Plus courts et plus longs chemins
|
|
|
- Nicolas Poulin
- il y a 10 ans
- Total affichages :
Transcription
1 Plus courts et plus longs chemins Complément au chapitre 8 «Une voiture nous attend» Soit I={1,2,,n} un ensemble de tâches à ordonnancer. La durée d exécution de chaque tâche i est connue et égale à p i. Par hypothèse, une tâche en cours d exécution ne peut pas être interrompue. L exécution des tâches est soumise à des contraintes que certaines tâches ne peuvent pas commencer avant que d autres soient terminées ou aient atteint un certain degré d avancement. D autres contraintes imposent que certaines tâches ne doivent pas démarrer trop tard après le début d autres tâches. C est le cas, par exemple, dans le cadre de processus chimiques où une trop longue attente entre deux tâches peut annuler la réaction chimique souhaitée. Notons t i la période à laquelle la tâche i débute. Toutes ces contraintes peuvent être mises sous la forme suivante : t j -t i a ij où a ij est un nombre réel donné correspondant à une durée. Voici quelques exemples : la tâche j ne peut pas commencer avant que la tâche i soit terminée : t j -t i p i la tâche j commence au plus tard lorsqu un certain laps de temps T s est écoulé depuis le début de la tâche i : t i +T t j ce qui est équivalent à t i -t j -T les tâches i et j doivent débuter simultanément : t i -t j 0 et t j -t i 0 la tâche j doit succéder immédiatement à la tâche i, sans qu il y ait interruption : t i -t j -p i et t j -t i p i Le problème auquel on s intéresse ici consiste à trouver un ordonnancement de durée minimale. Il s agit en d autres termes d ordonnancer les tâches de telle sorte que l heure à laquelle l exécution de la dernière tâche prend fin soit aussi petite que possible. Formulation en termes de graphes On peut associer un graphe à ce problème. Pour cela, on considère deux tâches fictives 0 et n+1. À chaque tâche i {0,1,2,,n,n+1} correspond un sommet du graphe. Les sommets i et j liés par la relation t j -t i a ij sont reliés par un arc de longueur a ij allant de i vers j. Chaque sommet i {1,2,,n} est relié au sommet n+1 par un arc de longueur p i. Le sommet 0 est relié à chaque sommet i {1,2,,n} par un arc de longueur nulle. Trouver un ordonnancement de durée minimale revient alors à déterminer le plus long chemin entre les sommets 0 et n+1. Un tel chemin est appelé chemin critique car les tâches sur ce chemin ont leur période de début imposée si l on désire terminer l ensemble des tâches au plus tôt. Les tâches situées sur un chemin critique sont appelées tâches critiques. La détermination des chemins critiques permet de focaliser l attention sur l exécution des tâches critiques : tout retard pris sur l exécution d une tâche critique allonge inévitablement la durée du projet.
2 Pour tenter de retarder le réveil de la famille Courtel, Manori construit un tel graphe. À la liste des tâches décrites par Sébastien, on peut construire le graphe ci-dessous. Tâches Descriptions Durées Prédécesseurs P1 Le père fait sa toilette 10 T1, M1 P2 Vider les armoires dans la 15 P1 chambre des parents P3 Faire les valises des parents 20 P2 P4 Apporter les valises à la 10 P3, M2 réception P5 Rendre les clés 5 T3 P6 Prendre possession 0 P5 de la voiture M1 La mère fait sa toilette 20 T1 M2 Faire les valises des filles 20 M1, F1 M3 Se maquiller et vérifier la chambre des parents 15 P3, M2 F1 Vider les armoires dans la 15 T1 chambre des filles F2 Les filles font leur toilette 20 F1, P1, M1 F3 Vérifier la chambre des filles 5 F2, M2 T1 Se lever 0 T2 Prendre le petit-déjeuner 45 P4, M3, F3 T3 Dernier brossage des dents 10 T2 Ici, la tâche 0 est en fait la tâche T1 et la tâche n+1 est la tâche P6. On a par exemple la contrainte que la tâche M1 précède P1, ce qui signifie que t P1 t M On peut réécrire cette inégalité sous forme standard pour obtenir t P1 -t M1 20, ce qui explique l arc de longueur 20 allant de M1 vers P1. Dans ce graphe, T1 n est relié directement qu à P1, M1 et F1. Théoriquement, tel que soulevé par Sébastien, on aurait aussi dû mettre un arc de T1 vers les autres sommets. Mais ces arcs sont en fait inutiles car tout chemin allant de T1 vers ces autres sommets doit passer par P1, M1 ou F1. Le plus long chemin de T1 à P6 dans ce graphe est de longueur 140, ce qui signifie que la famille Courtel a besoin de 2 heures et 20 minutes pour se préparer le matin du départ.
