Cours d Analyse. Fonctions de plusieurs variables



Documents pareils
3 Approximation de solutions d équations

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Angles orientés et trigonométrie

F411 - Courbes Paramétrées, Polaires

Correction du Baccalauréat S Amérique du Nord mai 2007

Fonctions de plusieurs variables

Cours Fonctions de deux variables

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Calcul différentiel sur R n Première partie

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Représentation géométrique d un nombre complexe

Calcul différentiel. Chapitre Différentiabilité

Géométrie dans l espace Produit scalaire et équations

Image d un intervalle par une fonction continue

Dérivées d ordres supérieurs. Application à l étude d extrema.

Calcul intégral élémentaire en plusieurs variables

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Différentiabilité ; Fonctions de plusieurs variables réelles

Théorème du point fixe - Théorème de l inversion locale

Angles orientés et fonctions circulaires ( En première S )

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Continuité d une fonction de plusieurs variables

Chapitre VI Fonctions de plusieurs variables

Chapitre 2 Le problème de l unicité des solutions

Commun à tous les candidats

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation des fonctions de plusieurs variables

Corrigé du baccalauréat S Asie 21 juin 2010

1S Modèles de rédaction Enoncés

I. Polynômes de Tchebychev

Fonctions de plusieurs variables

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Cours de Mécanique du point matériel

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Cours d Analyse 3 Fonctions de plusieurs variables

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Résolution d équations non linéaires

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

DOCM Solutions officielles = n 2 10.

LE PRODUIT SCALAIRE ( En première S )

Correction du baccalauréat S Liban juin 2007

Continuité en un point

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

EXERCICES - ANALYSE GÉNÉRALE

Structures algébriques

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Intégrales doubles et triples - M

Chapitre 2. Matrices

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Fonctions de plusieurs variables et applications pour l ingénieur

CCP PSI Mathématiques 1 : un corrigé

RO04/TI07 - Optimisation non-linéaire

Séquence 10. Géométrie dans l espace. Sommaire

Cours de mathématiques

Développement décimal d un réel

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Quelques contrôle de Première S

Chapitre 0 Introduction à la cinématique

Plan du cours : électricité 1

La fonction exponentielle

Équations non linéaires

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

I. Ensemble de définition d'une fonction

Fonctions de plusieurs variables

Nombre dérivé et tangente

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Continuité et dérivabilité d une fonction

OM 1 Outils mathématiques : fonction de plusieurs variables

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Fonctions de plusieurs variables. Sébastien Tordeux

Rappels sur les suites - Algorithme

Cours de Probabilités et de Statistique

Problème 1 : applications du plan affine

Fonctions de deux variables. Mai 2011

Construction d un cercle tangent à deux cercles donnés.

Développements limités. Notion de développement limité

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Polynômes à plusieurs variables. Résultant

Capes Première épreuve

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Vecteurs. I Translation. 1. Définition :

Deux disques dans un carré

Chapitre 7 : Intégration sur un intervalle quelconque

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Limites finies en un point

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Cours d analyse numérique SMI-S4

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Les indices à surplus constant

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Université Paris-Dauphine DUMI2E 1ère année, Applications

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Oscillations libres des systèmes à deux degrés de liberté

Transcription:

Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée

Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........ 5 1.1 Exemples de fonctions à plusieurs variables en économie............ 5 1.2 L espace R 3....................................................... 6 1.3 Produit scalaire.................................................... 9 1.4 Vecteur normal et équation d un plan dans l espace................. 11 1.5 Représentation graphique des fonctions de deux variables............ 13 1.5.1 Domaine de définition et graphe................................ 13 1.5.2 Fonctions partielles et coupes................................... 16 1.5.3 Courbes de niveau............................................. 17 2 Continuité et dérivation de fonctions de plusieurs variables.............. 21 2.1 Continuité et limites............................................... 21 2.1.1 Continuité..................................................... 21 2.1.2 Notion de limite............................................... 23 2.2 Dérivées partielles et élasticité..................................... 23 2.3 Dérivées d ordre supérieur......................................... 26 2.4 Notion de différentielle et dérivation des fonctions composées....... 27 2.4.1 Développement de Taylor d ordre 1............................. 27 2.4.2 Dérivée de fonctions composées................................ 28 3

