Chafa Azzedine - Faculté de Physique U.S.T.H.B 1



Documents pareils
Repérage d un point - Vitesse et

Chapitre 0 Introduction à la cinématique

Chapitre 1 Cinématique du point matériel

Cours de Mécanique du point matériel

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

Calcul intégral élémentaire en plusieurs variables

Michel Henry Nicolas Delorme

Chapitre 2 : Caractéristiques du mouvement d un solide

Représentation géométrique d un nombre complexe

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

F411 - Courbes Paramétrées, Polaires

Angles orientés et fonctions circulaires ( En première S )

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Cours d Analyse. Fonctions de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables

Fonctions de deux variables. Mai 2011

Fonctions de plusieurs variables

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Intégrales doubles et triples - M

Mécanique : Cinématique du point. Chapitre 1 : Position. Vitesse. Accélération

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

Cours IV Mise en orbite

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

1S Modèles de rédaction Enoncés

Erreur statique. Chapitre Définition

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

Fonctions de plusieurs variables

Chapitre 2 Le problème de l unicité des solutions

Continuité et dérivabilité d une fonction

Angles orientés et trigonométrie

LE PRODUIT SCALAIRE ( En première S )

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

TD de Physique n o 1 : Mécanique du point

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.

Plan du cours : électricité 1

Cours Fonctions de deux variables

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

La notion de temps. par Jean Kovalevsky, membre de l'institut *

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

Nombre dérivé et tangente

Mesure d angles et trigonométrie

Propriétés électriques de la matière

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

La Mesure du Temps. et Temps Solaire Moyen H m.

Géométrie dans l espace Produit scalaire et équations

DYNAMIQUE DE FORMATION DES ÉTOILES

Oscillations libres des systèmes à deux degrés de liberté

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Chapitre 7 - Relativité du mouvement

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

André Crosnier LIRMM ERII4, Robotique industrielle 1

TS Physique Satellite à la recherche de sa planète Exercice résolu

Cercle trigonométrique et mesures d angles

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Repérage de l artillerie par le son.

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Chapitre 1 Régime transitoire dans les systèmes physiques

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Equations cartésiennes d une droite

3 Approximation de solutions d équations

Dérivation : cours. Dérivation dans R

Analyse en Composantes Principales

Modélisation et Simulation

Les fonction affines

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

TSTI 2D CH X : Exemples de lois à densité 1

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

TD: Cadran solaire. 1 Position du problème

Introduction. Mathématiques Quantiques Discrètes

I - Quelques propriétés des étoiles à neutrons

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Séquence 10. Géométrie dans l espace. Sommaire

Mécanique. Chapitre 4. Mécanique en référentiel non galiléen

Quelques contrôle de Première S

TD1 Signaux, énergie et puissance, signaux aléatoires

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

1 Complément sur la projection du nuage des individus

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

Travaux dirigés de mécanique du point

Mécanique du Point Matériel

Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :

La boule de fort. Olympiades de Physique. Année Simon Thomas. Thomas Roussel. Julien Clabecq. Travail de recherche réalisé par :

Deux disques dans un carré

Transcription:

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes qui les prooquent. Chafa Azzedine - Faculté de Physique U.S.T.H.B

NOTION DE REPÈRE Point matériel Un point matériel est un objet infiniment petit deant les distances caractéristiques du mouement pour être considéré comme ponctuel. D D Chafa Azzedine - Faculté de Physique U.S.T.H.B 3

NOTION DE REPÈRE z y terre soleil x Chafa Azzedine - Faculté de Physique U.S.T.H.B 4

NOTION DE REPÈRE Pour repérer la position d un point matériel dans l espace, on se donne un repère d espace, c est-à-dire: - un point O origine des coordonnées - trois axes de coordonnées orientés et munis d une unité de mesure (par exemple le mètre) Pour des raisons de commodité, on choisit un repère orthonormé O, i, j, k direct Un point M de l espace est repéré par ses coordonnées x, y et z tel que: OM xi yj zk Chafa Azzedine - Faculté de Physique U.S.T.H.B 5

NOTION DE MOUVEMENT Un objet est mouement par rapport à un autre si sa position change au cours du temps Un point M est dit fixe par rapport au repère R(O, x, y, z) si ses coordonnées ne changent pas. Le point M est en mouement si au moins une de ses coordonnées change dans le temps. La notion de mouement est relatie. En effet un point peut être en mouement par rapport à un repère R Et au repos par rapport à un second repère R Chafa Azzedine - Faculté de Physique U.S.T.H.B 6

