is now updated. Please discover this full overview of all our consumables available to you.

THÈSE. présentée à TÉLÉCOM PARISTECH. pour obtenir le grade de. DOCTEUR de TÉLÉCOM PARISTECH. Mention Informatique et Réseaux. par.

Programmation linéaire

1 Définition et premières propriétés des congruences

Probabilités sur un univers fini

0 h(s)ds et h [t = 1 [t, [ h, t IR +. Φ L 2 (IR + ) Φ sur U par

Programme de la classe de première année MPSI

Cours 7 : Utilisation de modules sous python

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Une forme générale de la conjecture abc

Équations d amorçage d intégrales premières formelles

Géométrie dans l espace Produit scalaire et équations

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Continuité et dérivabilité d une fonction

Qu est-ce qu une probabilité?

Théorèmes de Point Fixe et Applications 1

Simulation de variables aléatoires

Programmation linéaire

Tex: The book of which I'm the author is an historical novel.

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

that the child(ren) was/were in need of protection under Part III of the Child and Family Services Act, and the court made an order on

Chapitre 6. Fonction réelle d une variable réelle

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

Instructions Mozilla Thunderbird Page 1

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Le passé composé. C'est le passé! Tout ça c'est du passé! That's the past! All that's in the past!

avec des nombres entiers

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Fonction inverse Fonctions homographiques

Complément d information concernant la fiche de concordance

NORME INTERNATIONALE INTERNATIONAL STANDARD. Dispositifs à semiconducteurs Dispositifs discrets. Semiconductor devices Discrete devices

Calculation of Interest Regulations. Règlement sur le calcul des intérêts CONSOLIDATION CODIFICATION. Current to August 4, 2015 À jour au 4 août 2015

Représentation d un entier en base b

Représentation des Nombres

Transcription:

Licence Sciences de l Ingénieur et Licence Informatique Niveau L2 (= 2ème année) Mathématiques : Résumé de ce qu il faut savoir en Algèbre linéaire (ou Calcul Matriciel) au sortir du L1, en préalable au cours d Algèbre linéaire du L2, concernant : MATRICES SYSTÈMES LINÉAIRES DÉTERMINANTS par J-B HIRIART-URRUTY, Professeur de mathématiques 2007

2

Table des matières I Matrices 5 I1 Définitions de base 5 I2 Matrices (très) spéciales 5 I3 Transposition 6 I4 Egalité de matrices 7 I5 Addition de matrices, multiplication d une matrice par un scalaire 7 I6 Multiplication de matrices 7 I7 Trace d une matrice carrée 9 I8 Matrices inversibles 9 I9 Explication de la multiplication matricielle à l aide des transformations linéaires 10 I10 Définitions complémentaires 11 I11 Exercices 12 II Systèmes Linéaires 15 II1 Définition 15 II2 Procédé d élimination de GAUSS 15 II3 Rang d une matrice 19 II4 Solutions de systèmes linéaires : existence de solutions, unicité 20 II5 Exercices 20 III Déterminants 23 III1 Déterminants d ordre 1 et 2 23 III2 Déterminants d ordre 3 23 III3 Déterminants d ordre quelconque 24 III31 Définition à l aide des permutations 24 III32 Développements suivant une ligne ou une colonne 25 III4 Propriétés générales des déterminants (important!) 25 III5 Règles importantes 25 III6 Inversion d une matrice 26 III7 Résolution de systèmes linéaires à l aide de déterminants, autant d équations linéaires que d inconnues (systèmes dits de CRAMER) 27 III8 Déterminants et volumes 28 III9 Exercices 28 A Brief History of Linear Algebra and Matrix Theory 31 3

4

I Matrices I1 Définitions de base K désignera R ou C ; ses éléments seront appelés des scalaires (des nombres réels ou complexes) Une matrice à coefficients dans K est un tableau rectangulaire présenté habituellement de la manière suivante : m lignes a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn } {{ } n colonnes où les coefficients a ij sont des éléments de K (des scalaires donc) a ij : terme de la i-ème ligne et de la j-ème colonne Notation recommandée : LI-CO, ligne puis colonne dans l indice ij de a ij M m,n (K) : notation pour l ensemble des matrices m n (ou (m, n)) à coefficients dans K Si m = n, on parlera de matrices carrées et on se contentera de la notation M n (K) Comme R C, M m,n (R) M m,n (C) Pour certains résultats concernant M m,n (R), on passera dans M m,n (C) puis on reviendra dans M m,n (R) (comme, par exemple, pour la résolution des équations du second degré à coefficients réels) Dans A = a ij M m,n (K), il y a m n coefficients Dans des calculs matriciels en Sciences de l ingénieur, m et n peuvent atteindre des millions I2 Matrices (très) spéciales Les matrices (dites) scalaires : m = n = 1 et A = a, où a K On peut identifier K et M 1 (K) 1 0 0 0 1 La matrice identitée : I n = (des 1 sur la diagonale, des 0 partout ailleurs) 0 0 0 1 Un peu plus général : les matrices (carrées) diagonales : diag(a 1, a 2,, a n ) = a 1 0 0 0 a 2 0 (a 1,, a n sur la diagonale, des 0 partout ailleurs) 0 0 a n Les matrices (carrées) triangulaires (inférieures, resp supérieures) 5