3 Alors que le problème que nous venons d étudier est la recherche d un plus long chemin dans un graphe, d autres problèmes consistent à déterminer un plus court chemin. Par exemple, lorsqu on veut se rendre d un point à un autre d un réseau routier, on peut rechercher le chemin le plus court ou le chemin le plus rapide. C est ce que font tous les systèmes GPS. Lorsqu on veut minimiser la distance parcourue, les valeurs sur les arcs sont les distances à parcourir d un point à un autre. Si l on veut par contre que le trajet soit aussi rapide que possible, les valeurs mises sur les arcs sont les durées des trajets. Aussi, lorsqu on recherche la meilleure stratégie pour passer d un état A à un état B, on peut considérer les étapes intermédiaires par lesquelles on peut passer. On peut aussi mesurer le coût à payer pour se rendre d une étape à une autre. La meilleure stratégie consistera alors à emprunter le plus court chemin de A à B. C est exactement ce qu a fait Manori pour résoudre le problème de l évasion des 4 prisonniers. Il a dessiné le graphe suivant. Le problème consiste à se rendre du sommet au haut du graphe qui représente la situation où tous les prisonniers sont dans leur cellule, au sommet au bas du graphe qui correspond à la situation où tous les prisonniers sont libres. Le plus court chemin donne la stratégie d évasion la plus courte en temps. Nous allons maintenant indiquer comment déterminer un plus court chemin dans un graphe. Notons que si c est un plus long chemin qu il faut déterminer, il suffit de changer de signe chaque longueur sur les arêtes (c est-à-dire remplacer chaque longueur d ij par d ij ) et de rechercher un plus court chemin. Par exemple, le plus long chemin de A à B dans le graphe à gauche ci-dessous est celui du bas de longueur -1, et le plus court dans le graphe à droite est aussi celui du bas avec une longueur 1.
4 Certains pourraient être surpris qu on considère des longueurs négatives car dans un réseau routier, toutes les distances sont positives et les durées des trajets sont positives aussi. Mais nous avons vu que la recherche de plus courts ou plus longs chemins peut apparaître dans d autres contextes. Par exemple, si on demande à ce que la tâche A commence au plus tard 20 minutes après le début de la tâche B, on a la contrainte t A t B +20, ce qui s écrit aussi t B t A -20. Dans le graphe considéré nous mettons donc un arc de A vers B de longueur négative -20. Nous commençons par présenter un algorithme de recherche de plus court chemin entre un sommet A et tous les autres sommets du graphe dans le cas où le graphe considéré n a pas de circuit. Cet algorithme marque un sommet dès que la longueur du plus court chemin jusqu à lui est connue. Notons PCC(v) la longueur du plus court chemin de A au sommet v et d xy la longueur de l arc allant de x vers y. Algorithme de recherche d un plus court chemin entre un sommet A et tous les autres sommets du graphe dans le cas où le graphe considéré n a pas de circuit 1. poser PCC(A)=0 et marquer A ; 2. s il existe au moins un sommet non marqué alors aller à 3, sinon STOP. 3. choisir un sommet v non marqué dont tous les prédécesseurs sont marqués. Déterminer le minimum des valeurs PCC(w)+d wv en considérant tous les prédécesseurs w de v et poser PCC(v) égal à ce minimum ; marquer le sommet v et retourner à 2. Pour le petit exemple ci-dessous, après avoir posé