Intégration Encadrement d intégrale Exercices corrigés

Documents pareils
Limites finies en un point

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Comparaison de fonctions Développements limités. Chapitre 10

Fonctions de plusieurs variables

Chapitre 1 : Évolution COURS

Continuité et dérivabilité d une fonction

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

I. Ensemble de définition d'une fonction

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Chapitre 2 Le problème de l unicité des solutions

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Raisonnement par récurrence Suites numériques

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Suites numériques 4. 1 Autres recettes pour calculer les limites

Image d un intervalle par une fonction continue

Fonctions homographiques

108y= 1 où x et y sont des entiers

Correction de l examen de la première session

Chapitre 6. Fonction réelle d une variable réelle

CCP PSI Mathématiques 1 : un corrigé

Une forme générale de la conjecture abc

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Continuité en un point

III- Raisonnement par récurrence

Complément d information concernant la fiche de concordance

Développements limités. Notion de développement limité

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

FONCTION EXPONENTIELLE ( ) 2 = 0.

Suites numériques 3. 1 Convergence et limite d une suite

Taux d évolution moyen.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

La fonction exponentielle

I. Polynômes de Tchebychev

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Problème 1 : applications du plan affine

Théorème du point fixe - Théorème de l inversion locale

C f tracée ci- contre est la représentation graphique d une

Manuel d utilisation 26 juin Tâche à effectuer : écrire un algorithme 2

Introduction à l étude des Corps Finis

Construction d un cercle tangent à deux cercles donnés.

Polynômes à plusieurs variables. Résultant

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Développements limités, équivalents et calculs de limites

3 Approximation de solutions d équations

Logique. Plan du chapitre

Partie 1 - Séquence 3 Original d une fonction

Calcul fonctionnel holomorphe dans les algèbres de Banach

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

O, i, ) ln x. (ln x)2

Angles orientés et trigonométrie

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Dérivation : cours. Dérivation dans R

Chp. 4. Minimisation d une fonction d une variable

Problèmes de Mathématiques Filtres et ultrafiltres

Leçon 01 Exercices d'entraînement

Probabilités conditionnelles Exercices corrigés

Cours d Analyse. Fonctions de plusieurs variables

aux différences est appelé équation aux différences d ordre n en forme normale.

Texte Agrégation limitée par diffusion interne

Fonction inverse Fonctions homographiques

Les indices à surplus constant

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières

Maple: premiers calculs et premières applications


Chaînes de Markov au lycée

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Résolution de systèmes linéaires par des méthodes directes

Développement décimal d un réel

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

PRIME D UNE OPTION D ACHAT OU DE VENTE

Correction du Baccalauréat S Amérique du Nord mai 2007

Probabilités sur un univers fini

Commun à tous les candidats

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

INTRODUCTION. 1 k 2. k=1

Les devoirs en Première STMG

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

Pour l épreuve d algèbre, les calculatrices sont interdites.

DUT Techniques de commercialisation Mathématiques et statistiques appliquées

Mais comment on fait pour...

Cours de mathématiques

Le produit semi-direct

Cours 02 : Problème général de la programmation linéaire

Université Paris-Dauphine DUMI2E 1ère année, Applications

Chapitre 2. Matrices

Fibonacci et les paquerettes

Equations différentielles linéaires à coefficients constants

chapitre 4 Nombres de Catalan

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

IV- Equations, inéquations dans R, Systèmes d équations

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

f n (x) = x n e x. T k

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

Représentation géométrique d un nombre complexe

Transcription:

Intégration Encadrement d intégrale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : encadrer une intégrale Exercice 2 : donner un encadrement du logarithme népérien d un nombre à l aide d une intégration Exercice 3 : encadrer une intégrale dont l intégrande est une fonction composée Exercice 4 : encadrer une intégrale dont l intégrande est le produit de deux fonctions Exercice 5 : minorer la fonction exponentielle par une fonction polynôme (raisonnement par récurrence) Exercice 6 : comparer deux intégrales et étudier la convergence d une suite définie par une intégrale Accès direct au site www.sos-devoirs-corriges.com Avant de porter notre attention à la correction des exercices, rappelons la définition d une fonction primitive ainsi que les primitives des fonctions usuelles et les primitives de fonctions composées couramment rencontrées. Dans ces formulaires, désigne une constante réelle et est une fonction dérivable sur un intervalle. Rappel : Primitive d une fonction et calcul d une intégrale Soit une fonction continue sur un intervalle [ ] avec. Une primitive de sur [ ] est, si elle existe, une fonction dérivable sur [ ] vérifiant sur [ ]. Si est une fonction continue sur [ ] et si est une primitive de sur [ ], alors, pour tout [ ] : [ ] Remarque : Dans une intégrale, la fonction qui est intégrée est appelée intégrande. 1