Cours d Analyse 4 Fonctions de plusieurs variables

Chapitre Notions de géométrie dans l espace et fonctions à deux variables 1 1.1 Exemples de fonctions à plusieurs variables en économie Les fonctions utilisées dans les modèles économiques sont, le plus souvent, des fonctions de plusieurs variables. Exemple 1.1.1 Les fonctions de production, les fonctions d utilité. On considère un système de production produisant un certain produit output à partir de n autres biens, appelés facteurs de production ou input. La fonction de production associe à un n-upplet (x 1,..., x n ) de nombres positifs la quantité maximale q d output que l on peut produire. Dans certains modèles, on se limite à deux facteurs de production : le capital et le travail. Dans ce cas, on s intéresse à des fonctions de la forme : q = f(k, L, ) où K représente le capital et L le travail. On a alors une fonction de deux variables, associant à un couple (x, y) de nombres réels (ici positifs) un nombre f(x, y). Exemple 1.1.2 Les fonctions suivantes apparaissent souvent en théorie de production : f(k, L) = ak + bl (fonction linéaire) ; f(k, L) = min(k/a, L/b), avec a > 0 et b > 0 (fonction à facteurs complémentaires) ; f(k, L) = k K α L β, avec k 0, α 0, β 0 (fonction de Cobb-Douglas). Remarque 1.1 : La fonction minimum, min, est la fonction qui prend pour valeur le plus petit des réels passés en argument. Par exemple : min( 2, 3, 4, 10, 4, 234) = 10. On définit de la même manière la notion de maximum, max, qui renvoit le plus grand 5

1.2. L ESPACE R 3 des éléments passés en paramètres : max( 2, 3, 4, 10, 4, 234) = 234. Les fonctions d utilité apparaissent dans la théorie du consommateur. Dans un modèle où il y a n biens de consommation, un plan de consommation est défini par un n-uplet (x 1,..., x n ) de nombres positifs représentant les quantités consommées de chacun des n biens. La fonction d utilité associe à ce panier de biens un indice de satisfaction u(x 1, x 2,..., x n ), que le consommateur cherche à maximiser. 1.2 L espace R 3 R, l ensemble des réels, s identifie à une droite orientée munie d une origine et d une unité de longueur : -1 0 1 R 2, l ensemble des couples de réels (x, y), s identifie à un plan muni d un repère orthonormé (O; i, j ) composé d une origine O et de trois vecteurs i et j orthogonaux et de longueur égale à 1. Au couple (x, y), on associe le point M du plan de coordonnées x et y dans le repère (O; i, j ) : y M j O i x On peut orienté le repère, et dans ce cas, on dit que le repère (O; i, j ) (ou que la base ( i, j )) est directe si, pour parcourir le plus petit chemin allant de i à j sur le cercle unité, on tourne dans le sens inverse des aiguilles d une montre. Cours d Analyse 6 Fonctions de plusieurs variables

CHAPITRE 1. NOTIONS DE GÉOMÉTRIE DANS L ESPACE ET FONCTIONS À DEUX VARIABLES Lorsque l on tourne dans le sens inverse des aiguilles d une montre un angle est alors positif, et il sera négatif si on le mesure en allant dans le sens des aiguilles d une montre. Par exemple, l angle formé par les vecteurs i et j dans un repère orthonormé direct est de π/2 alors que celui formé par les vecteurs j et i et de π/2 (le repère (O; j, i ) est alors un repère orthonormé indirect). Remarque 1.2 : Le couple (x, y) s identifie au vecteur OM. Ainsi, les éléments de R 2 sont considérés tantôt comme des points, tantôt comme des vecteurs. R 3, l ensemble des triplets (x, y, z) de réels, s identifie à l espace à trois dimensions muni d un repère orthonormé (O; i, j, k ) composé d une origine O et de trois vecteurs i, j et k deux à deux orthogonaux et de longueur égale à 1. Le triplet (x, y, z) s identifie au point M du plan de coordonnées x, y et z dans le repère (O; i, j, k ) : z M 1 k O y i j x Dans R 3, pour dire si un repère (O; i, j, k ) (ou une base ( i, j, k )) est directe, en faisant appel à la règle du bonhomme de Newton : il doit se placer au niveau du vecteur k (le sens des pieds à la tête est celui de k ), il doit pointer son bras droit dans la direction et le sens de i et regarder dans la direction et le sens de j. Sinon, le repère (ou la base) est dit indirect. Par exemple, sur le dessin, on peut voir que notre repère est un repère orthonormé direct de R 3. Remarque 1.3 : Le triplet (x, y, z) s identifie au vecteur OM. Ainsi, les éléments de R 3 sont considérés tantôt comme des points, tantôt comme des vecteurs. Nous allons maintenant donner les opérations de bases sur les vecteurs : Cours d Analyse 7 Fonctions de plusieurs variables

