M2 IAD UE MODE Notes de cours (3)



Documents pareils
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de

Attitude des ménages face au risque. M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2014

Limites finies en un point

Continuité en un point

Fonctions de plusieurs variables

Chapitre 2 Le problème de l unicité des solutions

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Résolution d équations non linéaires

CHAPITRE 5. Stratégies Mixtes

Table des matières. I Mise à niveau 11. Préface

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Correction du Baccalauréat S Amérique du Nord mai 2007

Développements limités, équivalents et calculs de limites

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Sur certaines séries entières particulières

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Chapitre 6. Fonction réelle d une variable réelle

Correction du baccalauréat ES/L Métropole 20 juin 2014

Continuité et dérivabilité d une fonction

3 Approximation de solutions d équations

Développement décimal d un réel

Moments des variables aléatoires réelles

Cours d Analyse. Fonctions de plusieurs variables

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

3. Caractéristiques et fonctions d une v.a.

Fonction inverse Fonctions homographiques

FONCTION EXPONENTIELLE ( ) 2 = 0.

Précision d un résultat et calculs d incertitudes

Les indices à surplus constant

La fonction exponentielle

DOCM Solutions officielles = n 2 10.

CONSOMMATION INTERTEMPORELLE & MARCHE FINANCIER. Epargne et emprunt Calcul actuariel

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Chp. 4. Minimisation d une fonction d une variable

Image d un intervalle par une fonction continue

MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .

Théorème du point fixe - Théorème de l inversion locale

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Nombre dérivé et tangente

Economie de l Incertain et des Incitations

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

6 Equations du première ordre

CAPTEURS - CHAINES DE MESURES

Espérance conditionnelle

Chapitre 3 : INFERENCE

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Dérivées d ordres supérieurs. Application à l étude d extrema.

Capes Première épreuve

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

Dérivation : cours. Dérivation dans R

Suites numériques 3. 1 Convergence et limite d une suite

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Le modèle de Black et Scholes

Calcul différentiel. Chapitre Différentiabilité

Optimisation des fonctions de plusieurs variables

Loi binomiale Lois normales

DETERMINATION DE L INCERTITUDE DE MESURE POUR LES ANALYSES CHIMIQUES QUANTITATIVES

Programmation linéaire

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Correction du baccalauréat STMG Polynésie 17 juin 2014

Fonctions de deux variables. Mai 2011

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Calcul intégral élémentaire en plusieurs variables

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal

Probabilité. Table des matières. 1 Loi de probabilité Conditions préalables Définitions Loi équirépartie...

I. Ensemble de définition d'une fonction

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

un environnement économique et politique

Complément d information concernant la fiche de concordance

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Dualité dans les espaces de Lebesgue et mesures de Radon finies

La mesure de Lebesgue sur la droite réelle

Propriétés des options sur actions

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Cours Fonctions de deux variables

IV- Equations, inéquations dans R, Systèmes d équations

Chapitre 7 : Intégration sur un intervalle quelconque

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

CCP PSI Mathématiques 1 : un corrigé

Calculs de probabilités

Le théorème des deux fonds et la gestion indicielle

Introduction à l étude des Corps Finis

Problèmes de Mathématiques Filtres et ultrafiltres

Simulation de variables aléatoires


(51) Int Cl.: H04L 29/06 ( ) G06F 21/55 ( )

Logique. Plan du chapitre

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

EXERCICES - ANALYSE GÉNÉRALE

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Transcription:

M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de l ensemble des résultats C ; nous supposerons dorénavant que c est un intervalle, borné ou non, de R, comme dans les exemples où les résultats sont des sommes d argent ; cependant certaines des définitions et propositions qui suivent peuvent se généraliser au cas où C est un sous-ensemble convexe de R n. on note toujours P l ensemble des lois de probabilité sur C ; lorsqu une loi P de P possède une espérance mathématique, on la désigne par E(P) ; E(P) C et δ E(P) est la loi certaine en E(P). 1.1 Attitude globale vis-à-vis du risque Définition 1. On dit qu un D. est adversaire du risque lorsque, pour toute loi de probabilité de P possédant une espérance, il préfère être certain d obtenir le résultat E(P) plutôt que d obtenir un résultat aléatoire de loi P : δ E(P) P ; on dit qu il est joueur s il manifeste les préférences opposées, P, P δ E(P) ; il est dit neutre vis-à-vis du risque si P, P δ E(P). On peut remarquer que cette définition est intrinsèque, en ce sens qu elle n est pas liée à un modèle : le D. peut très bien avoir un critère autre qu une utilité espérée. 1