PCC(A)=0 et avoir marqué A, on peut choisir v égal à C ou D. Choisissons v=c. On pose donc PCC(C)=PCC(A)+5=5 et on marque C. Le seul sommet dont tous les prédécesseurs sont marqués est alors le sommet D. On pose donc PCC(D)=PCC(A)-2=-2 et on marque D. Finalement le dernier sommet à considérer est le sommet B. On pose PCC(B)=min{PCC(C)-3, PCC(D)+3}=min{2,1}=1. L algorithme s arrête après avoir marqué B. Lorsque le graphe considéré a des circuits, l algorithme ci-dessus ne peut plus être appliqué car il n existe plus forcément de sommet dont tous les prédécesseurs sont marqués. En effet, avant de marquer le premier sommet d un circuit, chaque sommet de ce circuit a un prédécesseur non marqué. Le deuxième algorithme que nous présentons n est valide que dans les cas où toutes les distances sont positives. Cet algorithme effectue également un marquage des sommets, un après l autre. Il considère des valeurs temporaires pcc(v) pour le plus court chemin de
5 A à v. Ces valeurs temporaires sont mises à jour pour finalement aboutir à la vraie valeur PCC(v) une fois que le sommet v est marqué. L algorithme peut être décrit comme suit. Algorithme de recherche d un plus court chemin entre un sommet A et tous les autres sommets du graphe dans le cas où toutes les distances sont positives 1. poser pcc(a)=0 et pcc(v) = (infini) pour tout v A ; 2. s il existe au moins un sommet non marqué alors aller à 3, sinon STOP. 3. choisir un sommet v non marqué de valeur pcc(v) minimale, poser PCC(v)=pcc(v) et marquer v ; 4. poser pcc(w)=min{pcc(w), PCC(v)+d vw } pour tout successeur w de v non marqué (avec v égal au dernier sommet marqué à l étape 3) et retourner à 2. Pour l exemple ci-dessous, après avoir posé pcc(a)=0 et pcc(b)=pcc(c)=pcc(d)=, on choisir v=a et on pose PCC(A)=0 tout en marquant A. On fait alors les mises à jour suivantes : pcc(c)=min{, PCC(A)+3}=3 pcc(d)=min{, PCC(A)+1}=1 On choisit donc v=d comme prochain sommet et on pose PCC(D)=1 en marquant D. La seule nouvelle mise à jour est pcc(b)=min{, PCC(D)+5}=6. On choisit ensuite v=c et on pose PCC(C)=3 en marquant C et on fait la mise à jour pcc(b)=min{6, PCC(C)+1}=4. Finalement, on choisit v=b, on pose PCC(B)=4 en marquant B et l algorithme s arrête. Remarquons que cet algorithme ne produit pas forcément un plus court chemin de A aux autres sommets si le graphe contient quelques distances négatives. Par exemple, si on modifie la distance sur l arc allant de C à D pour la rendre égale à -3 au lieu de 3, l algorithme proposé débutera comme indiqué ci-dessus et posera donc PCC(D)=1 alors que le plus court chemin de A à D est de longueur 0 (en passant pas C). Nous indiquons finalement comment déterminer un plus court chemin dans un graphe pouvant contenir des circuits et des arcs avec des distances négatives. Nous supposons qu il n existe pas de circuit de longueur négative car, sinon, le problème n aurait pas de solution de valeur finie. Il suffirait en effet de se rendre de A vers ce circuit et de tourner indéfiniment dans le circuit avant de ressortir pour se rendre vers un autre sommet pour avoir un chemin de longueur -. L algorithme qui suit ne considère que des valeurs PCC(v) pour chaque sommet v ; ces valeurs sont mises à jour tout au cours de l algorithme et nous ne savons qu elles correspondent aux longueurs des plus courts chemins de A aux autres sommets qu à la toute fin de l algorithme.