1.2. L ESPACE R 3 Propriété 1.4 : Addition : (x, y, z) + (x, y, z ) = (x + x, y + y, z + z ). Multiplication par un scalaire (par un réel) : λ R, (x, y, z) R 3, λ(x, y, z) = (λx, λy, λz). Remarque 1.5 : 1. Un vecteur est déterminé par : une direction, un sens, et une longueur. 2. ABCD est un parallélogramme si et seulement si : AB = DC. 3. La relation de Chasles : AC = AB + BC permet de construire géométriquement la somme de deux vecteurs. Définition 1.6 : Deux vecteurs u et v sont dits colinéaires s il existe un réel t tel que u = t v ou v = t u. Sinon, on dit qu ils sont linéairement indépendants. Remarque 1.7 : Les vecteurs u = (u 1, u 2, u 3 ) et v = (v 1, v 2, v 3 ) sont colinéaires si et seulement si : u 1 = u 2 = u 3, v 1 v 2 v 3 avec pour convention : u i = 0 v i = 0. Exemple 1.2.3 1. Les vecteurs u = (1, 2, 1) et v = ( 2, 4, 2) sont colinéaires. 2. Les vecteurs u = (1, 2, 1) et v = (0, 4, 2) sont linéairement indépendants. Proposition 1.8 : 1. Trois points A, B et C de l espace sont alignés si et seulement si les vecteurs AB et AC sont colinéaires. 2. Par deux points non confondus ne passe qu une seule droite. Par trois points non alignés A, B et C passe un unique plan P. On a la caractérisation suivante de P : M P AM = s AB + t AC, où s, t R. Cours d Analyse 8 Fonctions de plusieurs variables

CHAPITRE 1. NOTIONS DE GÉOMÉTRIE DANS L ESPACE ET FONCTIONS À DEUX VARIABLES Définition 1.9 : 1. On dit que le vecteur u est une combinaison linéaire de AB et AC s il existe deux réels s et t tels que : u = s AB + t AC. 2. On dit que les vecteurs AB et AC sont des vecteurs directeurs d un plan P si pour tout point M P, AM est combinaison linéaire de AB et AC. 1.3 Produit scalaire Définition 1.10 : Soit u = (u 1, u 2, u 3 ) et v = (v 1, v 2, v 3 ) deux vecteurs de R 3. On appelle produit scalaire de u et v, et on note u. v, le nombre u. v = u1 v 1 + u 2 v 2 + u 3 v 3. Propriété 1.11 : Le produit scalaire est : Symétrique : u, v R 3, u v = v u. Bilinéaire : pour tous vecteurs u, v, u, et v de R 3, et pour tous réels a, b, a et b, on a : (a u + b v ) (a u + b v ) = aa u u + ab u v + ba v u + bb v v. Positif : u R 3, u u 0. Remarque 1.12 : Le terme bilinéaire signifie que le produit scalaire est linéaire à gauche ( u + v ) w = u w + v w, et linéaire à droite : w ( u + v ) = w u + w v. Définition 1.13 : Le nombre réel u u est appelé norme (euclidienne) du vecteur u et est noté u. C est la longueur du vecteur u. Cours d Analyse 9 Fonctions de plusieurs variables

1.3. PRODUIT SCALAIRE Remarque 1.14 : Si A et B sont deux points de l espace, AB est la distance entre les points A et B (c est-à-dire, la longueur du segment [AB]). Théorème 1.15 : Soient u et v deux vecteurs et θ l angle formé par les vecteurs u et v. Alors, on a : u v = u v cos(θ). Corollaire 1.16 : 1. u et v sont orthogonaux si et seulement si u v = 0. 2. u et v forment un angle aigu (θ [0, π/2]) si et seulement si u v 0. 3. u et v forment un angle obtu (θ [π/2, π]) si et seulement si u v 0. Propriété 1.17 : La norme vérifie les propriétés suivantes : 1. Positivité : u R 3, u 0, et u = 0 u = 0. 2. Homogénéité : u R 3, a R, a u = a u. 3. Inégalité de Cauchy-Schwarz : u, v R 3, u v u v. 4. Inégalité triangulaire : u, v R 3, u + v u + v. Démonstration : 1. u = u u 0, car la fonction x x est une fonction positive. u = 0 u u = 0 u 2 1 + u 2 2 + u 2 3 = 0 u 1 = u 2 = u 3 = 0 u = 0. Cours d Analyse 10 Fonctions de plusieurs variables

CHAPITRE 1. NOTIONS DE GÉOMÉTRIE DANS L ESPACE ET FONCTIONS À DEUX VARIABLES 2. Par bilinéarité, on a : a u = a 2 ( u u ). Donc, a u = a 2 ( u u ) = a u u = a u, car a 2 = a. 3. D après le Théorème 1.15, on a : u v = u v cos(θ) = u v cos(θ), car 0, u v, car cos(θ) 1. 4. Par bilinéarité, on a : ( u + v ) ( u + v ) = u u + u v + v u + v v = u u + 2 u v + v v. Donc, u + v 2 = ( u + v ) ( u + v ) = u u + 2 u v + v v = u 2 + 2 u v + v 2 u 2 + 2 u v + v 2 u 2 + 2 u v cos(θ) + v 2 u 2 + 2 u v + v 2 = ( u + v ) 2. Donc, u + v u + v. 1.4 Vecteur normal et équation d un plan dans l espace Définition 1.18 : Soit P un plan de l espace. Un vecteur n est dit normal au plan P, si pour tous points A et B de P, on a : n AB = 0. Remarque 1.19 : Il est clair que par tout point A de l espace passe un unique plan orthogonal à une direction donnée. Cours d Analyse 11 Fonctions de plusieurs variables