A = 0 ou A = 0 (a ij = 0 si i < j) (a ij = 0 si i > j) Les matrices unicolonnes (ou matrices colonnes) : A = On peut identifier cette matrice unicolonne avec le vecteur : a 1 a 2 a m a m Matrices unilignes (ou matrices lignes) : définition mutatis mutandis A = a ij M m,n (K) comporte m n coefficients a ij K M m,1(k) a 1 a 2 de Km La matrice diag (a 1,, a n ) comporte n(n 1) coefficients nuls ; les n autres coefficients a 1,, a n la déterminent La matrice triangulaire A = 0 comporte n(n 1) 2 coefficients nuls ; les n(n+1) 2 autres coefficients a ij la détermine Noter que n 2 n(n 1) 2 = n(n+1) 2 qui est aussi 1 + 2 + + n Dans une matrice A M n (K), il y a n termes diagonaux et n 2 n = n(n 1) = 2 n(n 1) 2 termes non diagonaux Exemple: Matrice des coefficients dans un système linéaire { 5x 2y + z = 1 Dans (2 équations, 3 inconnues x, y, z) 3x + 4z = 5 5 2 1 la matrice des coefficients des inconnues x, y, z est A = 3 0 4 I3 Transposition Si A M m,n (K), la matrice transposée de A, notée A T ou t A (A t est à éviter, car génératrice de confusions) est la matrice n m dont le terme (i, j) est le terme (j, i) de A (les lignes de A deviennent les colonnes de A T, les colonnes de A deviennent les lignes de A T ) Exemple: A = 5 8 1 4 0 0 devient A T = 5 4 8 0 1 0 Lorsque A est à coefficients complexes, on définit aussi la transconjugée (ou adjointe) A de A : A = (A T ) (ou, ce qui revient au même, (A) T ) 6

En bref, on transpose A et on prend les conjuguées des termes de la matrice (ou dans l ordre inverse) Par exemple, A = 5 i 1 2i devient A 5 1 = i 2i Une matrice (carrée) A M n (R) est dite symétrique lorsque A T = A, antisymétrique lorsque A T = A (notions qui n ont d intérêt que pour des matrices à coefficients réels) Une matrice (carrée) A M n (C) est dite hermitienne lorsque A = A, antihermitienne lorsque A = A (notion généralisant les deux précédentes au cas complexe) I4 Egalité de matrices A = a ij M m,n (K) et B = b ij M m,n (K) (les deux matrices sont donc de même format!) sont égales lorsque : a ij = b ij pour tout i = 1,, m et j = 1,, n I5 Addition de matrices, multiplication d une matrice par un scalaire A = a ij M m,n (K) et B = b ij M m,n (K) (les deux matrices sont donc de même format!) peuvent être additionnées pour donner une nouvelle matrice c ij = C = A + B définie comme suit : c ij = a ij + b ij pour tout i, j (addition coefficient par coefficient) Si A = a ij M m,n (K) et c K, la nouvelle matrice ca est définie naturellement comme ceci : pour tout i, j le coefficient (i, j) de ca est ca ij Quelques propriétés (faciles) : A + B = B + A ; (A + B) + C = A + (B + C) (écrit A + B + C sans ambiguïté) Si 0 est la matrice nulle (ie des coefficients 0 partout), A + 0 = A, A + ( A) = 0 c(a + B) = ca + cb ; (c + d)a = ca + da ; c(da) = (cd)a (A + B) T = A T + B T ; (ca) T = ca T ; (A T ) T = A (A + B) = A + B ; (ca) = ca ; (A ) = A (attention) I6 Multiplication de matrices Non, ce n est pas en multipliant les coefficients terme à terme too bad! Mais ça n est pas difficile pour autant Le produit C = AB (dans cet ordre) de A = a ij M m,n (K) par B = b kl M r,p (K) n est défini que si r = n, c est-à-dire : le nombre de colonnes de A = le nombre de lignes B, auquel cas, C = c ij M m,p (K) a pour coefficients : c ij = n a ik b kj = a i1 b 1j + a i2 b 2j + + a ip b pj k=1 Pour s en souvenir, rien de plus simple, adopter le schéma de calcul suivant : 7

m ji b kj n B n { }} { A AB (AB) a ik ij jj } {{ } p l important est le n commun, peu importe m et p Propriétés (lorsque les multiplications en jeu sont possibles): (AB)C = A(BC) (on écrira ABC sans ambiguïté) A(B + C) = AB + AC (A + B)C = AC + BC (ca)b = A(cB) = cab Si 0 est la matrice nulle, 0A = A0 = 0 Si I n est la matrice identité, I n A = AI n = A (AB) T = B T A T (attention à l interversion de l ordre!) Si A et B sont diagonales, il en est de même AB Si A et B sont triangulaires inférieures (respsupérieures), la matrice AB est triangulaire inférieure (resp supérieure) Exemples particuliers : a 11 a 1n a 21 a 2n } a m1 {{ a mn } A M m,n (K) y 1 y 2 y n x x 1 x 2 a 11 x 1 + a 12 x 2 + + a 1n x n a 21 x 1 + a 22 x 2 + + a 2n x n = a m1 x 1 + a m2 x 2 + + a mn x n } {{ } x n matrice unicolonne ( M m,1 (K)) a 11 a 1n a 21 a 2n } a m1 {{ a mn } A M m,n (K) m = a c x y = ax c b y 2 + by 2 + 2cxy } {{ } } {{ } matrice scalaire A M 2 (K) x 1 x 2 x n y 1 y 2 y n m m a i1 y i a i2 y i a in y i i=1 i=1 i=1 } {{ } matrice uniligne ( M 1,n (K)) = n (Attention, c est bien 2c!) x i y i i=1 } {{ } matrice scalaire 8

