Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + = GB = ; de même BI = et GI =. Le triangle GBI est isocèle.. Question : Le barycentre du système de points pondérés {(O,, (A, -, (C, } est : Réponse a : le point K. Réponse b : le point I. Réponse c : le point J. Par définition le barycentre G vérifie : GO GA + GC = 0 OG = AC OG = AC = OJ G = J.. Question : Le produit scalaire AH FC est égal à : Réponse a :. Réponse b :. Réponse c :. Avec AH ( ; ; et FC (0 ; 0 ;, AH FC =. 4. Question 4 : Les points B, C, I, H : Réponse a : sont non coplanaires. Réponse b : forment unréponse c : forment un rectangle. carré. On a BC = HI = et CI = BH =. Ces points sont coplanaires (ils appartiennent au plan d équation x+ z =, donc BCIH est un parallélogramme. Or BC CI = 0+0+0=0. Le parallélogramme a un angle droit : c est un rectangle.. Question : Une représentation paramétrique de paramètre t de la droite (KE est : On a KE ( ; ;. M(x ; y ; z (K E KM = u x 0 = u KE,u R y = u z 0 = u x = u y = u z = u En posant t = u u= t, on obtient x = t M(x ; y ; z (K E y = + t, t R. z = t 6. Question 6 : Une équation cartésienne du plan (GBK est : Réponse a : x+y z =0.Réponse b : x+y = 0. Réponse c : x+y+ z =. Les coordonnées de G, B et K ne vérifient que l équation x+y+ z =. 7. Question 7 : La distance du point C au plan (ADH est : Réponse a :. Réponse b :. Réponse c :. Une équation du plan (ADH est x+y =0. Donc d(c, ADH= + + = =.
8. Question 8 : Le volume du tétraèdre HJKB est égal à : Réponse a :. Réponse b : 6. Réponse c :. On prend comme base BJK dont l aire est, comme hauteur HJ =, d où un volume égal à V = = 6. EXERCICE Réservé aux candidats n ayant pas suivi l enseignement de spécialité PARTIE A Étude de la configuration points. Construction de la figure. a. Cf. figure. b. On a b = + ( = 4+=6=4. Donc b =4. De même c = + ( = 9+7=6=6. Donc c =6. c. Voir les droites en tiretés.. BC = + 7=76 ; BP = 64+=76 ; PC = 49+7=76 ; Donc BC = BP = PC = 76 BC=BP=PC BCP est équilatéral. Autre méthode : On calcule b p c p = 8 i 7+i = ( 8 i ( 7+i ( 7+i ( 7 i = 6 8+4i +4i = 8+8i = 49+7 76 + i = ei π. On a donc d une part : b p e c p = i =, ce qui signifie PC =, donc PC = BP : le triangle BPC est isocèle BP en P, d autre part : ( b p arg c p = arg (e i = π. Conclusion BPC est isocèle en P et l angle en P a pour mesure π ; les deux autres angles ont donc eux aussi pour mesure π et le triangle BPC est équilatéral.. a. On a par définition de la rotation q étant l affixe de Q : q a= e i π (c a q = a+ e i π (c a= + ( +i ( + i = + 9 + i + i = 4+4i. b. On a q = 4+4i = ( i = b. On a donc OQ = OB ce qui signifie que les vecteurs sont colinéaires ou encore les points O, Q et B sont alignés. 4. a. Par définition O, C et R sont alignés ; on vient de démontrer que O, Q et B sont alignés et A, O et P sont sur l axe des réels. Conclusion : (AP, (BQ et (CR sont concourantes en O. Asie juin 00