Formulaire des primitives de fonctions usuelles Fonction définie par Primitives définies par Conditions sur et Formulaire des primitives de fonctions composées Fonction Primitives de la fonction Conditions sur et 2

Exercice corrigé 1 (2 questions) Niveau : facile Dans cet exercice, désigne une fonction continue sur. 1) Sachant que, pour tout [ ],, donner un encadrement de l intégrale : 2) Sachant que, pour tout [ ],, donner un encadrement de l intégrale : Correction de l exercice 1 Retour au menu 1) Donnons un encadrement de l intégrale. Rappel : Conservation de l ordre par intégration (ordre et intégrale / intégration d une inégalité) Soient et deux fonctions continues sur un intervalle [ ] avec. Alors, pour tout réel [ ] : Remarques : On dit que l intégrale conserve l ordre. La réciproque n est pas vraie. La fonction est continue sur et l intégrale conserve l ordre donc, pour tout réel [ ], il vient que : [ ] [ ] 2) Donnons un encadrement de l intégrale. La fonction est continue sur et l intégrale conserve l ordre donc, pour tout réel [ ], il vient que : [ ] [ ] [ ] [ ] 3

Exercice corrigé 2 (3 questions) Niveau : facile 1) Montrer que, pour tout réel [ ], 2) En déduire un encadrement, pour tout réel [ ], de l intégrale suivante : 3) En déduire un encadrement de. Correction de l exercice 2 Retour au menu 1) La fonction est une fonction affine de taux d accroissement positif donc elle est croissante sur. Par conséquent, pour tout réel [ ], il vient que, soit. De plus, la fonction inverse est décroissante sur et en particulier sur [ ]. Il s ensuit que, pour tout réel tel que [ ],, soit. 2) La fonction est une fonction homographique définie sur. Elle est donc continue sur [ ]. En outre, l intégrale conserve l ordre donc, pour tout réel [ ], il vient que : [ ] [ ] 3) Pour tout réel [ ],. Par conséquent, d après ce qui précède, il vient que : [ ] En posant, il résulte que, c est-à-dire. 4

Exercice corrigé 3 (2 questions) Niveau : facile 1) Démontrer que, pour tout réel, 2) En déduire que, pour tout réel, Correction de l exercice 3 Retour au menu 1) Soit un réel tel que. Alors, en multipliant par, il vient que. De plus, la fonction opposée étant décroissante sur, il vient que. Enfin, comme la fonction exponentielle est croissante et positive sur, pour tout réel tel que, il résulte que. 2) Rappel : Linéarité de l intégrale (propriété de linéarité multiplicative) Soit un réel. Si est une fonction continue sur un intervalle [ ] avec, alors : La fonction est la composée d une fonction polynôme par la fonction exponentielle, toutes deux continues sur, donc la fonction est continue sur et en particulier sur [ [. De même, la fonction est continue sur comme étant la composée d une fonction affine par la fonction exponentielle, toutes deux continues sur. En outre, l intégrale conserve l ordre donc, pour tout réel, il vient que : [ ] Or, pour tout réel, donc et d où. Finalement, il vient que : 5

Exercice corrigé 4 (2 questions) Niveau : moyen Soit la fonction définie sur [ ] par. 1) Donner un encadrement de sur [ ]. 2) En déduire un encadrement de l intégrale de à de la fonction. Correction de l exercice 4 Retour au menu 1) Encadrons sur [ ]. La fonction est définie sur [ ] par est dérivable sur son ensemble de définition.. Or, cette fonction est une fonction rationnelle donc elle Par conséquent pour tout [ ], il vient que : ( ) ( ) Notons le discriminant du trinôme du second degré. Alors. Comme, le trinôme admet deux racines réelles distinctes : Or, [ ] avec et [ ] avec donc, pour tout [ ],. De plus, comme pour tout [ ], il résulte que sur [ ]. Finalement, la fonction est strictement croissante sur [ ]. Dès lors, il vient que pour tout [ ],. Or, d une part et d autre part donc. 2) Donnons un encadrement de l intégrale de à de la fonction. La fonction est dérivable sur [ ] donc continue sur cet intervalle. De plus, la fonction racine carrée est continue sur donc en particulier sur [ ]. Par conséquent, la fonction est continue sur [ ]. Pour tout [ ], donc. 6

En vertu de la conservation de l ordre par intégration, il vient que : [ ] [ ] [ ] [ ] ( ) ( ) 7