x 1 x 2 x n x 1 x 2 x n Mises en garde! AB BA en général AB = 0 n implique pas A = 0 ou B = 0, ni même BA = 0 AB = AC n implique pas B = C, même si A 0 = x 2 1 x 1 x 2 x 1 x n x 2 x 1 x 2 2 x 2 x n } x n x 1 x n x 2 {{ x 2 n } matrice carrée (n, n) symétrique I7 Trace d une matrice carrée Si A M n (K), on appelle trace de A la somme des éléments diagonaux de A, A = a ij, tra = a 11 + a 22 + + a nn Propriétés : tr(ab) = tra + trb ; tr(ca) = ctra ; tr(a T ) = tra Soit A M m,n (K), B M n,m (K), de sorte qu on peut effectuer les deux produits AB et BA ; ainsi AB M m (K) et BA M n (K) (elles peuvent donc être de tailles très différentes) Alors tr(ab) = tr(ba) Ceci est un résultat très utile Attention, il est faux de dire que tr(ab) = (tra)(trb) Exemple: tr(abc) = tr(cab) = tr(bca) (utiliser deux fois le résultat précédent) mais on ne peut pas mettre A, B etc dans n importe quel ordre x 1 x 2 n Si X = page 8) x n, tr(xxt } {{ }) = tr(x} {{ T X} ) = x 2 i (Revoir pour ce cas extrême les exemples de la (n,n) (1,1) i=1 I8 Matrices inversibles Une matrice (carrée) A M n (K) est dite inversible, ou régulière, ou encore non singulière s il existe B M n (K) telle que AB = BA = I n En fait, il suffit d avoir AB = I n sans se préoccuper de BA (cela se démontre à l aide des déterminants) Une telle matrice B est (unique et ) appelée l inverse de A ; elle est notée A 1 Lorsque A n est pas inversible, on dit qu elle est singulière Propriétés et règles de calcul : - Si A est inversible, il en est de même de A T et (A T ) 1 = (A 1 ) T (de sorte que la notation A T est acceptée pour désigner (A 1 ) T = (A T ) 1 ) - Si A et B sont inversibles (et de même taille), il en est de même de AB et (AB) 1 = B 1 A 1 (attention à l interversion de l ordre!) 9

- Si A est diagonale (resp triangulaire inférieure, triangulaire supérieure) et inversible, alors A 1 est diagonale (resp triangulaire inférieure, triangulaire supérieure) Exemple: A = est inversible dès lors que tous les a ii sont différents de 0, auquel cas a11a22 0 a nn 1 a 11 1 A 1 a = 22 ; ce qui est marqué dans les 2 matrices ne peut se comparer directement 0 1 a nn - Si A est inversible et c 0, ca est inversible et (ca) 1 = 1 c A 1 - Si A est inversible, (A 1 ) 1 = A (On retombe sur ses pieds comme pour l opération de transposition) - Attention! Si A et B sont inversibles, on ne sait rien dire de A + B - Soit A M n (K) et p un entier positif, alors la notation A p signifie AA } {{ A} Si p = 0, on convient p fois de ceci : A 0 = I n Avec la règle d inversion rappelée plus haut, on obtient : si A est inversible, A p l est aussi et (A p ) 1 = (A 1 ) p ( de sorte que la notation A p est acceptée pour désigner (A p ) 1 = (A 1 ) p ) Ainsi A p est bien définie sans ambiguïté pour p entier relatif (p Z) I9 Explication de la multiplication matricielle à l aide des transformations linéaires Le produit AB de deux matrices peut sembler bizarre d autant que le terme (i, j) de AB n est pas le produit des termes (i, j) de A et de B D où cette manière de faire AB (cf partie I6) vient-elle? Considérons les 2 variables x 1 et x 2 sur lesquelles on fait une transformation linéaire : (1) { y1 =a 11 x 1 +a 12 x 2, y 2 =a 21 x 1 + a 22 x 2 (x 1, x 2 ) ont donné (y 1, y 2 ) via (1) Supposons que x 1 et x 2 étaient elles-mêmes le résultat d une transformation linéaire à partir de variables initiales w 1 et w 2 : (2) { x1 =b 11 w 1 +b 12 w 2, x 2 =b 21 w 1 + b 22 w 2 (w 1, w 2 ) ont donné (x 1, x 2 ) via (2) Question : comment obtenir à présent y 1 et y 2 à partir de w 1 et w 2? Un simple calcul à partir de (1) et (2) conduit à : soit encore : { y1 =a 11 (b 11 w 1 + b 12 w 2 )+a 12 (b 21 w 1 + b 22 w 2 ), y 2 =a 21 (b 11 w 1 + b 12 w 2 )+ a 22 (b 21 w 1 + b 22 w 2 ) (3) { y1 =c 11 w 1 +c 12 w 2, y 2 =c 21 w 1 + c 22 w 2 10