Corrigé du baccalauréat S A. P. M. E. P. b. Q C 4 6 4 A O 4 6 7 8 9 P 4 B R 6 PARTIE B. f (O=OA+OB+OC= a + b + c = +4+6=.. Par définition de la rotation de centre A et d angle π, un point M, son image N et le centre A sont les sommets d un triangle équilatéral. Donc MA= M N. D autre part M et C ayant pour images respectives par l isométrie r A les points N et Q, on a MC=N Q.. f (M=MA+ MB+MC=M N + MB+ MC d après la question précédente, f (M BN+ MC, d après l inégalité triangulaire dans BM N, f (M BN+ N Q d après la question précédente, f (M BQ d après l inégalité triangulaire dans BN Q. Or B, O et Q étant alignés : BQ = BO + OQ = 4 + 8 = et finalement f (M. Conclusion : d après la question précédente on voit donc que le point qui minimise la somme des distances d un point du plan aux trois sommets du triangle ABC, est le point O, cette somme des distances étant égale à. EXERCICE Réservé aux candidats ayant suivi l enseignement de spécialité points Asie juin 00
. a. On a BC (0 ; et BH ( ;, donc BC = BH : ces vecteurs sont colinéaires, donc B, C et H sont alignés. h b. h c = +4i 8+4i = +i +i = (+i( i ( +i( i = + i 4i = 4+ ( i. ( h On a donc arg = π ( h c CH, AH = π ( HC, HA = π.. a. La question précédente montre que dans le triangle rectangle ABC, [AH] est la hauteur issue de A. BH BH AH =. AH Or BH = 4+= BH= et AH = 4+6=0 AH=. Donc BH AH = =. Ba = et AC = 0, donc BA AC = 0 =. Enfin comme CH = 64+6= 80 CH=4, on a AH CH = 4 =. Conclusion : BH AH = BA AC = AH CH =. b. La question précédente montre que les ( côtés du triangle BAH sont deux fois ( plus petits que ceux de BCA. Comme HC, HA = HA, HB = π, la similitude (directe S de centre H et d angle π transforme le triangle CHA en le triangle AHB. c. On sait que l écriture complexe de cette similitude est, z étant l affixe d un point M et z celle de son image par S est z z H = ei π (z z H z = +4i i(z 4i z = iz+ i. Éléments caractéristiques : centre H, rapport et angle π.. Cherchons le(s point(s fixe(s de cette similitude. { x = x y+ 0 Avec z = x+iy, z = x +iy = x+iy = ( i(x iy+0 y = x+y { { x = y+ 0 y = x = 0 x = 0 Le seul point fixe a pour affixe i : c est B. S doit donc être la composée d une symétrie orthogonale d axe ( contenant B et d une similitude de centre B. La symétrie orthogonale a une écriture complexe de la forme z = αz+ β avec α =. Or B est invariant par cette symétrie : i=αi+β β=i(α+. L écriture complexe de la symétrie est donc : z = αz+ i(α+. En posant α=a+ ib,(avec a + b =, les points M(x ; y invariants par cette symétrie vérifient : x+ iy = (a+ ib(x iy+i(+ a+ ib, d où { { x = ax+ by b x(a +by b = 0 y = ay+ bx+ (+ a bx y(a+ +(+ a = 0 Ces deux équations sont deux équations d une même droite ( : elles contiennent toutes les deux le point B(0 ; et coupent respectivement l axe des abscisses en x = Asie 4 juin 00
Corrigé du baccalauréat S A. P. M. E. P. b (a+ et x =. Or b b(+ a b(+ a b(+ a = = a b a (+ a( a a = b = (+ a. b 4. Étude d une composée a. Le rapport de la similitude S S est égal au produit des rapports des deux similitudes, soit =. b. Les points C, H, A ont pour images respectives par S S les points B, A, C, donc le triangle CHA a pour image le triangle BAC. Dans cette similitude les aires sont ( multipliées par le carré du rapport de similitude soit = 4 =,. + B + H A + 0 C EXERCICE Commun à tous les candidats 4 points. a. A : D après l énoncé p (V = 0,6 et p V ((V = 0,6, donc p (V V = p (V p V (V = 0,6 0,6= 0,6. b. B : On a p (V =0,6 p (V = 0,6=0,4 et d après l énoncé p V (V = 0,9. Donc p (V V = p (V p V (V = 0,4 0,9= 0,6.. On a p = p (V = p (V V + p (V V. Or p (V V = p Conclusion : p = 0,6+0,04= 0,4. (V p V (V =0,4 ( 0,9= 0,4 0,= 0,04. 0,6 V n+ p n. 0,4 0, V n+ V n+ p n 0,9 V n+ Asie juin 00