1.4. VECTEUR NORMAL ET ÉQUATION D UN PLAN DANS L ESPACE n A Ainsi, un plan peut être déterminé par un point et un vecteur normal. Proposition 1.20 : Si A est un point de l espace et si n est un vecteur non nul, le plan passant par A et de vecteur normal n est l ensemble des points M du plan vérifiant : n AM = 0. (1 1) Théorème 1.21 : Soit n = (a, b, c) R 3, A = (x A, y A, z A ) R 3, et P le plan passant par A et de vecteur normal n. Alors, M = (x, y, z) P si et seulement si a(x x A ) + b(y y A ) + c(z z A ) = 0. (1 2) Démonstration : Il suffit d utiliser l égalité (1 1). Définition 1.22 : L équation (1 2) mise sous la forme : ax + by + cz + d = 0, est appelée équation cartésienne du plan P. Propriété 1.23 : Si un plan P a pour équation cartésienne : ax + by + cz + d = 0, alors, le vecteur (a, b, c) est un vecteur normal de P. Cours d Analyse 12 Fonctions de plusieurs variables

CHAPITRE 1. NOTIONS DE GÉOMÉTRIE DANS L ESPACE ET FONCTIONS À DEUX VARIABLES Démonstration : Soit A = (x A, y A, z A ) P. Comme A vérifie l équation cartésienne du plan P, on a : ax A + by A + cz A + d = 0. (1 3) Soit M = (x, y, z) P, on a : (1 4) (1 3) donne : ax + by + cz + d = 0. (1 4) a(x x A ) + b(y y A ) + c(z z A ) = 0, donc, n AM = 0, où n = (a, b, c). Rappel : Soient A = (x A, y A, z A ) et B = (x B, y B, z B ) deux points de l espace. Le vecteur AB à pour coordonnées : AB = (x B x A, y B y A, z B z A ). Remarque 1.24 : Un plan peut aussi être déterminé par un point et deux vecteurs non colinéaires u et v. Propriété 1.25 : Soit P le plan passant par A et de vecteurs directeurs u et v. Alors, M P s, t R, AM = s u + t v. Définition 1.26 : Un vecteur w est dit parallèle à un plan s il est combinaison linéaire de ses vecteurs directeurs. Proposition 1.27 : w = (w 1, w 2, w 3 ) est parallèle à un plan de vecteur normal n = (a, b, c) si et seulement si w n = 0, c est-à-dire : aw 1 + bw 2 + cw 3 = 0. 1.5 Représentation graphique des fonctions de deux variables 1.5.1 Domaine de définition et graphe Une fonction de deux variables f, qui associe à un couple de réels (x, y) un réel, est définie de la façon suivante : f : D f R 2 R (x, y) f(x, y) Cours d Analyse 13 Fonctions de plusieurs variables

1.5. REPRÉSENTATION GRAPHIQUE DES FONCTIONS DE DEUX VARIABLES L ensemble D f de R 2 est l ensemble de définition de la fonction f. Il s agit de l ensemble des couples de R 2 où la fonction f est définie. La première étape de l étude d une fonction de deux variable est souvent la détermination et la représentation graphique de son domaine de définition. Exercice 1.5.1 Déterminer et représenter graphiquement le domaine de définition de la fonction (x, y) ln(xy 1). Solution : D f contient tous les couples de (x, y) R 2 tels que ln(xy 1) soit bien définie, c est-à-dire que xy 1 doit être strictement positif. Donc, D f = { (x, y) R 2, xy 1 > 0 } = { (x, y) R 2, xy > 1 }. Or, on a : xy > 1 { y > 1/x et x > 0, y < 1/x et x < 0, Définition 1.28 : Soit f : D f R 2 R. On appelle graphe de f l ensemble : G = { (x, y, z) R 3, (x, y) D f et z = f(x, y) }. Remarque 1.29 : Cours d Analyse 14 Fonctions de plusieurs variables

CHAPITRE 1. NOTIONS DE GÉOMÉTRIE DANS L ESPACE ET FONCTIONS À DEUX VARIABLES 1. Graphe d une fonction d une variable courbe. Graphe d une fonction de deux variables surface. 2. On dit que le graphe de f est la surface d équation z = f(x, y). Définition 1.30 : Si g est une fonction de trois variables, g : D g R 3 R, on appelle surface d équation g(x, y, z) = 0, l ensemble des points de l espace dont les coordonnées vérifient g(x, y, z) = 0. Exemple 1.5.4 La surface d équation x 2 + y 2 + z 2 = 1, est la sphère de centre O et de rayon 1. Plus généralement, la sphère de centre A = (x A, y A, z A ) et de rayon r est la surface d équation : (x x A ) 2 + (y y A ) 2 + (z z A ) 2 = r 2. Exemple 1.5.5 Graphe des fonctions : f : (x, y) 2x + y + 1 et g : (x, y) y 2 : Cours d Analyse 15 Fonctions de plusieurs variables