ou (4) { c11 =a 11 b 11 +a 12 b 21, c 12 =a 11 b 12 +a 12 b 22, c 21 =a 21 b 11 +a 22 b 21, c 22 =a 21 b 12 + a 22 b 22 En reformulant (1) et (2) sous la forme matricielle : y1 a11 a y= =Ax= 12 x1 y 2 a 21 a 22 x 2 x1 b11 b x= =Bw= 12 w1 x 2 b 21 b 22 w 2, on reconnaît en (3) et (4) : y1 c11 c 12 w1 y= y 2 =Cw= c 21 c 22 w 2, où C = AB précisément I10 Définitions complémentaires - A et B dans M n (K) sont dites semblables s il existe une matrice P inversible telle que B = P 1 AP Comme le suggère l appellation, deux matrices semblables A et B ont un certain nombre de propriétés communes ; par exemple : trb = tra (mais avec des matrices semblables, on est loin des matrices égales!) Exemple: A est semblable à elle même Si A et B sont semblables, B et A le sont aussi Si A et B sont semblables et si B et C sont semblables, alors A et C sont aussi semblables - A et B dans M n (K) sont dites congruentes s il existe une matrice P inversible telle que - A M n (R) est dite orthogonale si A T = A 1 B = P T AP (attention) Manières équivalentes de le voir : AA T = I n ou bien les colonnes de A (ou les lignes de A) sont des vecteurs unitaires orthogonaux deux à deux (on dit qu elles forment un système orthonormal) - A M n (C) est dite unitaire si A = A 1 (attention) De même que hermitienne était le pendant complexe de symétrique (cf p7), unitaire est le pendant complexe de orthogonale Note : Si P est orthogonale et que B = P 1 AP (= P T AP ), A et B sont semblables et congruentes (le pied!) 11

I11 Exercices Exercice 1: On sait que 0A = A0 = 0, où 0 désigne la matrice nulle Trouver deux matrices A et B de M 2 (R) telles que le produit soit la matrice nulle 0 0 0 0 ; on vérifie que AB = 0 = 6 2 3 1 et B = 1 2 2 4 Exercice 2: 1 3 Soit A = 4 3 ( ) 1 ) Touver un vecteur colonne non nul x u= tel que A u= 3 u y 2 ) Déterminer tous les vecteurs vérifiant cette relation Rép 1 : Soit par exemple A = Exercice 3: Montrer que A = 1 ) Tout vecteur u non nul pour lequel 2x 3y = 0 ; u= est un exemple ( 3 2 ) Les vecteurs de la forme 2 a ), où a est un paramètre réel quelconque a 1 0 2 2 1 3 4 1 8 ) 3 2 ( et B = 11 2 2 4 0 1 6 1 1 1 0 0 0 1 0 0 0 1 Exercice 4: Déterminer les inverses, s ils existent, des matrices suivantes : 5 3 2 3 A =, B =, C = 4 2 1 3 sont inverses l une de l autre Rép 2 : Rép 3 : On vérifie que AB = I3 = 2 6 3 9, C n est pas inversible 1/3 1/3 1/9 2/9, B 1 = 1 3/2 2 5/2 Exercice 5: Trouver une matrice A M 2 (R) non diagonale, telle que A 2 soit diagonale A 1 = Rép 4 : Exercice 6: 7 0 0 7, de sorte que A 2 = 1 2 3 1 Trouver une matrice triangulaire supérieure A M 2 (R) telle que A 3 = Rép 5 : Par exemple, A = 8 57 0 27 Rép 6 : A = 2 3 0 3 12

Exercice 7: Soit A M n (K) et B M n (K) deux matrices triangulaires supérieures Montrer que AB est encore une matrice triangulaire supérieure dont les éléments diagonaux sont a 11 b 11, a 22 b 22,,a nn b nn (A = a ij, B = b ij ) Exercice 8: Trouver une matrice A M 2 (R) orthogonale dont la première ligne soit un multiple positif de (3,4) 3/5 4/5 4/5 3/5 ou bien A = Exercice 9: Vérifier que la matrice P M 3 (R) suivante est orthogonale 1/ 3 1/ 3 1/ 3 P = 0 1/ 2 1/ 2 2/3 1/ 6 1/ 6 3/5 4/5 4/5 3/5 Rép 8 : A = Exercice 10: Montrer que la matrice A M 2 (C) suivante est unitaire : 1/3 i2/3 i2/3 A = i2/3 1/3 i2/3 Exercice 11: Calculer le produit AB par la technique du produit par blocs, avec : A = 1 2 1 3 4 0 0 0 2 et B = 1 2 3 1 4 5 6 1 0 0 0 1 9 12 15 4 19 26 33 7 0 0 0 2 (attention, les 0 ne sont pas des blocs de même taille) Exercice 12: Soit M diagonale par blocs, M = diag(a, B, C), où 1 2 A =, B = 5 3 4 R S 0 T = 1 3, C = 5 7 ER ES + F T 0 GT, B = E F 0 G Alors AB = Rép 11 : A = Calculer M 2 en se servant de la technique où on élève chaque bloc au carré Rép 12 : M 2 = 7 10 15 22 25 16 24 40 64 13