6 Algorithme de recherche d un plus court chemin entre un sommet A et tous les autres sommets du graphe dans le cas général (mais en supposant qu il n existe pas de circuit de longueur négative) 1. poser PCC(A)=0 et PCC(v) = (infini) pour tout v A ; 2. pour chaque sommet v, calculer le minimum des valeurs PCC(w)+d wv en considérant tous les prédécesseurs w de v et poser f(v) égal à ce minimum 3. pour chaque sommet v, faire la mise à jour PCC(v)=min{PCC(v), f(v)} 4. Si la valeur PCC(v) a été modifiée à l étape 3 pour au moins 1 sommet v alors retourner à 2, sinon STOP. Pour l exemple ci-dessous, on pose PCC(A)=0, PCC(B)=PCC(C)=PCC(D)= et on calcule f(b)= PCC(D)+5 = +5 = f(c)= min{pcc(a)+3, PCC(B)+1 = min{0+3, +1}= 3 f(d)= min{pcc(a)+1, PCC(C)-3}= min{0+1, -3}= 1 On doit donc mettre à jour PCC(C) qui devient égal à 3 et PCC(D) qui devient égal à 1. Comme deux valeurs ont été modifiées à l étape 3, on recalcule les valeurs f(v) : f(b)= PCC(D)+5 = 1+5 = 6 f(c)= min{pcc(a)+3, PCC(B)+1 = min{0+3, +1}= 3 f(d)= min{pcc(a)+1, PCC(C)-3}= min{0+1, 3-3}= 0 On doit donc mettre à jour PCC(B) qui devient égal à 6 et PCC(D) qui devient égal à 0. Comme deux valeurs ont été modifiées à l étape 3, on recalcule les valeurs f(v) : f(b)= PCC(D)+5 = 0+5 = 5 f(c)= min{pcc(a)+3, PCC(B)+1 = min{0+3, 6+1}= 3 f(d)= min{pcc(a)+1, PCC(C)-3}= min{0+1, 3-3}= 0 On doit donc mettre à jour PCC(B) qui devient égal à 5. Comme une valeur a été modifiée à l étape 3, on recalcule les valeurs f(v) : f(b)= PCC(D)+5 = 0+5 = 5 f(c)= min{pcc(a)+3, PCC(B)+1 = min{0+3, 5+1}= 3 f(d)= min{pcc(a)+1, PCC(C)-3}= min{0+1, 3-3}= 0 Comme aucune valeur f(v) n est inférieure à PCC(v), l algorithme s arrête. Dans les algorithmes que nous avons décrits, il est facile de retracer le plus court chemin de A vers chacun des autres sommets du graphe. Il suffit pour cela de mémoriser d où vient l arc qui entre en v lorsqu on modifie PCC(v) (ou pcc(v) pour l algorithme précédent). Ici, par exemple, la dernière mise à jour de PCC(B) vient de D, celle de PCC(C) vient de A et celle de PCC(D) vient de C. Les arcs utilisés pour les plus courts chemins sont donc les suivants.
LE PROBLEME DU PLUS COURT CHEMIN
LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
Introduction à la théorie des graphes. Solutions des exercices
CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti
Annexe 6. Notions d ordonnancement.
Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. [email protected] Résumé Ce document
PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES
Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.
Plus courts chemins, programmation dynamique
1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique
Par : Abdel YEZZA, Ph.D. Date : avril 2011 / mise à jour oct. 2012 (ajout de la section 3 et augmentation de la section 1)
1 Que signifient AON et AOA? Par : Abdel YEZZA, Ph.D. Date : avril 2011 / mise à jour oct. 2012 (ajout de la section 3 et augmentation de la section 1) Sommaire 1. Concepts... 2 2. Méthode PCM appliquée
Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1
Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation
IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes
MIS 102 Initiation à l Informatique
MIS 102 Initiation à l Informatique Responsables et cours : Cyril Gavoille Catherine Pannier Matthias Robine Marc Zeitoun Planning : 6 séances de cours 5 séances de TD (2h40) 4 séances de TP (2h40) + environ
Planifier et contrôler un projet avec Microsoft Project
Planifier et contrôler un projet avec Microsoft Project Martin Schmidt Anteo-consulting.fr 27/02/2009 Principes de base Copyright Anteo-Consulting Page 2 Saisir des tâches Tout nouveau projet commence
Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux
Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis
L exclusion mutuelle distribuée
L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué
Arithmétique binaire. Chapitre. 5.1 Notions. 5.1.1 Bit. 5.1.2 Mot
Chapitre 5 Arithmétique binaire L es codes sont manipulés au quotidien sans qu on s en rende compte, et leur compréhension est quasi instinctive. Le seul fait de lire fait appel au codage alphabétique,
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Algorithmes de recherche
Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème
SERVICE DE TRANSPORT ADAPTÉ GUIDE DE L USAGER
SERVICE DE TRANSPORT ADAPTÉ GUIDE DE L USAGER BIENVENUE À BORD! Vous trouverez dans le présent Guide de l usager tous les renseignements que vous devez connaître sur l utilisation du service de transport
Cercle trigonométrique et mesures d angles
Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Unité 1. Au jour le jour
Unité 1 Au jour le jour PARTIE 1 A Le français pratique Activité 1 Les parties du corps Identifiez les parties du corps puis faites correspondre les expressions 1 4 a Je mange b Je cours 2 5 c Je joue
Eléments de Théorie des Graphes et Programmation Linéaire
INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE Ecole Nationale Supérieure d Electricité et de Mécanique Eléments de Théorie des Graphes et Programmation Linéaire Didier Maquin Professeur à l INPL Version
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
REALISATION d'un. ORDONNANCEUR à ECHEANCES
REALISATION d'un ORDONNANCEUR à ECHEANCES I- PRÉSENTATION... 3 II. DESCRIPTION DU NOYAU ORIGINEL... 4 II.1- ARCHITECTURE... 4 II.2 - SERVICES... 4 III. IMPLÉMENTATION DE L'ORDONNANCEUR À ÉCHÉANCES... 6
TUTORIAL Microsoft Project 2010 Fonctionalités de base
TUTORIAL Microsoft Project 2010 Fonctionalités de base Microsoft Project est un logiciel de la suite Microsoft Office. Il s agit d un logiciel de gestion de projet et plus précisement de gestion de planning
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
- affichage digital - aiguille
. Lire l heure On peut lire l heure sur une horloge, un réveil, une montre à : - affichage digital - aiguille A) La lecture sur un système digital est très simple, il suffit de lire les nombres écrits
chapitre 4 Nombres de Catalan
chapitre 4 Nombres de Catalan I Dénitions Dénition 1 La suite de Catalan (C n ) n est la suite dénie par C 0 = 1 et, pour tout n N, C n+1 = C k C n k. Exemple 2 On trouve rapidement C 0 = 1, C 1 = 1, C
V- Manipulations de nombres en binaire
1 V- Manipulations de nombres en binaire L ordinateur est constitué de milliards de transistors qui travaillent comme des interrupteurs électriques, soit ouverts soit fermés. Soit la ligne est activée,
Mathématiques financières
Mathématiques financières Table des matières 1 Intérêt simple 1 1.1 Exercices........................................ 1 2 Intérêt composé 2 2.1 Taux nominal, taux périodique, taux réel.......................
Prénom : Matricule : Sigle et titre du cours Groupe Trimestre INF1101 Algorithmes et structures de données Tous H2004. Loc Jeudi 29/4/2004
Questionnaire d'examen final INF1101 Sigle du cours Nom : Signature : Prénom : Matricule : Sigle et titre du cours Groupe Trimestre INF1101 Algorithmes et structures de données Tous H2004 Professeur(s)
Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. [email protected]
Atelier Transversal AT11 Activité «Fourmis» Pierre Chauvet [email protected] Ant : un algorithme inspiré de l éthologie L éthologie Etude scientifique des comportements animaux, avec une perspective
Designer d escalier GUIDE DE L UTILISATEUR. Stair Designer-1
Designer d escalier GUIDE DE L UTILISATEUR Stair Designer-1 Stair Designer-2 Designer d escalier Le Designer d escalier rend facile la réalisation et la mise en place d escaliers sur mesure dans votre
Modélisation et Simulation
Cours de modélisation et simulation p. 1/64 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation
Atelier C TIA Portal CTIA06 : programmation des automates S7-300 Blocs d organisation
Atelier C TIA Portal CTIA06 : programmation des automates S7-300 Blocs d organisation CTIA06 Page 1 1. Types de blocs de programme L automate met à disposition différents types de blocs qui contiennent
Licence Sciences et Technologies Examen janvier 2010
Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Problèmes sur le chapitre 5
Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire
LES DECIMALES DE π BERNARD EGGER
LES DECIMALES DE π BERNARD EGGER La génération de suites de nombres pseudo aléatoires est un enjeu essentiel pour la simulation. Si comme le dit B Ycard dans le cours écrit pour le logiciel SEL, «Paradoxalement,
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Programmation linéaire et Optimisation. Didier Smets
Programmation linéaire et Optimisation Didier Smets Chapitre 1 Un problème d optimisation linéaire en dimension 2 On considère le cas d un fabricant d automobiles qui propose deux modèles à la vente, des
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
Programmation Par Contraintes
Programmation Par Contraintes Cours 2 - Arc-Consistance et autres amusettes David Savourey CNRS, École Polytechnique Séance 2 inspiré des cours de Philippe Baptiste, Ruslan Sadykov et de la thèse d Hadrien
Représentation d un entier en base b
Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir
Emprunt : Comment traiter une demande?