1.5. REPRÉSENTATION GRAPHIQUE DES FONCTIONS DE DEUX VARIABLES 1.5.2 Fonctions partielles et coupes Un moyen d étudier une fonction de deux variables consiste à fixer l une des deux variables pour pouvoir se ramener à une fonction d une seule variable. Définition 1.31 : Soit f : D f R, une fonction définie sur une partie D f de R 2 et soit (x 0, y 0 ) D f. On appelle fonctions partielles de f en (x 0, y 0 ) les fonctions x f(x, y 0 ) et y f(x 0, y) respectivement définies sur {x R, (x, y 0 ) D f } et {y R, (x 0, y) D f } Définition 1.32 : 1. La coupe du graphe de f par le plan d équation x = x 0 est l intersection entre le graphe de f et le plan x = x 0. 2. La coupe du graphe de f par le plan d équation y = y 0 est l intersection entre le graphe de f et le plan y = y 0. 3. La coupe du graphe de f par le plan d équation z = z 0 est l intersection entre le graphe de f et le plan z = z 0. Remarque 1.33 : 1. Le graphe de la fonction partielle y f(x 0, y) s identifie à la coupe du graphe de f par le plan d équation x = x 0. Cours d Analyse 16 Fonctions de plusieurs variables

CHAPITRE 1. NOTIONS DE GÉOMÉTRIE DANS L ESPACE ET FONCTIONS À DEUX VARIABLES 2. Le graphe de la fonction partielle x f(x, y 0 ) s identifie à la coupe du graphe de f par le plan d équation y = y 0. 1.5.3 Courbes de niveau Définition 1.34 : Soit f : D f R 2 R, on appelle courbes de niveau (ou lignes de niveau) les courbes d équation f(x, y) = C, où C R est une constante. Remarque 1.35 : La courbe de niveau f(x, y) = C s identifie à la coupe du graphe de f par le plan d équation z = C. Exercice 1.5.2 1. Déterminer les lignes de niveau de la fonction f : (x, y) x 2 + y 2. 2. Étudier les fonctions partielles de f. 3. En déduire le graphe de f. Solution : 1. Soit C R. La courbe de niveau f(x, y) = C (ou coupe par rapport au plan z = C) est l ensemble des couples (x, y) R 2 tels que : x 2 + y 2 = C. Si C < 0, aucun couple ne vérifie cette relation, si C > 0, il s agit du cercle de centre O et de rayon C, sinon, si C = 0, seul le point O vérifie cette égalité. C j C O i C C Coupe de f par rapport au plan z = C 2. Les fonctions partielles de f sont les fonctions x x 2 + y 2 0 et y x 2 0 + y 2. Cours d Analyse 17 Fonctions de plusieurs variables

1.5. REPRÉSENTATION GRAPHIQUE DES FONCTIONS DE DEUX VARIABLES x 2 0 k y0 2 k O j O i Coupe de f par rapport au plan x = x 0 Coupe de f par rapport au plan y = y 0 3. Remarque 1.36 : 1. Pour des fonctions de trois variables, on parle de surface de niveau. Cours d Analyse 18 Fonctions de plusieurs variables

CHAPITRE 1. NOTIONS DE GÉOMÉTRIE DANS L ESPACE ET FONCTIONS À DEUX VARIABLES 2. Dans la théorie de production, les courbes de niveau sont appelées isoquantes. 3. Dans la théorie d utilité, les courbes de niveau sont appelées courbes d indifférence (surface d indifférence s il y a trois variables). Cours d Analyse 19 Fonctions de plusieurs variables

1.5. REPRÉSENTATION GRAPHIQUE DES FONCTIONS DE DEUX VARIABLES Cours d Analyse 20 Fonctions de plusieurs variables

Chapitre Continuité et dérivation de fonctions de plusieurs variables 2 2.1 Continuité et limites 2.1.1 Continuité Définition 2.1 : Soit f : (x, y) f(x, y) une fonction définie sur une partie D f de R 2 et soit (x 0, y 0 ) D f. On dit que f est continue en (x 0, y 0 ) si pour toutes suites (u n ) n N et (v n ) n N telles que (u n, v n ) D f et : on a : lim u n = x 0 et lim v n = y 0, n + n + lim f(u n, v n ) = f(x 0, y 0 ). n + Remarque 2.2 : Géométriquement, la condition sur (u n ) n N et (v n ) n N signifie que la suite des poins A n = (u n, v n ) converge vers le point M 0 = (x 0, y 0 ) dans le sens où : lim M 0 A n = 0. n + Propriété 2.3 : La fonction f : D f R 2 R est continue au point (x 0, y 0 ) D f si et seulement si : ɛ > 0, δ ɛ > 0, (x, y) D f, (x x0 ) 2 + (y y 0 ) 2 δ ɛ f(x, y) f(x 0, y 0 ) ɛ. 21