Exercice corrigé 5 (1 question) Niveau : difficile Montrer que, pour tout entier naturel et pour tout réel positif, on a : Rappel : Factorielle d un entier naturel Correction de l exercice 5 Retour au menu Rappel : Principe du raisonnement par récurrence Soit une proposition définie sur un intervalle de. Soit. Si : Alors : 1) la proposition est initialisée à un certain rang, c est-à-dire si est vraie au rang 2) la proposition est héréditaire à partir du rang, c est-à-dire si, pour tout tel que, on a l implication 3) La proposition est vraie à partir de tout rang plus grand que. Une proposition est un énoncé, soit vrai, soit faux. On vérifie que est vraie On suppose que est vraie On vérifie alors que est vraie On conclut que, pour tout entier naturel, est vraie rang rang rang 1 ère étape Initialisation 2 e étape Hérédité 3 e étape Conclusion Soit la proposition définie sur par : «Pour tout réel positif,». Initialisation : D une part, D autre part, la fonction exponentielle est continue et strictement croissante sur donc, pour tout réel,. Or, comme, il vient que. 8

Par conséquent, Autrement dit, est vraie ; la proposition est initialisée au rang 0. Hérédité : Supposons vraie à partir d un certain rang. Soit un réel positif et soit un réel tel que [ ]. D après l hypothèse de récurrence, on a : Or, la fonction est la fonction exponentielle donc elle est continue sur. La fonction est une fonction polynôme de degré (somme de monômes) donc elle est continue sur. De plus, l intégrale conserve l ordre donc, en intégrant sur [ ], il vient que : [ ] Rappel : Linéarité de l intégrale (propriété de linéarité additive) Si et sont deux fonctions continues sur un intervalle [ ] avec, alors : ( ) En vertu de la linéarité de l intégrale, il vient finalement que : [ ] [ ] [ ] ( ) On en déduit que est vraie. On vient donc de montrer que si est vraie, alors est vraie ; la proposition est héréditaire. 9

Conclusion : La proposition est initialisée au rang 0 et héréditaire donc, pour tout et pour tout, on a : Remarques : 1) Dans cet exercice, on vient de minorer la fonction exponentielle par une fonction polynôme de degré. De ce résultat, on peut déduire la limite en de la fonction exponentielle en utilisant le théorème de comparaison en. En l occurrence,. Rappel : Théorème de comparaison en Soient et deux fonctions définies sur un intervalle ] [. Si, pour tout, d une part et si d autre part, alors. 2) Les propriétés de linéarité additive et de linéarité multiplicative de l intégrale précédemment énoncées peuvent également être formulées ainsi : Rappel : Linéarité de l intégrale (propriétés de linéarité additive et de linéarité multiplicative) Soient deux réels et. Si et sont deux fonctions continues sur un intervalle [ ] avec, alors : ( ) 10

Exercice corrigé 6 (5 questions) Niveau : difficile On considère la suite numérique définie pour tout entier naturel non nul par : 1) Démontrer que la suite est croissante. On définit la suite pour tout entier naturel non nul par : 2) Comparer et. 3) Exprimer en fonction de. 4) Montrer que la suite est majorée par un réel. 5) Que peut-on en conclure pour la suite? Correction de l exercice 6 Retour au menu 1) Démontrons que la suite est croissante. Rappel : Intégration et relation de Chasles Soit une fonction continue sur un intervalle [ ]. Pour tous réels, et tels que, Pour tout entier naturel non nul, Or, pour tout [ ], et donc. De plus, comme l intégrale conserve l ordre, il résulte que pour tout [ ] et pour tout entier naturel non nul : Comme, la suite est croissante pour tout entier naturel non nul. 11

2) Comparons et. Pour tout réel, et d où. Il vient alors que, c est-à-dire. Comme la fonction racine carrée est croissante sur, il vient que, c est-à-dire. Dès lors, en multipliant par, il résulte que. En passant à l intégrale sur [ ] et tenant compte de la conservation de l ordre avec l intégrale, on a finalement : Autrement dit, pour tout entier naturel non nul,. 3) Exprimons en fonction de. Déterminons une primitive de la fonction. Les primitives de cette fonction sont les fonctions avec, et réels. De telles fonctions sont dérivables sur comme étant la somme du réel et du produit d une fonction affine par la composée de la fonction opposée par la fonction exponentielle. Ainsi, pour tout réel,. Comme, par identification,, d où le système { à résoudre. Or, { {. Par conséquent, les primitives de la fonction sont les fonctions avec réel. En particulier, en posant, on peut conclure que la fonction est une primitive de la fonction sur. Il résulte alors immédiatement que : [ ] 4) Montrons que la suite est majorée par un réel. On a montré à la question précédente que. Or, pour tout entier naturel non nul, et donc. Par conséquent,, c est-à-dire. De plus, d après la question précédente,. Il s ensuit que. La suite est donc majorée par le réel. 5) Concluons. La première question a permis d établir que, pour tout entier naturel non nul, la suite est croissante. En outre, d après la question précédente, cette suite est majorée par le réel. Etant croissante et majorée, la suite converge. 12