Chapitre I : LES SUITES

Documents pareils
Limites finies en un point

Image d un intervalle par une fonction continue

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Problème 1 : applications du plan affine

Raisonnement par récurrence Suites numériques

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Continuité et dérivabilité d une fonction

Continuité en un point

Chapitre 6. Fonction réelle d une variable réelle

I. Polynômes de Tchebychev

Leçon 01 Exercices d'entraînement

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Chp. 4. Minimisation d une fonction d une variable

Chapitre 1 : Évolution COURS

Comparaison de fonctions Développements limités. Chapitre 10

108y= 1 où x et y sont des entiers

Chapitre 2 Le problème de l unicité des solutions

Développements limités, équivalents et calculs de limites

Rappels sur les suites - Algorithme

Fonctions de plusieurs variables

Université Paris-Dauphine DUMI2E 1ère année, Applications

I. Ensemble de définition d'une fonction

Théorème du point fixe - Théorème de l inversion locale

Suites numériques 3. 1 Convergence et limite d une suite

Développement décimal d un réel

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Continuité d une fonction de plusieurs variables

Logique. Plan du chapitre

CCP PSI Mathématiques 1 : un corrigé

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Commun à tous les candidats

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

O, i, ) ln x. (ln x)2

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

La fonction exponentielle

1 Définition et premières propriétés des congruences

Cours de mathématiques

Intégration et probabilités TD1 Espaces mesurés Corrigé

Amphi 3: Espaces complets - Applications linéaires continues

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

Problèmes de Mathématiques Filtres et ultrafiltres

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Cours Fonctions de deux variables

Suites numériques 4. 1 Autres recettes pour calculer les limites

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Fonctions homographiques

6. Les différents types de démonstrations

INTRODUCTION. 1 k 2. k=1

Développements limités. Notion de développement limité

III- Raisonnement par récurrence

Dérivation : cours. Dérivation dans R

Le théorème de Thalès et sa réciproque

Correction de l examen de la première session

Complément d information concernant la fiche de concordance

Angles orientés et trigonométrie

3 Approximation de solutions d équations

Taux d évolution moyen.

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Les suites numériques

F1C1/ Analyse. El Hadji Malick DIA

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Chaînes de Markov au lycée

Correction du baccalauréat ES/L Métropole 20 juin 2014

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

BACCALAUREAT GENERAL MATHÉMATIQUES

Programmes des classes préparatoires aux Grandes Ecoles

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Chapitre 2. Eléments pour comprendre un énoncé

Programmation linéaire

Chapitre 7 : Intégration sur un intervalle quelconque

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Représentation des Nombres

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Dérivées d ordres supérieurs. Application à l étude d extrema.

Intégration et probabilités TD1 Espaces mesurés

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Texte Agrégation limitée par diffusion interne

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Moments des variables aléatoires réelles

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles

Les indices à surplus constant

Licence MASS (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Fonctions de deux variables. Mai 2011

Cours d Analyse I et II

Calcul différentiel sur R n Première partie

Pour l épreuve d algèbre, les calculatrices sont interdites.

Capes Première épreuve

La mesure de Lebesgue sur la droite réelle

Optimisation des fonctions de plusieurs variables

Représentation géométrique d un nombre complexe

FONCTION EXPONENTIELLE ( ) 2 = 0.

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

Transcription:

Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour tout N (ou N ou ). 2) Définir une suite par récurrence, c est donner le premier terme et une relation entre chaque terme et le(s) précédent(s) pour tout N (ou N ou ). 1) Pour tout N, = 1 : on peut calculer directement = 1 = 1 2) Pour tout N, =1+ : on peut calculer directement =1+ = 3) On définit la suite par : =4 et pour tout N, =2 3 On peut calculer,, mais on ne peut pas calculer directement sans connaître les termes précédents. Remarque : Si est une fonction définie sur un intervalle ;+ où 0, on définit une suite en posant = pour tout entier. 2) Les suites arithmétiques Définition 2 : Dire qu une suite est arithmétique signifie qu il existe un nombre réel tel que, pour tout entier naturel, = +. Ce nombre réel est appelé la raison de la suite. Autrement dit : Pour tout entier naturel, = et donc la différence de deux termes consécutifs quelconques est constante. + + + + Exemple : La suite définie par = 3+2 pour tout N est une suite arithmétique : Son premier terme est =. Pour déterminer sa raison, on peut calculer =. On en déduit que =. Formule explicite Pour calculer un terme d une suite arithmétique, la définition par récurrence impose de connaître le terme précédent. La formule qui va suivre permet de calculer un terme juste à l aide de son rang : Propriété 1 : Si est une suite arithmétique de premier terme et de raison, alors, pour tout entier naturel, = +. Exemple : est la suite arithmétique de premier terme =3 et de raison 5. Alors, pour tout N, =. On a donc directement : =. 1