Exercice 13: Soit A M n (R) ; montrer que : i) A + A T est symétrique ; ii) A A T est antisymétrique ; iii) A = B + C, où B est symétrique et C antisymétrique Exercice 14: Soit A M n (C) ; montrer que : i) A + A est hermitienne ; ii) A A est antihermitienne ; iii) A = B + C, où B est hermitienne et C antihermitienne Exercice 15: On dit que les matrices A et B commutent lorsque AB = BA Les matrices suivantes commutent-elles? a) 3 4 6 2 A = et B = 4 3 2 9 c) 0 0 3 2 2 A = et B = 1 1 2 4 3 1 1 b) A = d) A = 1 2 2 2 4 5 0 4 1 3 2 2 2 4 3 et B = et B = 0 0 1 1 1 0 1 1 0 1 0 1 0 Exercice 16: Calculer (A + B) 2 et A 2 + 2AB + B 2 lorsque A = 1 1 0 1 et B = 1 0 1 1 Sous quelle condition (portant sur A et B) a-t-on (A + B) 2 = A 2 + 2AB + B 2? Exercice 17: Vérifier que la matrice αi 2 = matrices (2,2) α 0 0 α (où α est un scalaire quelconque) commute avec toutes les Montrer qu il n y a pas d autres matrices qui jouissent de cette propriété Ind : En prenant A = suivants de B, B = 0 1 0 0 a b c d, on essaie de vérifier si AB = BA pour les choix particuliers 0 0 et B = 1 0 14

II Systèmes Linéaires II1 Définition Un système linéaire de m équations à n inconnues x 1, x 2,, x n est un ensemble d équations de la forme : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b m où les a ij et b j sont des scalaires donnés Si les b j sont tous nuls, on parle d un système homogène, et x 1 = 0, x 2 = 0,, x n = 0 est automatiquement solution Forme matricielle de (1) : AX = b, ou A = a ij, X = x 1 x 2 x m b 1 et b = b 2 b m (1) (2) II2 Procédé d élimination de GAUSS Nous le présentons sur plusieurs exemples différents Exemple 1: pivot 1 (1x 1 ) à éliminer m x 1 x 2 + x 3 = 0 x 1 + x 2 x 3 = 0 10x 2 + 25x 3 = 90 20x 1 + 10x 2 = 80 Matrice A b 1 1 1 0 1 1 1 0 0 10 25 90 20 10 0 80 (3) 1ère étape : Elimination de x 1 A l aide de la 1ère équation et du terme pivot x 1, on va éliminer x 1 dans les autres équations Pour cela, on ajoute L 1 (1ère ligne) à la 2ème, on ajoute ( 20L 1 ) à la 4ème, on ne s occupe pas de la 3ème puisque x 1 n y figure pas Cela conduit à : x 1 x 2 + x 3 = 0 0 = 0 10x 2 + 25x 3 = 90 30x 2 20x 3 = 80 2ème étape : Elimination de x 2 La 1ère équation, qui a servi d équation pivot, reste telle quelle La 2ème ne contenant pas x 2, on change l ordre des équations de manière à avoir un pivot non nul On obtient ainsi les équations réordonnées : 15

x 1 x 2 + x 3 = 0 10x 2 + 25x 3 = 90 à éliminer 30x 2 20x 3 = 80 0 = 0 pivot 10 (10x 2 ) 1 1 1 0 0 10 25 90 0 30 20 80 0 0 0 0 (4) A l aide de la 2ème équation et du terme pivot 10x 2, éliminer x 2 dans les autres équations (1 seule à traiter ici) ; pour cela : on ajoute ( 3L 2 ) à la 3ème équation Cela donne : x 1 x 2 + x 3 = 0 10x 2 + 25x 3 = 90 95x 3 = 190 0 = 0 1 1 1 0 0 10 25 90 0 0 95 190 0 0 0 0 (5) (Attention à ne pas oublier de transformer les scalaires b j de droite dans ces opérations successives!) 3ème étape : Résolution en remontant dans les équations De la 3ème équation de (5) on tire directement x 3 = 2 ; avec cette information, de la 2ème équation on tire x 2 = 4 ; connaissant x 3 et x 2, de la 1ère équation on tire x 1 = 2 Résumé : (3) était un système de 4 équations à 3 inconnues ; on en a tiré une solution unique (x 1 = 2, x 2 = 4, x 3 = 2) Cet exemple illustre les diverses opérations dans une élimination de GAUSS : - Multiplier une équation par un terme non nul - Ajouter (ou soustraire) le multiple d une équation à une autre - Echanger l ordre de deux équations Les opérations correspondantes sur la matrice augmentée Ab sont : multiplier une ligne par un terme non nul ; ajouter (ou soustraire) le multiple d une ligne à une autre ; échanger deux lignes Définitions: Le système linéaire (1) est dit sur-déterminé s il y a plus d équations que d inconnues (m > n), déterminé si m = n, et sous-déterminé s il y a moins d équations que d inconnues (m < n) Le système linéaire (1) est dit compatible (ou consistant) s il a une solution au moins, incompatible (ou inconsistant) s il n a aucune solution Exemple 2 (Système linéaire à une infinité de solutions): pivot à éliminer 3x 1 + 2x 2 + 2x 3 5x 4 = 8 0, 6x 1 + 1, 5x 2 + 1, 5x 3 5, 4x 4 = 2, 7 1, 2x 1 0, 3x 2 0, 3x 3 + 2, 4x 4 = 2, 1 Matrice A b 3 2 2 5 8 0, 6 1, 5 1, 5 5, 4 2, 7 1, 2 0, 3 0, 3 2, 4 2, 1 (6) 1ère étape : Elimination de x 1 dans la 2ème et 3ème équation On ajoute ( 0, 2L 1 ) à la 2ème équation, on ajoute ( 0, 4L 1 ) à la 3ème Cela conduit à : 3x 1 + 2x 2 + 2x 3 5x 4 = 8 pivot 1, 1x 2 + 1, 1x 3 4, 4x 4 = 1, 1 à éliminer 1, 1x 2 1, 1x 3 + 4, 4x 4 = 1, 1 3 2 2 5 8 0 1, 1 1, 1 4, 4 1, 1 0 1, 1 1, 1 4, 4 1, 1 16