NOTION DE MOUVEMENT On distingue essentiellement trois type de mouements : Translation Rotation Vibration Ou une combinaison de deux de ces mouements Chafa Azzedine - Faculté de Physique U.S.T.H.B 7

NOTION DE TRAJECTOIRE Définition : C est le lieu géométrique des positions successies occupées par le point matériel au cours du temps Exemple : un mobile est repéré par les coordonnées suiantes : X (t) = A cos wt Y (t) = A sin wt En supprimant le temps, on obtient : x y A La trajectoire est donc un cercle de centre O et de rayon A L équation de la trajectoire est une relation qui lie les coordonnées du point entre elles Chafa Azzedine - Faculté de Physique U.S.T.H.B 8

MOUVEMENT RECTILIGNE La trajectoire d un mouement rectiligne est une droite. Vecteur position OM x() t i C est le ecteur qui désigne la distance qui sépare le mobile M du point O pris comme origine. O i OM 1 M 1 OM M OM 3 M 3 x x(t) est appelée équation horaire du mouement Chafa Azzedine - Faculté de Physique U.S.T.H.B 9

Notion de diagramme des espaces Si on reporte les positions successies du mobile en fonction du temps, on obtient une courbe appelée : Diagramme des espaces x(m) + + + + + t(s) Remarque: Il ne faut pas confondre trajectoire et diagramme des espaces Chafa Azzedine - Faculté de Physique U.S.T.H.B 10

Vecteur déplacement (m): O i OM 1 M 1 OM OM M x Le ecteur déplacement est la distance parcourue entre deux instants M M OM OM OM ( x x ) i 1 1 1 Vecteur itesse (m/s): Vecteur itesse moyenne: t t t1 M1 M Si est le temps mis entre et, la itesse moyenne est : M M OM OM OM x x x m ou encore i i t t t t t t t 1 1 1 m 1 1 11 Chafa Azzedine - Faculté de Physique U.S.T.H.B

Vecteur itesse instantanée: Si on diminue l interalle de temps, on obtient la itesse instantanée : OM dom x dx i lim ou i lim i i t0 t t0 t dx Le terme possède deux significations : dx 1- Si on a l expression de x(t), alors désigne la dériée de x(t): Exemple: 3 x( t) 3x x 5 dx ( t) 9x 4x Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

dx - Si on a le graphe de x(t), alors désigne la pente de la tangente à la courbe x(t) Exemple: Problème!!! x(m) + A + dx tan AC BC + + + B t C t(s) Chafa Azzedine - Faculté de Physique U.S.T.H.B 13

On a donc calculer la itesse instantanée à partir de la itesse moyenne Il y a deux cas ou la itesse moyenne est confondue aec la itesse moyenne 1 er cas: Mouement rectiligne uniforme: x x(m) x1 t1 t t(s) m x x x t t t 1 1 dx x x tan t t 1 1 m Chafa Azzedine - Faculté de Physique U.S.T.H.B 14

ème cas: mouement rectiligne quelconque: x(m) t t t 1 ( ) m1 t m t 1 + + m1 m m3 m4 m m3 + m4 + + + + + V(t) t(s) t1 t3 t5 t7 t t8 t6 t4 t Conclusion : La itesse instantanée à l instant t est assimilée à la itesse moyenne entre deux instants t1 et t tel que t est milieu de t1 et t aec t 15

Vecteur accélération (m/s): Vecteur accélération moyenne: O i OM 1 M 1 OM M 1 x a m am et t t t1 1 Sont dans le même sens et direction Vecteur accélération instantanée: 1 1 a ai lim t 0 t d Chafa Azzedine - Faculté de Physique U.S.T.H.B 16

a d Comme pour la itesse le terme possède deux significations : d 1- Si a l expression de (t), alors désigne la dériée de (t): Exemple: 3 x( t) 3x x 5 dx d d x a( t) 18x 4 ( t) 9x 4x Chafa Azzedine - Faculté de Physique U.S.T.H.B 17

d - Si a le graphe de (t), alors désigne la pente de la tangente à la courbe (t) (m/s) A B C t(s) t En procédant de la même façon que pour la itesse on en déduit que: Conclusion : L accélération instantanée à l instant t est assimilée à l accélération moyenne entre deux instants t1 et t tel que t est milieu de t1 et t aec t Chafa Azzedine - Faculté de Physique U.S.T.H.B 18

Mouement rectiligne uniforme : cons tan te et a 0 Mouement rectiligne uniformément accéléré : a cons tan te et a. 0 Mouement rectiligne uniformément retardé ou décéléré : a cons tan te et a. 0 Chafa Azzedine - Faculté de Physique U.S.T.H.B 19