Emprunt : Comment traiter une demande? Par défaut, toute demande soumise doit être autorisée par le personnel du PEB avant d être transmise à une bibliothèque prêteuse. La demande est retenue aussi longtemps
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1
CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste
Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: [email protected] URL: http://nicolas.thiery.
Cours de Recherche Opérationnelle IUT d Orsay Nicolas M. THIÉRY E-mail address: [email protected] URL: http://nicolas.thiery.name/ CHAPTER 1 Introduction à l optimisation 1.1. TD: Ordonnancement
Gestion de projets. avec. Microsoft Office PROJECT 2003
Gestion de projets avec Microsoft Office PROJECT 2003 Décembre 2006 1 Sommaire 1. Présentation de MS Office Project 2003 2. Aperçu général de l interface 3. Elaboration d un plan de projet 4. Gestion des
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Algorithmique avec Algobox
Algorithmique avec Algobox 1. Algorithme: Un algorithme est une suite d instructions qui, une fois exécutée correctement, conduit à un résultat donné Un algorithme doit contenir uniquement des instructions
Écriture de journal. (Virement de dépense)
Écriture de journal (Virement de dépense) SERVICE DES FINANCES Équipe de formation PeopleSoft version 8.9 Août 2014 TABLES DES MATIERES AVERTISSEMENT... 3 INTRODUCTION... 4 RAISONS JUSTIFIANT LA CRÉATION
BONNE NOUVELLE, À PARTIR DE DEMAIN 15 AOÛT 2014, l inscription en ligne sera disponible à partir du site de l ARO.
ARO Inscription en ligne, Automne 2014 BONNE NOUVELLE, À PARTIR DE DEMAIN 15 AOÛT 2014, l inscription en ligne sera disponible à partir du site de l ARO. À partir de cette date, vous n aurez qu à vous
Le langage C. Séance n 4
Université Paris-Sud 11 Institut de Formation des Ingénieurs Remise à niveau INFORMATIQUE Année 2007-2008 Travaux pratiques d informatique Le langage C Séance n 4 But : Vous devez maîtriser à la fin de
CHAPITRE VIII : Les circuits avec résistances ohmiques
CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
Les algorithmes de base du graphisme
Les algorithmes de base du graphisme Table des matières 1 Traçage 2 1.1 Segments de droites......................... 2 1.1.1 Algorithmes simples.................... 3 1.1.2 Algorithmes de Bresenham (1965).............
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Procédure appropriée pour éditer les diagrammes avec ECM Titanium
Procédure appropriée pour éditer les diagrammes avec ECM Titanium Introduction: Dans ce document vous trouverez toutes les renseignements dont vous avez besoin pour éditer les diagrammes avec le logiciel
III- Raisonnement par récurrence
III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,
Guide d implémentation des ISBN à 13 chiffres
Guide d implémentation des ISBN à 13 chiffres International ISBN Agency Berlin 2004 Première édition 2004 by International ISBN Agency Staatsbibliothek zu Berlin Preussischer Kulturbesitz Permission est
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Suites numériques 4. 1 Autres recettes pour calculer les limites
Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est
GUIDE DU NOUVEL UTILISATEUR
GUIDE DU NOUVEL UTILISATEUR Le but de ce tutoriel est de vous guider à travers les fonctions de base de votre logiciel. Nous partirons du principe que votre terminal de pointage est déjà installé. A la
Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2
éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........
Programmation Linéaire - Cours 1
Programmation Linéaire - Cours 1 P. Pesneau [email protected] Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?
Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.
Resolution limit in community detection
Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.