2ème étape : Elimination de x 2 dans la 3ème équation Pour cela : ajouter L 2 à L 3 (3ème équation) ; cela donne : 3x 1 + 2x 2 + 2x 3 5x 4 = 8 1, 1x 2 + 1, 1x 3 4, 4x 4 = 1, 1 0 = 0 3 2 2 5 8 0 1, 1 1, 1 4, 4 1, 1 0 0 0 0 0 3ème étape : Résolution en remontant dans les équations De la 2ème équation on tire x 2 = 1 x 3 + 4x 4 ; de ceci et de la 1ère équation, on tire x 1 = 2 x 4 Les valeurs de x 3 et x 4 peuvent-être choisies comme on veut ; une fois ce choix fait, on a x 1 et x 2 Les solutions du système proposé sont donc : (2 x 4, 1 x 3 4x 4, x 3, x 4 ) x 3 et x 4 quelconques On a traité ici un système sous-déterminé : (6) comportait 3 équations à 4 inconnues Exemple 3 (Système linéaire à une et une seule solution): pivot à éliminer x 1 + x 2 + 2x 3 = 2 3x 1 x 2 + x 3 = 6 x 1 + 3x 2 + 4x 3 = 4 Matrice A b 1 1 2 2 3 1 1 6 (7) 1 3 4 4 1ère étape : Elimination de x 1 dans la 2ème et 3ème équation ajouter (3L 1 ) à L 2, faire L 3 L 1 Cela donne : x 1 + x 2 pivot + 2x 3 = 2 2x 2 + 7x 3 = 12 à éliminer 2x 2 + 2x 3 = 2 1 1 2 2 0 2 7 12 0 2 2 2 2ème étape : Elimination de x 2 dans la 3ème équation Pour cela : ajouter L 2 à L 3 ; cela donne : x 1 + x 2 + 2x 3 = 2 2x 2 + 7x 3 = 12 5x 3 = 10 1 1 2 2 0 2 7 12 0 0 5 10 3ème étape : Résolution en remontant dans les équations De la dernière on tire x 3 = 2, puis de la 2ème x 2 = 1, enfin de la 1ère x 1 = 1 17

On a traité dans cet exemple un système déterminé : ((7) comportait 3 équations à 3 inconnues) En définitive, ce système linéaire (7) possède une seule solution (x 1 = 1, x 2 = 1, x 3 = 2) Exemple 4 (Système linéaire sans solution): pivot à éliminer 3x 1 + 2x 2 + x 3 = 3 2x 1 + x 2 + x 3 = 0 6x 1 + 2x 2 + 4x 3 = 6 Matrice A b 3 2 1 3 2 1 1 0 (8) 6 2 4 6 1ère étape : Elimination de x 1 dans la 2ème et 3ème équation Pour cela, on ajoute 2 3 L 1 à L 2, on ajoute 2L 1 à L 3 ; cela conduit à : 3x 1 + 2x 2 + x 3 = 3 pivot 1 3 x 2 + 1 3 x 3 = 2 à éliminer 2x 2 + 2x 3 = 0 3 2 1 3 0 1 3 0 2 2 0 1 3 2 2ème étape : Elimination de x 2 dans la 3ème équation Pour cela, on ajoute 6L 2 à L 3 ; cela donne : 3x 1 + 2x 2 + x 3 = 3 1 3 x 2 + 1 3 x 3 = 2 0 = 12 3 2 1 3 0 1 1 3 3 2 0 0 0 12 3ème étape : Fin de la résolution En raison de la 3ème équation qui est impossible, le système (8) traité (3 équations, 3 inconnues) n a pas de solution A l aide des opérations élémentaires du procédé d élimination de Gauss, on peut toujours arriver à mettre un système linéaire sous une forme dite échelonnée, c est-à-dire comme ceci : 0 a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 c 22 x 2 + + c 2n x n = b 2 0 0 k rr x r + k rn x n = ˆb r 0 = ˆb r+1 0 = ˆb m r m r 0 0 = (9) avec a 11 0, c 22 0,, k rr 0 18