Exemple : Soit une oiture se déplaçant sur une route rectiligne repérée par les positions M1, M, M3 et M4 aux instants t1= 0s, t=s, t3 = 4s et t4= 5s OM1 1i OM 10i OM 3 i OM 4 i respectiement tel que :,, et M 1 M M 3 i M 4 x OM 1 OM OM 4 OM3 O 1- Calculer les ecteurs déplacements : 1 1 1 MM, 1 MM et 3 M3M4 M M OM OM ( x x ) i ( 10 ( 1)) i i M M OM OM ( x x ) i ( ( 10)) i 1i 3 3 3 M M OM OM ( x x ) i ( ()) i 4i 3 4 4 3 4 3 - Déterminer les ecteurs itesses moyennes entre M1 et M et entre M3 et M4 M M ( x x ) M M ( x x ) 4 ( / ) 1 1 m i i i m s t ( t t1) ( 0) 3 4 4 3 m i i i m s t ( t4 t3) (5 4) 0 Chafa Azzedine - Faculté de Physique U.S.T.H.B 4 ( / )

3- Déterminer le ecteur accélération moyenne entre et 6 s, (s) = 4m/s et (6s) = m/s O i OM 1 M 1 OM 3 M 3 ( s ) (6 s) x (6 s) ( s) (6 s) ( ( s)) 1 1 a m (6 s) ( s) ( (6 s) ( s)) ( 4) 1 am i 0.5 i ( m / s ) t ( t t1) (6 ) Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Calcul Intégral: Jusqu à présent on a u comment passer de la position x(t) à la itesse (t) puis à l accélération a(t) Nous maintenant étudier le problème inerse pour passer de l accélération à la itesse puis à la position Passage de la itesse à la position: 1 er Cas: Mouement uniforme (m/s) Dans ce cas: x x x m t t t 1 1 x x ( t t ) 1 1 t1 t t(s) Et donc: x ( t t ) x 1 1 x ( t t ) correspond à l aire sous la courbe (t) 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B

ème Cas général : (m/s) On partage l interalle entre t1 et t en plusieurs petits =cte dx dx = aire sous la courbe (t) sur l interalle t1 x t En faisant la somme des petits interalles entre t1 et t : t(s) x x dx x 1 t1 t alors: t 1 x x t1 x est donc l aire sous la courbe (t) entre t1 et t. Remarque : Il ne faut pas confondre entre position et distance parcourue -La position est l aire sous (t) en aleur algébrique -La distance parcourue est l aire sous (t) en aleur absolue Chafa Azzedine - Faculté de Physique U.S.T.H.B 3

Exemple: 10-10 (m/s) 0 40 t(s) 1-position du mobile à t = 40 s -distance parcourue entre 0 et 40 s t=0 s, x = 0 m 1- position du mobile: x 40 x dx 10(0 0) 10(40 0) 0 m x(40 s) 0m 0 0 - distance parcourue par le mobile: D x1 x 10(0 0) 10(40 0) 40m Chafa Azzedine - Faculté de Physique U.S.T.H.B 4

Passage de l accélération à la itesse: a( m / s ) On partage en plusieurs interalle a=cte d a d a t1 t t(s) d a 1 t1 t est donc l aire sous la courbe a(t) entre t1 et t. Chafa Azzedine - Faculté de Physique U.S.T.H.B 5

Étude de quelques mouements particuliers Mouement rectiligne uniforme: a( m / s ) ts () aire sous a( t) 0 0 d a () t a ( m / s) 0 cons tan te 0 xm ( ) ts () a 0 ( t) a cons tante dx dx dx 0 x aire sous () t t x t x 0 0 0 x( t) x t x( t) t x 0 0 0 0 x 0 ts () x() t est une droite 6 Chafa Azzedine - Faculté de Physique U.S.T.H.B

Mouement rectiligne uniformément arié: a=cte, t = 0s, 0 et x0 a 0 x 0 a( m / s ) ( m / s) xm ( ) A A1 t t ts () a cons tan te aire sous a() t at at ts () () t est une droite x aire sous () t A A 1 A1 0t 1 1 1 A ( 0 ) t (( at 0) 0) t at 1 x x x0 at 0t ts () 0 d a d a 0 t t 0 0 0 () t at a t at dx dx x() t at 0t x0 t t 0 0 0 0 x x( t) x ( at ) Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 7