Dans le cadre du modèle EU, un D. sera donc: - adversaire du risque lorsque P,u(E(P)) U(P) ; - joueur lorsque P,u(E(P)) U(P) ; et - neutre vis-à-vis du risque P,u(E(P)) = U(P). Il existe alors une caractérisation simple de l attitude vis-à-vis du risque: Proposition 1. Soit un D. ayant pour critère EU avec utilité de vnm u. D. est adversaire du risque u est concave; D. est joueur u est convexe; D. est neutre vis-à-vis du risque u est affine. Démonstration (i) u concave x,y C, u( 1 2 x + 1 2 y) 1 2 u(x) + 1 2 u(y). Soit donc x,y C et P la loi donnant x et y avec équiprobabilité : P({x}) = P({y}) = 1 2 ; E(P) = 1 2 x + 1 2 y. si D. est adversaire du risque, δ E(P) P et donc U(δ E(P) ) U(P); or, U(δ E(P) ) = u(e(p)) = u( 1 2 x + 1 2 y) et U(P) = 1 2 u(x) + 1 2u(y) ; u est bien concave (cf la fig.2 plus bas). (ii) Réciproquement, supposons u concave et soit P une loi possédant une espérance E(P). Par le point (E(P),u(E(P))) de la courbe représentant la fonction z = u(x) il passe une droite d appui (c est la tangente à la courbe si u (E(P)) existe ; n importe quelle droite de pente comprise entre celle des deux demi-tangentes, qui existent toujours pour u concave, sinon), c-à-d une droite entièrement située au-dessus de cette courbe: x C,[z u(e(p)) = a.[x E(P)]; u (E(P)) a u +(E(P))] z u(x). Il en résulte que x C, u(x) u(e(p)) a.[x E(P)], d où en intégrant, U(P) u(e(p)) = C u(x)dp u(e(p)) C xdp E(P) = E(P) E(P) = 0 et donc δ E(P) P. (iii) La preuve de l équivalence, dans le modèle, entre être joueur et avoir une utilité de vnm convexe est analogue ; enfin être neutre vis-à-vis du risque, c est être à la fois joueur et adversaire du risque, ce qui équivaut à avoir une utilité de vnm à la fois convexe et concave, c-à-d affine. 2

z z = u(e(p)) + a[x E(P)] a = u (E(P)) u(x) u u(e(p)) E(P) x x Fig. 1 Adversaire du risque: utilité de vnm concave Notation : L espérance mathématique d une variable aléatoire X sera notée E(X) ; lorsque la loi de probabilité qu elle engendre sur C sera une loi P on aura donc E(X) = E(P). D autre part, on écrira abusivement U(X) pour la valeur de l utilité linéaire U(P) apportée par sa loi. On appelle équivalent-certain d une v.a. X, en abrégé EC(X), un résultat tel que le D. soit indifférent entre la perspective aléatoire X et l obtention de ce résultat avec certitude ; cette définition est intrinsèque ; dans le modèle EU, l équivalent-certain de X est est caractérisé par la relation : u(ec(x)) = U(X)[= U(P)]. Il suffit que u soit continue pour que cette équation ait une solution et donc que EC(X) existe ; il sera unique si u est strictement croissante. On appelle prime de risque (associée à la v.a. X) l écart π(x) = E(X) EC(X) ; c est la quantité (algébrique) que le D. est prêt à perdre en moyenne pour éliminer l incertitude présentée par X. Dans la partie (ii) de la proposition ci-dessus, nous avons établi la propriété suivante (théorème de Jensen); u concave P,u(E(P)) udp Elle entraine que, dans le cadre du modèle EU, un D. est : - adversaire du risque X, la prime de risque π(x) est positive ; - joueur X, la prime de risque π(x) est négative ; et - neutre vis-à-vis du risque X, la prime de risque π(x) est nulle. 3