2.1. CONTINUITÉ ET LIMITES Remarque 2.4 : 1. En particulier, la Définition 2.1 est vraie pour les fonction d une variable. 2. La Définition 2.1 et la caractérisation de la Propriété 2.2 restent vraies pour les fonctions à plus de deux variables. Théorème 2.5 : Soit D R 2 et f et g deux fonctions définies sur D. Si f et g sont continues en un point (x 0, y 0 ) D, il en est de même des fonctions suivantes : f + g, fg et f/g si g ne s annule pas sur D. Définition 2.6 : On dit que f : D R 2 continue en tout point de D. R est continue sur D si f est Proposition 2.7 : 1. Les applications coordonnées, (x, y) x et (x, y) y sont continues sur R 2. 2. Toute fonction polynôme de deux variables (c est-à-dire une somme de fonctions de la forme ax α y β, avec a R, α, β N) est continue sur R 2. Théorème 2.8 : Soit f : D f R 2 R une fonction continue en un point (x 0, y 0 ) D f. On suppose que f prend ses valeurs dans un intervalle I R (c est-à-dire que pour tout (x, y) D f, f(x, y) I) et que la fonction g : I R est continue en f(x 0, y 0 ). Alors, la fonction composée g f est continue en (x 0, y 0 ) Remarque 2.9 : La continuité des fonctions partielles n implique pas la continuité de la fonction. Contre-exemple : Soit f la fonction définie par : f(x, y) = xy, si (x, y) (0, 0) x 2 + y2 f(0, 0) = 0. Les fonctions partielles x xy 0 et y x 0y sont continues en (0, 0) pour x 2 + y0 2 x 2 0 + y 2 tout (x 0, y 0 ) R 2, mais f n est pas continue en (0, 0). En effet, si on pose pour tout entier n 1, u n = v n = 1/n, on a : lim f(u n, v n ) = 1 f(0, 0). n + 2 Donc, f n est pas continue en (0, 0), mais par contre elle est continue sur R 2 \{(0, 0)}. Cours d Analyse 22 Fonctions de plusieurs variables

CHAPITRE 2. CONTINUITÉ PLUSIEURS VARIABLES ET DÉRIVATION DE FONCTIONS DE 2.1.2 Notion de limite Définition 2.10 : 1. Soit D une partie de R 2 et (x 0, y 0 ) D. On dit que D est un voisinage de (x 0, y 0 ) ou que (x 0, y 0 ) est un point intérieur de D s il existe r > 0 tel que, pour tout (x, y) R 2, (x x0 ) 2 + (y y 0 ) 2 < r (x, y) D. 2. Si D est un voisinage de (x 0, y 0 ), l ensemble D \ {(x 0, y 0 )} est appelé voisinage pointé de (x 0, y 0 ). 3. Soit f une fonction définie dans un voisinage (éventuellement pointé) V de (x 0, y 0 ) et l R. On dit que f admet l pour limite en (x 0, y 0 ), et on note : lim f(x, y) = l, (x,y) (x 0,y 0 ) si, pour toutes suites (u n ) n N et (v n ) n N telles que (u n, v n ) V, on a : lim u n = x 0 et lim v n = y 0, n + n + lim f(u n, v n ) = l. n + Proposition 2.11 : Une fonction f : V R 2 (x 0, y 0 ) si et seulement si : R admet l pour limite en ɛ > 0, δ ɛ > 0, (x, y) V, (x x0 ) 2 + (y y 0 ) 2 δ ɛ f(x, y) l ɛ. 2.2 Dérivées partielles et élasticité Définition 2.12 : 1. Soit (x 0, y 0 ) R 2 et f : (x, y) f(x, y) une fonction numérique définie dans un voisinage de (x 0, y 0 ). On dit que f admet une dérivée partielle par rapport à la première variable au point (x 0, y 0 ) si la première fonction partielle, définie au voisinage de x 0 par : x f(x, y 0 ) Cours d Analyse 23 Fonctions de plusieurs variables

2.2. DÉRIVÉES PARTIELLES ET ÉLASTICITÉ est dérivable au point x 0. La dérivée est alors appelée première dérivée partielle de f en (x 0, y 0 ) et notée : f x (x 0, y 0 ). 2. On définit de façon analogue la dérivée partielle f y (x 0, y 0 ), par rapport à la seconde variable en (x 0, y 0 ). Remarque 2.13 : 1. Par définition de la dérivée d une fonction d une variable : f x (x 0, y 0 ) = lim x x0 f(x, y 0 ) f(x 0, y 0 ) x x 0 et f y (x 0, y 0 ) f(x 0 + h, y 0 ) f(x 0, y 0 ) = lim, h 0 h = lim y y0 f(x 0, y) f(x 0, y 0 ) y y 0 f(x 0, y 0 + h) f(x 0, y 0 ) = lim, h 0 h 2. On note aussi f x et f y au lieu f f et x y. On peut étendre la définition aux fonctions de n variables : Définition 2.14 : Soit a = (a 1,..., a n ) R n et f : (x 1,..., x n ) f(x 1,..., x n ) une fonction numérique définie dans un voisinage de a. On dit que f admet une dérivée partielle par rapport à la i ième variable au point a si la i ième fonction partielle, définie au voisinage de a i par : z f(a 1,..., a i 1, z, a i+1,..., a n ), est dérivable au point a i. La dérivée est alors appelée i ième dérivée partielle de f en a et est notée : f x i (a). On a donc, f f(a 1,..., a i 1, a i + h, a i+1,..., a n ) f(a 1,..., a n ) (a 1,..., a n ) = lim. x i x h h Cours d Analyse 24 Fonctions de plusieurs variables