En clair : les lignes de A commencent par un nombre strictement croissant de zéros à mesure que l indice des lignes augmente Il y a 3 cas de figure concernant le schéma général(9) : Si r < m et que l un des b j, r + 1 j m, n est pas nul : le système est incompatible, (9) n a aucune solution C était le cas dans l exemple 4, avec r = 2 < m = 3 et b r+1 = b 3 = 12 * * * * * 0 = * * 12 Si r = n et si les b r+1,, b m sont nuls (s ils sont présents) : le système a alors une et une seule solution Il suffit de remonter à partir de la r = nème équation de (9) C était le cas dans l exemple 1, avec r = n = 3 et m = 4 * * * * * * 0 = * * * 0 Si r < n et si les b r+1,, b m sont nuls (s ils sont présents) : le système a alors une infinité de solutions On choisit en effet x r+1,, x n comme on veut ; ensuite la (r 1)ème équation conduit à x r 1 en fonction de x r, x r+1,, x n ; puis on continue en remontant dans les équations C était le cas dans l exemple 2 avec r = 2, n = 4 et m = 3 * * * * * * * 0 = * * 0 II3 Rang d une matrice Définitions: Le rang d une matrice A = a ij est le nombre maximal de vecteurs lignes de A qui sont linéairement indépendants On note rga cet entier Noter que rga n est nul que si A est la matrice nulle Exemple: A = 3 0 2 2 6 42 24 54 21 21 0 15 M 3,4 (R) (10) est de rang 2 car : - Les 3 vecteurs lignes sont linéairement dépendants, 6L 1 1 2 L 2 L 3 = 0; - Les 2 premiers vecteurs lignes sont linéairement indépendants (ils ne sont pas colinéaires) Propriétés (essentielle): Le rang de A est aussi le nombre maximal de vecteurs colonnes de A qui sont linéairement indépendants Ainsi : rg(a T ) = rga 19

Exemple: Reprenons la matrice A de (10) : puisque son rang est 2, il y a au moins 2 vecteurs colonnes linéairement indépendants ; et chaque fois qu on prend 3 vecteurs colonnes, on est sûr qu ils sont linéairement dépendants Avouez que ça ne saute pas aux yeux! Retenir que pour A M m,n (R), rga m et rga n Note: Dans un système linéaire AX = b, avec m n (moins d équations que d inconnues, ce qui est le cas usuel), il est fréquent qu on ait rga = m (ie A est de "rang maximal") Exemple: Dans une matrice rectangulaire (m n), soit les vecteurs lignes soit les vecteurs colonnes sont (toujours) linéairement dépendants II4 Solutions de systèmes linéaires : existence de solutions, unicité Théorème: Existence Le système linéaire AX = b, A M m,n (R) et b R m (11) a des solutions si et seulement si la matrice A et la matrice "augmentée" Â = A b M m,n+1 (R) ont le même rang Unicité Le système linéaire (11) a une et une seule solution si et seulement si rga = rgâ = n Infinité de solutions Si rga = rgâ < n, le système linéaire(11) a une infinité de solutions Cas particulier : AX = b avec A M n (R) et b R n (12) (A matrice carrée, il y a autant d équations que d inconnues) Alors : ( rga = n (rang maximal donc) ) ( A est inversible ) Dans ce cas, (12) a une et une seule solution, qui est X = A 1 b II5 Exercices Exercice 1: En utilisant le procédé d élimination de Gauss, transformer le système linéaire suivant : x 3y 2z = 6 x 6 (S) 2x 4y 3z = 8, (AX = b), X = y, b = 8 3x + 6y + 8z = 5 z 5 en un système équivalent de la forme T X = c, où T est une matrice triangulaire supérieure Résoudre (S) Rép 1 : x 3y 2z = 6 2y + z = 4 7z = 14, T = 1 3 2 0 2 1 0 0 7 Solution du système triangulaire équivalent, et donc du système initial (S) : X = 1 3 2 20

Exercice 2: Mettre les systèmes linéaires suivants sous forme échelonnée : x 1 + x 2 2x 3 + 4x 4 = 5 (S 1 ) 2x 1 + 2x 2 3x 3 + x 4 = 3 3x 1 + 3x 2 4x 3 2x 4 = 1, (S 2 ) x 1 + x 2 2x 3 + 3x 4 = 4 2x 1 + 3x 2 + 3x 3 x 4 = 3 5x 1 + 7x 2 + 4x 3 + x 4 = 5 Rép 2 : (S1) 1 1 0 10 9 0 0 1 7 7 0 0 0 0 0, (S2) 1 1 2 3 4 0 1 7 7 5 0 0 0 0 5 Exercice 3: Déterminer si chacun des systèmes linéaires homogènes suivants a une solution non nulle : x + y z = 0 (S 1 ) 2x 3y + z = 0 x 4y + 2z = 0, (S 2 ) x + y z = 0 2x + 4y z = 0 3x + 2y + 2z = 0, x 1 + 2x 2 3x 3 + 4x 4 = 0 (S 3 ) 2x 1 3x 2 + 5x 3 7x 4 = 0 5x 1 + 6x 2 9x 3 + 8x 4 = 0 Rép 3 : (S1) a autant d équations que d inconnues Mise sous forme échelonnée : Une solution non nulle particulière est Mise sous forme échelonnée de (S2) : Le système n a que la solution nulle { x + y z = 0 5y + 3z = 0 x = 2 y = 3 z = 5 (z variable libre) x + y z = 0 2y + z = 0 11z = 0 x = 0 y = 0 z = 0 Le système (S3) doit posséder une solution non nulle, puisqu il y a quatre inconnues pour seulement trois équations ; il n est pas besoin ici de mettre sous forme échelon pour parvenir à cette conclusion Exercice 4: On considère le système linéaire suivant : x + 2y + z = 3 (S) ay + 5z = 10 2x + 7y + az = b, où a et b sont des réels 1 ) Mettre (S) sous forme échelonnée 2 ) Pour quelles valeurs de a le système (S) a-t-il une et une seule solution? 3 ) Pour quelles valeurs du couple (a,b) le système (S) a-t-il plus d une solution? 21