Propriété 2 (généralisation) : Si est une suite arithmétique de raison, alors, pour tous entiers naturels et, = +. Remarque : Cette formule est très pratique lorsque le 1 er terme n est pas. Exemple : Si est une suite arithmétique de premier terme = 1 et de raison =3, alors, pour tout entier naturel., =.. Somme des entiers de 1 à Propriété 3 : Pour tout entier naturel non nul, 1) 1+2+ +1000=.. 2) 51+52+ +100=.. 3) Les suites géométriques 1+2+ += = +1 2 Définition 3 : Dire qu une suite est géométrique signifie qu il existe un nombre réel tel que, pour tout entier naturel, =. Ce nombre réel est appelé la raison de la suite. Autrement dit : On obtient un terme en multipliant le précédent par une constante. 1) La suite de premier terme = 1 et de raison : = 1, =, =.., =.., =.. 2) La suite de premier terme =3 et de raison 2 : =3, = 6, =.., =.., =.. Formule explicite Pour calculer un terme d une suite géométrique, la définition par récurrence impose de connaître le terme précédent. La formule qui va suivre permet de calculer un terme juste à l aide de son rang : Propriété 4 : Si est une suite géométrique de premier terme et de raison, alors, pour tout entier naturel, =. Exemple : est la suite géométrique de premier terme = et de raison 2. Alors, pour tout N, =.. On a donc directement : =.. 2

Propriété 5 (généralisation) : Si est une suite géométrique de raison, alors, pour tous entiers naturels et, =. Exemple : Si est une suite géométrique de premier terme =3 et de raison = 2, alors, pour tout entier naturel., =.. Somme des puissances successives Propriété 6 : Si 1, pour tout entier naturel non nul, 1++ + + = = 1 1 Exemple : 1 2+4 8+16 32+64 128=.. 4) Sens de variation a) Définition Définition 4 : Soit une suite définie pour tout N. 1) Dire que la suite est croissante signifie que, pour tout N, 2) Dire que la suite est strictement croissante signifie que, pour tout N, > 3) Dire que la suite est décroissante signifie que, pour tout N, 4) Dire que la suite est strictement décroissante signifie que, pour tout N, < 5) Dire que la suite est constante signifie que, pour tout N, = Remarque : on dit que la suite est stationnaire si elle est constante à partir d un rang N Autrement dit, si pour tout entier, =, la suite est stationnaire. b) Étude des variations Méthode 1 : Etude du signe de la différence - Si pour tout N, 0, la suite est croissante. - Si pour tout N, 0, la suite est décroissante. Exemple : Soit une suite arithmétique de raison alors, pour tout entier naturel, = Si, la suite est... Si, la suite est. Méthode 2 : Comparaison de à 1 Il faut, dans ce cas, que tous les termes de la suite soient strictement positifs. - Si pour tout N, 1, la suite est croissante. - Si pour tout N, 1, la suite est décroissante. 3

Exemple : Soit est une suite géométrique de raison >0 et de premier terme >0 alors, pour tout entier naturel, = et >0 et donc = Si, la suite est... Si, la suite est. (Ici, ça n est pas si évident car le signe du premier terme de la suite a un rôle important) Méthode 3 : Etude des variations d une fonction Soit une suite définie, pour tout N, par = où est une fonction définie sur 0;+ - Si est croissante, alors la suite est croissante. - Si est décroissante, alors la suite est décroissante. 1) Soit la suite définie, pour tout N, par = 3+2 La fonction : 3+2 est.. sur 0;+ donc est 2) Soit la suite définie, pour tout N, par =3²+2 5 La fonction : 3²+2 5 est.. sur 0;+ donc est Remarque : on peut aussi déterminer la monotonie en étudiant le signe de 5) Représentation graphique d une suite L objectif est de représenter la suite définie par son premier terme =9 et la relation = 4

II- Le raisonnement par récurrence Axiome de récurrence : Soit une propriété dépendant de l entier naturel. On suppose que l on a les deux assertions suivantes : 0 est vraie : «initialisation» Pour un certain ener naturel, vraie implique +1 vraie : «hérédité» Alors est vraie pour tout N. Remarque : Le premier rang de la propriété n est pas forcément 0. Si la propriété n est vraie qu à partir du rang, l initialisation doit se faire pour ce rang-là. 1) Soit N. On note la propriété : «4 1 est un multiple de 3» Démontrer par récurrence que la propriété est vraie pour tout N. 2) Démontrer par récurrence que, pour tout N, 1+2+ += III- Comportement d une suite 1) Suites majorées, minorées, bornées Définition 5 : Soit une suite définie pour tout N. 1) La suite est majorée s il existe un réel tel que, pour tout N, 2) La suite est minorée s il existe un réel tel que, pour tout N, 3) La suite est bornée si elle est à la fois minorée et majorée. Remarques : i. On peut énoncer le 3) de la même façon que les deux autres points : La suite est bornée s il existe deux réels et tels que, pour tout N, ii. On dit que est un minorant de la suite et un majorant. 1) Soit la suite définie pour tout N par =. Pour tout N, >0 donc la suite est minorée par 0. 0 est donc un minorant de mais ce n est pas le seul, en effet, tous les nombres négatifs sont aussi des minorants de la suite. De même, pout tout N, 1 : la suite est majorée par 1 (mais aussi par tout autre réel supérieur à 1) On peut donc en déduire que la suite est bornée. 2) Soit la suite définie pour tout N par =²+1. Pour tout N, ²+1 1 donc la suite est minorée par 1. 1 est donc un minorant de mais c est aussi le minimum de la suite : en effet, =1. 5