Initiation à LabView : Les exemples d applications :
Initiation à LabView : Les exemples d applications : c) Type de variables : Créer un programme : Exemple 1 : Calcul de c= 2(a+b)(a-3b) ou a, b et c seront des réels. «Exemple1» nom du programme : «Exemple
Modélisation multi-agents - Agents réactifs
Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - [email protected] Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf
FAIRE UN PAIEMENT TIPI
FAIRE UN PAIEMENT TIPI I. Accès au site II. Je n ai pas de compte sur ce site 1. Indiquer une adresse email valide a. J ai une adresse email b. Je n ai pas d adresse email 2. Indiquer les informations
VIII- Circuits séquentiels. Mémoires
1 VIII- Circuits séquentiels. Mémoires Maintenant le temps va intervenir. Nous avions déjà indiqué que la traversée d une porte ne se faisait pas instantanément et qu il fallait en tenir compte, notamment
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle
Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) PLANIFICATION DE TÂCHES DANS MS PROJECT IFT702 Planification en intelligence artificielle Présenté à M. Froduald KABANZA
Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.
PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les
Un essai de mesure de la ponction actionnariale note hussonet n 63, 7 novembre 2013
Un essai de mesure de la ponction actionnariale note hussonet n 63, 7 novembre 2013 L objectif de cette note est de présenter une mesure de la ponction actionnariale. Son point de départ est un double
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?
Exercices Alternatifs Quelqu un aurait-il vu passer un polynôme? c 2004 Frédéric Le Roux, François Béguin (copyleft LDL : Licence pour Documents Libres). Sources et figures: polynome-lagrange/. Version
Fibonacci et les paquerettes
Fibonacci et les paquerettes JOLY Romain & RIVOAL Tanguy Introduction Quand on entend dire que l on peut trouver le nombre d or et la suite de Fibonacci dans les fleurs et les pommes de pin, on est au
La demande Du consommateur. Contrainte budgétaire Préférences Choix optimal
La demande Du consommateur Contrainte budgétaire Préférences Choix optimal Plan du cours Préambule : Rationalité du consommateur I II III IV V La contrainte budgétaire Les préférences Le choix optimal
module Introduction aux réseaux DHCP et codage Polytech 2011 1/ 5
DHCP et codage DHCP ( Dynamic Host Configuration Protocol RFC 2131 et 2132) est un protocole client serveur qui permet à un client hôte d un réseau local (Ethernet ou Wifi) d obtenir d un serveur DHCP
Les structures de données. Rajae El Ouazzani
Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l
Métriques de performance pour les algorithmes et programmes parallèles
Métriques de performance pour les algorithmes et programmes parallèles 11 18 nov. 2002 Cette section est basée tout d abord sur la référence suivante (manuel suggéré mais non obligatoire) : R. Miller and
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
A.-M. Cubat PMB - Import de lecteurs - Généralités Page 1 Source : http://amcubat.be/docpmb/import-de-lecteurs
A.-M. Cubat PMB - Import de lecteurs - Généralités Page 1 Diverses méthodes d import de lecteurs Les données (noms, prénoms, adresses. des lecteurs) proviennent en général du secrétariat, et se trouvent
GPA770 Microélectronique appliquée Exercices série A
GPA770 Microélectronique appliquée Exercices série A 1. Effectuez les calculs suivants sur des nombres binaires en complément à avec une représentation de 8 bits. Est-ce qu il y a débordement en complément
LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )
SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
GUIDE PRATIQUE déplacements professionnels temporaires en France et à l étranger
GUIDE PRATIQUE déplacements professionnels temporaires en France et à l étranger SOMMAIRE GUIDE PRATIQUE déplacements professionnels temporaires en France et à l étranger o o o o o o o o o o o o
OUTILS EN INFORMATIQUE
OUTILS EN INFORMATIQUE Brice Mayag [email protected] LAMSADE, Université Paris-Dauphine R.O. Excel [email protected] (LAMSADE) OUTILS EN INFORMATIQUE R.O. Excel 1 / 35 Plan Présentation générale
Encryptions, compression et partitionnement des données
Encryptions, compression et partitionnement des données Version 1.0 Grégory CASANOVA 2 Compression, encryption et partitionnement des données Sommaire 1 Introduction... 3 2 Encryption transparente des
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas
Premiers Pas avec OneNote 2013
Premiers Pas avec OneNote 2 Présentation de OneNote 3 Ouverture du logiciel OneNote 4 Sous Windows 8 4 Sous Windows 7 4 Création de l espace de travail OneNote 5 Introduction 5 Présentation des différentes
LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage
LES MÉTA-HEURISTIQUES : quelques conseils pour en faire bon usage Alain HERTZ Ecole Polytechnique - GERAD Département de mathématiques et de génie industriel CP 679, succ. Centre-ville, Montréal (QC) H3C