4. On a (ce que l on peut voir sur l arbre : p n+ = p (V n+ = p (V n+ V n + p (V n+ V n = p n 0,6+ ( p n 0,=0,6pn 0,p n + 0,=0,p n + 0,.. a. Pour tout entier naturel n non nul, u n+ = p n+ 0, = 0,p n + 0, 0, = 0,p n 0,=0, ( p n 0, = 0,u n. Cette égalité montre que la suite u est une suite géométrique de raison 0, ; son premier terme est u = p 0,= 0,=0,8. ( n b. On sait que pour tout entier naturel n non nul u n = u r n = 0,8 = 0,8 n. De la définition de u n il résulte que p n = 0,+ 0,8 n. c. On sait que 0< < entraîne que lim n + 0,8 = 0, donc lim n p n = 0,. n + EXERCICE 4 Commun à tous les candidats PARTIE A 4 points. Étude des limites a. lim x 0 x =+,donc lim e x =+ ; x + lim x =+, donc par produit de limites lim f (x=+. x 0 b. Comme lim x + x = 0, lim e x =. n + Or lim = 0, donc par produit de limites x + x lim f (x=0. x + c. La première limite montre que l axe des ordonnées est asymptote à C au voisinage de zéro. x 0 La seconde montre que l axe des abscisses est asymptote à C au voisinage de plus l infini.. Étude des variations de la fonction f a. f (x étant considéré comme un produit de fonctions dérivables sur ]0 ; + [, on a : ( f (x= x e ( = x + x e x x x 4 e x + ( x ( x e x x = e x x 4 + x 4 = x 4 e x (x+. b. On a x > 0 x > 0 x+ >>0 ; d autre part quel que soit u R, e u > 0. Enfin x > 0 > 0, donc finalement pour tout réel supérieur à zéro, x4 f (x<0. Il en résulte que la fonction f est décroissante sur ]0 ; + [ de plus l infini à zéro d après la première question. c. D après le résultat précédent (décroissance de f de plus l infini à zéro sur ]0 ; + [, la fonction f continue car dérivable sur cet intervalle il existe un unique réel α tel que f (α=0. La calculatrice donne : f (,,0 et f (,,60 donc,<α<, ; f (,0,0 et f (,,99 donc,0< α<,. La valeur approchée au centième de α est donc,. Asie 6 juin 00
. Voir plus bas PARTIE B Étude d une suite d intégrales. I = x e x dx. On pose u(x= x qui est dérivable sur ]0 ; + [ donc u (x= x. La fonction à intégrer est donc de la forme u (xe u(x qui est la dérivée de e u(x. [ ] On a donc I = e x = e e = e e.. Une relation de récurrence a. I n = x n e x dx. On pose u (x= x n et v(x=e x ; d où u(x= n x n et v (x= x e x. Toutes les fonctions sont dérivables, donc continues sur ]0 ; + [ : on peut donc intégrer par parties : [ I n = ] n x n e x n x n x e x dx = ( e e n n ( e e n I n+. n Puis (n I n = e e e I n+ I n+ = e n + ( ni n. b. La relation de récurrence précédente permet de calculer : e e I = e + ( I = e ( e e e =.. a. Soit x tel que : 0< x, donc en passant aux inverses : 0<, puis par croissance x de la fonction exponentielle : < e e x e, d où en particulier 0<e x e. Comme x n > 0 pour tout naturel et tout réel x entre et, il résulte que : 0 x n < e x x n e. ou encore 0 xn x n e x e x n. b. On en déduit l encadrement de l intégrale I n : [ soit 0< I n e n x n soit finalement 0< I n e 0 dx< ] ( x n e x dx n. e x n dx, n Comme lim = 0 et lim = 0, on obtient par produit de limites : n + n n + ( n e lim n + n n = 0. D après le théorème des «gendarmes» on a donc : x n+ e x dx = lim I n = 0. n + Asie 7 juin 00
y C O 0 x Asie 8 juin 00