CHAPITRE 2. CONTINUITÉ PLUSIEURS VARIABLES ET DÉRIVATION DE FONCTIONS DE Définition 2.15 : Lorsque f admet des dérivées partielles en (x 0, y 0 ), le vecteur : f x (x 0, y 0 ) f y (x, 0, y 0 ) est appelé gradient de f au point (x 0, y 0 ) et noté : grad f(x 0, y 0 ). Remarque 2.16 : (en économie) Si f est une fonction de production, les dérivées partielles de f s interprètent comme les productivités marginales des divers facteurs de production. Si u : (x 1,..., x n ) u(x 1,..., x n ) est une fonction d utilité dans un modèle avec n biens de consommation, la dérivée partielle u/ x i s interprète comme l utilité marginale du i ième bien. On s intéresse souvent aux variations relatives (c est-à-dire les pourcentages) qui sont associés à la notion d élasticité : Définition 2.17 : Si f : (x, y) f(x, y) est une fonction de deux variables ne s annulant pas et admettant des dérivées partielles en (x 0, y 0 ), on appelle élasticité de f par rapport à la première variable en (x 0, y 0 ) le nombre : E x (f) = lim h 0 f(x 0 + h, y 0 ) f(x 0, y 0 ) f(x 0, y 0 ) h x 0 = x 0 f f(x 0, y 0 ) x (x 0, y 0 ). Exercice 2.2.3 Soit f la fonction de deux variables définie par f(x, y) = kx α y β, avec k, α, β des constantes réelles positives (fonction de Cobb-Douglas). 1. Déterminer l élasticité de f par rapport à ses deux variables en un point (x 0, y 0 ) tel que x 0 > 0 et y 0 > 0. 2. Généraliser le résultat pour une fonction de Cobb-Douglas de n variables. (f(x 1,..., x n ) = kx α 1 1 x αn n ) Cours d Analyse 25 Fonctions de plusieurs variables

2.3. DÉRIVÉES D ORDRE SUPÉRIEUR 2.3 Dérivées d ordre supérieur Soit f une fonction de deux variables sur une partie D de R 2. Soit (x 0, y 0 ) un point intérieur de D et r > 0 tel que : { D r = (x, y) R 2, (x x0 ) 2 + (y y 0 ) 2 < r} D. Tout point (x, y) D r est alors un point intérieur de D. Si en chaque point (x, y) D r, f admet des dérivées partielles, on peut définir sur le voisinage D r de (x 0, y 0 ) les fonctions (x, y) f f (x, y) : et (x, y) (x, y). x y Si la fonction f/ x admet des dérivées partielles en (x 0, y 0 ), on les note : 2 f x 2 (x 0, y 0 ) et 2 f y x (x 0, y 0 ). De même, si f/ y admet des dérivées partielles en (x 0, y 0 ), on les note : 2 f x y (x 0, y 0 ) et 2 f y 2 (x 0, y 0 ). On dit alors que f admet des dérivées partielles d ordre 2 en (x 0, y 0 ). On définit de même la notion des dérivées partielles d ordre k, pour k > 2. Exercice 2.3.4 de deux variables? Combien de dérivées partielles d ordre 2 peut avoir une fonction Théorème 2.18 (Théorème de Schwarz) : Soit f une fonction définie dans un voisinage d un point (x 0, y 0 ) R 2. On suppose que f admet des dérivées partielles continues au voisinage de (x 0, y 0 ) et que les dérivées partielles 2 f et 2 f sont x y y x également définies dans un voisinage de (x 0, y 0 ) et continues en (x 0, y 0 ). Alors, 2 f x y (x 0, y 0 ) = 2 f y x (x 0, y 0 ). Exercice 2.3.5 Calculer les dérivées premières et secondes de la fonction f(x, y) = xe xy, et vérifier le résultat du théorème de Schwarz. Définition 2.19 : On dit que f : U R 2 R est de classe C 1 sur U si f admet des dérivées partielles en tout point de U et si ces dérivées partielles sont continues sur U. (En particulier, f est continue) Cours d Analyse 26 Fonctions de plusieurs variables