Rép 4 : 1 ) (S ) x + 2y + z = 3 ay + 5z = 10 (a 2 2a 15)z = ab 6a 30 2 ) Le système a une et une seule solution si, et seulement si, le coefficient de z dans la dernière équation de (S ) est 0 ; c est-à-dire lorsque a 5 et a 3 3 ) Le système a plus d une solution (une infinité en fait) si le coefficient de z et le second membre sont nuls ; cela donne deux possibilités : (a=5, b=12) et (a=-3, b=4) 22

III Déterminants A toute matrice carrée n n, A = a ij, on associe un scalaire particulier, appelé déterminant de A Cet objet s avère être un outil indispensable à l étude des propriétés des matrices carrées Le déterminant de A est noté déta ou A (comme une valeur absolue ou un module) Cette deuxième notation peut être utilisée dans les calculs intermédiaires pour alléger les notations ; dans les autres cas elle est génératrice de confusion, la première notation est préférable III1 Déterminants d ordre 1 et 2 a b Si A = a, déta = a ; si A = c d, déta = ad bc Exemple: 4 3 A = ; déta = 14, dét( A) = 14 aussi 2 5 III2 Déterminants d ordre 3 Soit A = a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 équivalentes possibles!) : Son déterminant est défini comme suit (c est une des définitions déta = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31 a 12 a 21 a 33 a 11 a 23 a 32 Il y a dans ce développement 6 produits de 3 éléments de la matrice A, trois sont comptés avec les signe +, et les 3 autres avec les signe Autre expression du déterminant d ordre 3 déta = a 11 (a 22 a 33 a 23 a 32 ) a 12 (a 21 a 33 a 23 a 31 ) + a 13 (a 21 a 32 a 22 a 31 ) a = a 22 a 23 11 a 32 a 33 a a 21 a 23 12 a 31 a 33 + a a 21 a 22 13 a 31 a 32 = combinaison linéaire de 3 déterminants d ordre 2, dont le calcul est représenté sous la forme suivante : a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 (1) a 11 ( ) a 12 ( ) + a 13 ( ) 23

Exemple: 1 2 3 4 2 3 0 5 1 = 1 2 3 5 1 2 4 3 0 1 + 3 4 2 0 5 = 55 III3 Déterminants d ordre quelconque III31 Définition à l aide des permutations Une permutation σ de l ensemble {1, 2,, n} est une bijection de {1, 2,, n} sur lui-même ou, de façon équivalente, un réarrangement (ou mélange) de ses termes Notation pour désigner σ : ( 1 2 3 n σ(1) σ(2) σ(3) σ(n) Exemple: ( ) 1 2 3 est une permutation de {1, 2, 3} 3 2 1 ( ) 1 2 3 4 est une permutation de {1, 2, 3, 4} 4 2 1 3 ) 1 donne σ(1), 2 donne σ(2),, n donne σ(n) L ensemble de toutes ces permutations de {1, 2,, n} est noté S n, elles sont au nombre de n! Si σ S n, on désigne par α le nombre d inversions dans σ, c est-à-dire le nombre de paires (σ(i), σ(j)) pour lesquelles σ(i) > σ(j) alors que i < j (ou encore, α est le nombre d échanges nécessaires pour repasser de (σ(1) σ(2) σ(n)) à (1 2 n)) La signature de σ est ɛ σ = ( 1) α, c est-à-dire 1 si α est pair, 1 si α est impair Exemple: ( ) 1 2 σ =, α = 1 et ɛ 2 1 σ = 1 ( ) ( 1 2 3 1 2 3 σ =, ɛ 3 2 1 σ = 1; σ = 3 2 1 ( ) 1 2 3 4 5 σ =, α = 6 et ɛ 3 5 1 4 2 σ = 1 ), ɛ σ = 1 Une transposition est une permutation particulière : elle échange 2 éléments i et j, en laissant tous les autres à leur place, soit : 1 2 i j n τ = 1 2 j i n Dans ce cas, α = 1, de sorte que ɛ τ = 1 Si ɛ σ = 1, on dit que la permutation est paire ; si ɛ σ = 1, on dit qu elle est impaire La moitié des permutations de S n (n 2) sont paires, et celles de l autre moitié sont impaires Voici une première définition de déta pour A = a ij M n (K) : déta = σ S n ɛ σ a 1σ(1) a 2σ(2) a nσ(n) (2) 24