2) Limite d une suite Définition 6 : La suite admet pour ite le réel l si tout intervalle ouvert contenant l contient toutes les valeurs à partir d un certain rang. On écrit alors : =l On dit que la suite converge vers l ou encore que la suite est convergente. Exemple : Montrer que : 1 =0 Définition 7 : Soit R. La suite admet pour ite + (resp. ) si tout intervalle de la forme ;+ (resp. ;) contient toutes les valeurs à partir d un certain rang. On écrit alors : =+ resp. 1) Montrer que : =+ 2) Montrer que : 1 ²= Remarques : i. Dans les deux cas de la définition, on dit que la suite est divergente. ii. Il existe un autre type de suites divergentes : celles qui n ont pas de ite comme par exemple les suites définies sur N par =sin (elle«oscille») et =3 1 +1 (elle change de signe de manière régulière) IV- Opérations sur les ites de suites On considère deux suites de nombres réels et admettant une ite finie ou infinie. 1) Somme de suites Limite de l l l + + Limite de l + + Limite de + Exemple : Soit la suite ²+ : On sait que ²=+ et 1 =0 donc par somme, + 1 =+ 6

2) Produit de suites Limite de l l>0 l<0 l>0 l<0 + + 0 0 Limite de l + + + + Limite de a) Soit la suite ² : On sait que ²=+ et = donc par somme, on est en présence d une FI. On écrit ² = 1 et, par produit, le calcul de ite est possible : ² =+ b Étudier 3²+2 6 puis 3² 2 6. 3) Quotient de suites Dans cette partie, on considère que la suite ne s annule jamais. 1 cas : 0 Limite de l l l + + + + Limite de l 0 + l >0 l >0 l <0 l <0 + + Limite de 2 cas : =0 Limite de l>0 ou + l>0 ou + l<0 ou l<0 ou 0 Limite de 0 0 0 0 0 Limite de a Soit la suite 5 +2 : on sait que +2=+ et 5= 5 donc,par quotient 5 +2 =0 7

b Étudier 2 6 puis 3+1 ² 6 3+1. V- Propriétés sur les ites de suites 1) Limites et comparaison Théorème 1 : Soit et deux suites définies pour tout N. Si, à partir d un certain rang,, et si =+, alors =+ Théorème 2 : Soit et deux suites définies pour tout N. Si, à partir d un certain rang,, et si =, alors = Théorème 3 : ou théorème des gendarmes Soit, et trois suites définies pour tout N. Si, à partir d un certain rang,, et si et convergent vers une même ite l, alors converge aussi vers l. 2) Limites des suites arithmétiques et géométriques Propriété 7 : Soit une suite arithmétique de raison et de premier terme. Si >0, alors =.. Si <0, alors =.. Si =0, alors converge vers car c est une suite constante. Propriété 8 : Soit R. Si >1, alors =.. Si =1, alors =.. Si 1<<1, alors =.. Si 1, alors la suite.. Propriété 9 : Conséquence de la propriété 8. Soit une suite géométrique de raison et de premier terme. Si >1 et >0, alors =.. Si >1 et <0, alors =.. Si =1, alors =.. Si 1<<1, alors =.. Si 1, alors la suite.. 8

Remarque : le cas >1 et =0 n a pas été précisé dans la propriété car, dans ce cas, la suite est constante égale à 0, elle est donc convergente de ite 0. 3) Limites des suites monotones Propriété 10 : Soit une suite croissante définie sur N. Si la suite converge vers un réel l, alors est majorée par l. Exemple : la suite définie sur N par =3 majorée par 3. est croissante et converge vers 3, elle est donc Remarque : on peut aussi énoncer un résultat similaire pour les suites décroissantes. Théorème 4 : Une suite convergente est une suite bornée. Exemple : la suite définie sur N par =3 par son premier terme (car croissante), à savoir 1. converge vers 3. Elle est majorée par 3 et minorée Remarque : La réciproque de ce théorème est fausse : une suite bornée n est pas forcément convergente. La suite définie sur N par = 1 est bornée par -1 et 1 mais est divergente (elle n a pas de ite). Propriété 11 : contraposée du théorème 4 Théorème 5 (admis) : Théorème de convergence monotone 1) Si une suite est croissante et majorée, alors elle est convergente. 2) Si une suite est décroissante et minorée, alors elle est convergente. Tapez une équation ici. Remarque : Ce résultat permet de démontrer qu une suite monotone converge. En revanche, il ne donne pas la ite de la suite. Exemple : Soit la suite définie sur N par suite = et = On montre d abord par récurrence que, pour tout N, 0< <1 La suite est décroissante et minorée par 0, elle est donc convergente. Théorème 6 : 1) Si une suite est croissante et non majorée, alors elle a pour ite +. 2) Si une suite est décroissante et non minorée, alors elle a pour ite. Remarque : les réciproques des théorèmes 5 et 6 sont fausses. 9