Relation entre a, et x: d a d a On multiplie chaque membre par d a d adx On intègre de chaque côté x x d adx a dx x x 0 0 0 1 ( ) ( ) 0 0 a x x a( x x ) 0 0 Chafa Azzedine - Faculté de Physique U.S.T.H.B 8

Exemples d étude de mouement Chafa Azzedine - Faculté de Physique U.S.T.H.B 9

Mouement dans l espace ou curiligne : Position d un point : On peut définir la position d un point dans l espace de deux manières - A : En repérant le point par rapport à un repère orthonormé x i z r 1 k r y j r 3 r 4 Le ecteur position s écrit : OM ( t) r ( t) Chafa Azzedine - Faculté de Physique U.S.T.H.B 30

- B : En considérant un point sur la trajectoire pris comme origine MM 0 1 On parle d abscisse curiligne notée : s() t M M 0 1 La loi décriant s(t) en fonction du temps est appelée équation horaire Chafa Azzedine - Faculté de Physique U.S.T.H.B 31

Vecteur déplacement : k z x i j y C est la distance pour aller du point M1 au point M. M1M OM ( t) r ( t) Chafa Azzedine - Faculté de Physique U.S.T.H.B 3

Vecteur itesse d un point : Vecteur itesse moyenne : m x z k i y j MM 1 OM ( t) r ( t) t t t Le ecteur itesse moyenne est parallèle au ecteur déplacement Vecteur itesse instantanée : m Chafa Azzedine - Faculté de Physique U.S.T.H.B OM ( t) r ( t) dr lim lim t0 t t0 t 33

Construction géométrique de et m : On calcule la itesse instantanée à partir de la itesse moyenne m1 MM t 10 m MM t ' 3 9 m1 m3 MM t " 4 8 m m3 m4 m4 MM t ''' 5 7 Conclusion: la itesse instantanée à l instant t est assimilée à la itesse moyenne 34 entre deux instants t1 et t, tel que t est milieu de [t1, t] et t petit.

Vecteur accélération : Accélération moyenne : Elle caractérise la ariation du ecteur itesse am a m t t t 1 1 a le même sens et direction que Accélération instantanée : a ai lim t 0 t d On peut confondre l accélération instantanée et l accélération moyenne au milieu de l interalle de temps si est très petit. Chafa Azzedine - Faculté de Physique U.S.T.H.B 35

Construction géométrique de aet a : On cherche l accélération à t7 =0.6 s (correspond au point 7) aec t= 0.1 s m 7 6 5 m 9 8 7 a 7 m t 8 6 t ( ) 8 6 8 6 a 7 6 7 m 5 6 9 m 7 Chafa Azzedine - Faculté de Physique U.S.T.H.B 8 36

Étude de et a dans différents systèmes de coordonnées : Coordonnées cartésiennes : Vecteur position : OM xi yj zk x(t), y(t) et z(t) sont les équations paramétriques du mouement Vecteur itesse : Vitesse moyenne: OM r x y z m i j k mxi my j mzk t t t t t Vitesse instantanée: dom dr dx dy dz m i j k xi y j zk37

Vecteur accélération : Accélération moyenne : x y z am i j k amxi amy j amzk t t t t Accélération instantanée : d d d d x y z a i j k axi ay j azk Chafa Azzedine - Faculté de Physique U.S.T.H.B 38

Coordonnées curilignes ou intrinsèques : u T Abscisse curiligne: u N OM s() t Vitesse : On définit deux ecteurs unitaires: u T: porté par la tangente à la trajectoire en M est orienté dans le sens positif: u : porté par la perpendiculaire à la trajectoire et dirigée ers l intérieur N ds u u Donc : T T u T Chafa Azzedine - Faculté de Physique U.S.T.H.B u N 39

Accélération : u T a u N N a T a d d( ut) d du a ut Or: d d a u u a u a u Donc: T N T T N N Aec: a T d et a N d dut d un T Chafa Azzedine - Faculté de Physique U.S.T.H.B 40

r u N u T d ds Et donc: ds ds rd r d 1 ds r r d an r d Chafa Azzedine - Faculté de Physique U.S.T.H.B 41

Coordonnées polaires : u y M j OM r () t O u r i Position: On repère le point M par la distance OM=r et l angle x OM rt () () t r(t) et (t) sont les équations paramétriques en coordonnées polaires On prend deux ecteurs noueaux unitaires ur et u OM r() t u r Chafa Azzedine - Faculté de Physique U.S.T.H.B 4