CHAPITRE 2. CONTINUITÉ PLUSIEURS VARIABLES ET DÉRIVATION DE FONCTIONS DE Remarque 2.20 : Cette définition suppose que tous les points de U sont des points intérieurs de U, autrement dit que U est un voisinage de chacun de ses points. On dit alors que U est un ouvert de R 2. Définition 2.21 : 1. f est de classe C k, k 1, sur l ouvert U si f admet des dérivéees partielles jusqu à l ordre k en tout point de U et si ces dérivées partielles sont continues sur U. 2. On dit que f est de classe C sur U si f est de classe C k pour tout entier k 1. Remarque 2.22 : Le théorème de Schwarz implique que si f est de classe C k, on peut faire les calculs de dérivées partielles sans se soucier de l ordre des variables par rapport auxquelles on dérive. Par exemple, si f est de classe C 3, on a : 3 f x 2 y = 3 f x y x = 3 f y x 2. 2.4 Notion de différentielle et dérivation des fonctions composées 2.4.1 Développement de Taylor d ordre 1 Rappel : (développement de Taylor d ordre 1) Si une fonction d une variable f : R R est dérivable en x 0, on peut écrire : f(x 0 + h) = f(x 0 ) + hf (x 0 ) + hɛ(h), où lim h 0 ɛ(h) = 0. On peut aussi donner une valeur approchée de f(x 0 + h) à l aide de f(x 0 ) + hf (x 0 ). On va généraliser ce résultat aux fonctions de plusieurs variables. Théorème 2.23 (Développement de Taylor d ordre 1) : Soit (x 0, y 0 ) R 2. Soit f une fonction de classe C 1 dans un voisinage V de (x 0, y 0 ). Il existe un voisinage W de l origine et une fonction ɛ définie sur W tels que, pour tout (h, k) W, (x 0 + h, y 0 + k) V, et f(x 0 +h, y 0 +k) = f(x 0, y 0 )+h f x (x 0, y 0 )+k f y (x 0, y 0 )+ h 2 + k 2 ɛ(h, k) (2 1) lim ɛ(h, k) = 0. (h,k) (0,0) Cours d Analyse 27 Fonctions de plusieurs variables

2.4. NOTION DE DIFFÉRENTIELLE ET DÉRIVATION DES FONCTIONS COMPOSÉES Remarque 2.24 : 1. Cette formule peut se généraliser pour des fonctions de n variables. 2. Dans la formule (2 1), le terme h f x (x 0, y 0 ) + k f y (x 0, y 0 ) s interprète comme le produit scalaire entre le vecteur (h, k) et le gradient de f au point (x 0, y 0 ). 3. L application (h, k) h f x (x 0, y 0 ) + k f y (x 0, y 0 ) est appelée différentielle de f au point (x 0, y 0 ) et est notée df(x 0, y 0 ). On a : Exercice 2.4.6 1. Donner une approximation de df(x 0, y 0 )(h, k) = h f x (x 0, y 0 ) + k f y (x 0, y 0 ). a = (2, 01) 4 + (3, 05) 2 en utilisant le développement de Taylor. 2. Vérifier avec une calculatrice. 2.4.2 Dérivée de fonctions composées Soit f une fonction de classe C 1 dans un voisinage V de (x 0, y 0 ) et soit t x(t) et t y(t) deux fonctions définies sur un intervalle I R telles que : t I, (x(t), y(t)) V. On peut alors définir sur I une fonction (d une variable) F en posant : Supposons que pour un certain t 0 I, Alors, F (t 0 ) = f(x 0, y 0 ). F (t) = f(x(t), y(t)). (x(t 0 ), y(t 0 )) = (x 0, y 0 ). Le corollaire suivant permet de calculer F (t 0 ) : Corollaire 2.25 : Avec les notations et les hypothèses précédentes, supposons que les fonctions t x(t) et t y(t) sont dérivables en t 0. Alors, la fonction F est dérivable en t 0 et F (t 0 ) = f x (x 0, y 0 )x (t 0 ) + f y (x 0, y 0 )y (t 0 ) Cours d Analyse 28 Fonctions de plusieurs variables

CHAPITRE 2. CONTINUITÉ PLUSIEURS VARIABLES ET DÉRIVATION DE FONCTIONS DE Notation différentielle : La formule précédente se retient en écrivant la formule différentielle suivante : df(x, y) = f f (x, y)dx + (x, y)dy, x y puis, en divisant par dt pour faire apparaître les dérivées : x (t) = dx dt et y (t) = dy dt. Corollaire 2.26 : Soit U R n un ouvert et f : U R de classe C 1 sur U. Soit ϕ : I U une fonction dérivable sur un intervalle I R, à valeur dans U. La fonction f ϕ est dérivable sur I et : t I, (f ϕ) (t) = grad f (ϕ(t)) ϕ (t) = df (ϕ(t)) [ ϕ (t) ]. Cours d Analyse 29 Fonctions de plusieurs variables