z u(x ) u u(e(x)) u(ec(x)) = U(X) = 1 2 u(x) + 1 2 u(x ) u(x) π(x) x EC(X) E(X) x x Fig. 2 Prime de risque d un adversaire du risque pour X = 1 2 δ x + 1 2 δ x L existence de compagnies d assurances est la preuve que les adversaires du risque sont nombreux. Voyons pourquoi. Supposons pour simplifier que chaque assuré potentiel i n encourt qu un seul risque: perdre une somme c i avec une probabilité p i ; s il ne s assure pas, il est devant une perspective X i d espérance E(X i ) = p i c i (< 0) ( E(X i )(> 0) est la valeur actuarielle de ce risque), ayant un équivalent certain EC(X i )(< 0) ; s il est adversaire du risque, π(x i ) = E(X i ) EC(X i ) > 0. S il s assure en payant une prime d assurance S i à l assureur, il sera devant la perspective non risquée δ ( Si ) ; il est donc prêt à s assurer en payant jusqu à S i tel que u( S i ) = u(ec(x i )), c-à-d S i = EC(X i ) = E(X i ) + π(x i ); la prime d assurance (maximum) est la somme de la valeur actuarielle et de la prime de risque. L assureur perçoit les primes mais prend en charge tous les aléas et fait donc un profit aléatoire, i [X i + S i ] = i [X i E(X i ) + π(x i )], d espérance, i π(x i), positive ; si les risques individuels sont indépendants, la loi des grands nombres lui donne une forte probabilité de gagner de l argent. 1.2 Attitude locale vis-à-vis du risque 1.2.1 Attitude locale vis-à-vis du risque absolu Nous allons étudier les comportements face à de petits risques, c-à-d à des aléas de faible amplitude par rapport à leur espérance mathématique. Supposons que le D. a une utilité de vnm, u, de dérivée première u et seconde u. Soit {X h } une famille de v.a. de supports [m h,m + h], de 4

lois P h de même espérance E(X h ) = m et de variances V ar(x h ) (noter que V ar(x h ) h 2 0 quand h 0). Par définition, U(X h ) = u(ec(x h )). Un développement limité au deuxième ordre de u au voisinage de m s écrit u(x) = u(m) + (x m).u (m) + 1 2 (x m)2.[u (m) + ǫ(x m)], ce qui, en intégrant sur l intervalle [m h,m + h], donne U(X h ) = m+h m h u(x)dp h = u(m)+(m m)u (m)+ 1 2 V ar(x h)[u (m)+ǫ(h)]. Un développement au premier ordre de u au voisinage de m montre par ailleurs que: u(ec(x h )) = u(m) + (EC(X h ) m).[u (m) + ǫ(ec(x h ) m)]. On en déduit (sous certaines hypothèses techniques sur u ) que π(x h )u (m) = (EC(X h ) m).u (m) = 1 2 V ar(x h).u (m) + o(h); d où, pour h infiniment petit, π(x h ) 1 u (m) 2 u (m) V ar(x h). Pour de petits risques X, la prime de risque est donc proportionnelle d une part à la variance du risque, V ar(x), et d autre part à une caractéristique locale du comportement du D., son coefficient (local) d aversion au risque absolu, qui en x vaut R a (x) = u (x) u (x). 1.2.2 Attitude locale vis-à-vis du risque relatif On peut penser que le fait qu un risque doive être considéré comme petit ou non dépend de la richesse du D. Soit alors {Z h } une famille de v.a. de supports [1 h,1 + h], de lois P h de même espérance E(Z h ) = 1 et de variances V ar(z h ). On s intéresse aux v.a.x h = m.z h, qui ont donc la même espérance E(X h ) = m.e(z h ) = m > 0 et des variances V ar(x h ) = m 2.V ar(z h ) ; V ar(z h ) = V ar(x h ) [E(X h )] est la variance relative de X 2 h et 0 quand h 0 ; les X h correspondent donc à des aléas de faible amplitude relative. Les mêmes calculs que précédemment montrent que, pour h infiniment petit, π(x h ) 1 u (m) 2 u (m) m2.v ar(z h ) soit encore : 1 m π(x h) 1 u (m) 2 u (m) m.v ar(z h). 1 Pour de petits risques relatifs X ( 0), la prime de risque relative E(X) π(x) est donc proportionnelle d une part à la variance relative de ce risque, V ar(x) [E(X)] 2 et d autre part à une caractéristique locale du comportement du D., son coefficient (local) d aversion au risque relatif, qui en x vaut R r (x) = x u (x) u (x). 5

1.2.3 Exemples u(x) = ln(x) R a (x) = 1 x,r r(x) = 1; u(x) = k 1 x γ (γ > 0) R a (x) = γ+1 x,r r(x) = γ + 1; u(x) = x γ (0 < γ < 1) R a (x) = γ 1 x,r r(x) = γ 1 ; u(x) = x 2 + βx R a (x) = 2 β 2x,R r(x) = 2x β 2x. Les trois premières fonctions d utilité correspondent à des coefficients locaux d aversion au risque absolu décroissants et à des coefficients locaux d aversion au risque relatif constants, ce qui paraît assez réaliste ; ce n est pas le cas de l utilité quadratique, où les deux sont croissants. 6