Vitesse: Nous dérions le ecteur position dom d( r( t) ur) dr() t du ur r dur d u dr() t d ur r u Et comme : Alors : On décompose la itesse suiant les deux axes : u u r r r u y j OM r () t O u r i M r x Par identification on a : r dr et d r Chafa Azzedine - Faculté de Physique U.S.T.H.B 43

Accélération: On dérie le ecteur itesse dr() t d d d( ur r u ) a a d r dr dur dr d d d du a u r u r u r Or on sait que : dur d u et du d u r a a u a u r r Chafa Azzedine - Faculté de Physique U.S.T.H.B 44

d r dr d dr d d d d a u r u u r u r u r d r d dr d a r u d r r u On décompose l accélération suiant les deux axes: Par identification on a: a a u a u r r a r d r d r a dr d r d Chafa Azzedine - Faculté de Physique U.S.T.H.B 45

Exemple: En coordonnées polaires le mouement d un mobile est décrit par les équations OM t rt () () t t 4 Dessiner les ecteurs position, itesse et accélération à t = 1s dr d t d r d 4 1 0 Chafa Azzedine - Faculté de Physique U.S.T.H.B 46

Vecteur position: À t = 1s OM (1 s) 1 r( t) 0.5 () t 4 m Echelle: 1 cm 0. m 1 cm 0.4 m/s 1 cm 0.7 m/s Vecteur itesse: dr r t r (1 s) 1 m / s d t (1) 0.39 m / s r 8 8 Vecteur accélération: d r d ar r dr d d a r t ar 1 3 ar 0.69 m / s t a 1.57 m / s a Chafa Azzedine - Faculté de Physique U.S.T.H.B y j OM r () t O a (1 s) i 4 a(1 s) (1 s) u M u r ar x (1 s) r (1 s) 47 (1 s)

Coordonnées cylindriques : P est la projection de P dans le plan xoy Vecteur position: Vecteur itesse: OM u zk y dom d( u zk ) x P' d d dz u u k u u k z Chafa Azzedine - Faculté de Physique U.S.T.H.B 48

Vecteur accélération: d d d d dz a u u k d d d d d d z a u u k a a u a u a k z Chafa Azzedine - Faculté de Physique U.S.T.H.B 49

Coordonnées sphériques : Vecteur position: x rsincos OM y r sinsin z rcos Chafa Azzedine - Faculté de Physique U.S.T.H.B 50

Changement de repère ou mouement relatif: x x k j i x x ' k ' i x ' j ' ' x ' Vecteur position: OM OO ' O' M Dans R: OM xi yj zk Dans R : O ' M x ' i ' y ' j ' z ' k ' 51

Vecteur itesse: La itesse dans R est dite absolue et notée a = M/R La itesse dans R est dite relatie et notée r = M/R Vitesse absolue: Vitesse relatie : dom dx dy dz a i j k dx ' dy ' dz ' r i ' j ' k ' Calcul de la itesse : dom doo ' do ' M Chafa Azzedine - Faculté de Physique U.S.T.H.B 5

doo ' do ' M doo ' d( x ' i ' y ' j ' z ' k ') d OO ' dx ' di ' dy ' dj ' dz ' dk ' i ' x ' j ' y ' k ' z ' dx ' dy ' dz ' d OO ' di ' dj ' dk ' i ' j ' k ' x' y ' z ' a r e M / R M / R' R / R' Vitesse d entrainement: doo ' di ' dj ' dk ' e x ' y ' z ' Chafa Azzedine - Faculté de Physique U.S.T.H.B 53

Cas particuliers: * Si R décrit un mouement de translation donc les dériées des ecteurs unitaires sont nulles: di ' dj ' dk ' 0 doo ' e *Si R et R se déplacent à la même itesse : a r Chafa Azzedine - Faculté de Physique U.S.T.H.B 54

Vecteur accélération: En dériant on obtient : a d d d a r e a a a a a a a a a r e c M / R M / R' R'/ R c Accélération absolue: Accélération relatie: Accélération entrainement: d OM d x d y d z aa i j k d x ' d y ' d z ' ar i ' j ' k ' d OO ' d i ' d j ' d k ' ae x ' y ' z ' Accélération Coriolis: a c dx ' di ' dy ' dj ' dz ' dk ' Chafa Azzedine - Faculté de Physique U.S.T.H.B 55

Cas particuliers: * Si R décrit un mouement de translation donc les dériées des ecteurs unitaires sont nulles: d OO ' ae et a 0 c Si en plus le mouement de R est uniforme alors : a 0 et a 0 a a e c a r Chafa Azzedine - Faculté de Physique U.S.T.H.B 56