BI = Business Intelligence Master Data-ScienceCours 5 - MDX
|
|
|
- Camille Sylvain
- il y a 10 ans
- Total affichages :
Transcription
1 BI = Business Intelligence Master Data-Science Cours 5 - MDX UPMC 23 février 2015
2 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining
3 Définition OLAP En informatique, et plus particulièrement dans le domaine des bases de données, le traitement analytique en ligne (anglais online analytical processing, OLAP) est un type d application informatique orienté vers l analyse sur-le-champ d informations selon plusieurs axes, dans le but d obtenir des rapports de synthèse tels que ceux utilisés en analyse financière. Les applications de type OLAP sont couramment utilisées en informatique décisionnelle, dans le but d aider la direction à avoir une vue transversale de l activité d une entreprise. Source : wikpiedia OLAP s oppose au traitement de transactions en ligne (online transaction processing abr. OLTP) qui s inscrit dans un système opérationnel (en production).
4 MDX Définition Le MDX (de l anglais Multidimensional Expressions, expressions multidimensionnelles ) est un langage de requête pour les bases de données OLAP, analogue au rôle de SQL pour les bases de données relationnelles. C est aussi un langage de calcul avec une syntaxe similaire à celle des tableurs. Le langage des expressions multidimensionnelles possède une syntaxe appropriée à l interrogation et manipulation des données multidimensionnelles mémorisées dans un cube OLAP1. Bien qu il soit possible de traduire certaines expressions dans le langage SQL traditionnel, cela nécessite une syntaxe SQL souvent maladroite même pour des expressions MDX très simples. MDX a été adopté par une large majorité de fournisseur de la technologie OLAP et est devenu un standard de facto pour les systèmes OLAP. Source : wikipedia
5 MDX SELECT Measures.[Unit Sales] ON COLUMNS, [Store].[All Stores] ON ROWS Délimiteurs Les délimiteurs [ et ] peuvent ne pas être mis si pas d ambiguité.
6 MDX SELECT Measures.MEMBERS ON COLUMNS, Product.Style.CHILDREN ON ROWS FROM [Adventure Works] équivalent à : SELECT [Measures].MEMBERS ON COLUMNS, [Product].[Style].CHILDREN ON ROWS FROM [Adventure Works]
7 MDX SELECT [Measures].MEMBERS ON COLUMNS, [Date].[Calendar Year].MEMBERS ON ROWS FROM (SELECT [Measures].[Internet Sales Amount] ON COLUMNS, [Date].[Calendar Year].&[2004] ON ROWS FROM [Adventure Works]) Expressions de sous-cube Attention : ne marche pas dans tous les systèmes OLAP
8 MDX SELECT Measures.MEMBERS ON COLUMNS, [Store].MEMBERS ON ROWS MEMBERS Retourne le jeu des membres d une dimension, d un niveau ou d une hiérarchie.
9 MDX SELECT Measures.MEMBERS ON COLUMNS, {[Store].[Store State].[CA], [Store].[Store State].[WA]} ON ROWS Exercice Dessinez la sortie de cette requête?
10 MDX SELECT Measures.MEMBERS ON COLUMNS, {[Store].[Store State].[CA].CHILDREN, [Store].[Store State].[WA].CHILDREN} ON ROWS CHILDREN Retourne le jeu des enfants d un membre spécifié.
11 MDX SELECT Measures.MEMBERS ON COLUMNS, {[Store].[Store State].[CA], DESCENDANTS([Store].[Store State].[CA], [Store City])} ON ROWS DESCENDANTS DESCENDANTS(member, level [, flags]) Retourne le jeu de descendants d un membre à un niveau spécifié ou à une distance spécifiée, en incluant ou en excluant éventuellement des descendants dans d autres niveaux.
12 MDX DESCENDANTS Le flag peut être BEFORE, AFTER, SELF ou bien BEFORE AND AFTER selon le niveau désiré SELECT Measures.MEMBERS ON COLUMNS, {[Store].[Store State].[CA], DESCENDANTS([Store].[Store State].[CA], [Store City],AFTER) ON ROWS SELECT Measures.MEMBERS ON COLUMNS, {[Store].[Store State].[CA], DESCENDANTS([Store].[Store State], [Store City],BEFORE_AND_AFTER)} ON ROWS
13 MDX select AddCalculatedMembers([Measures].Members) ON COLUMNS, {[Store].[USA].[CA], Descendants([Store].[USA].[CA], [Store].[Store City])} ON ROWS from [Sales] AddCalculatedMembers Retourne un ensemble généré par l ajout de membres calculés à un ensemble spécifié.
14 MDX SELECT {[Store Type].[Store Type].MEMBERS} ON COLUMNS, {[Store].[Store State].MEMBERS} ON ROWS WHERE (Measures.[Unit Sales]) Slicer WHERE spécifie une tranche dimensionnelle dans le cube
15 MDX SELECT {[Store Type].[Store Type].MEMBERS} ON COLUMNS, {[Store].[Store State].MEMBERS} ON ROWS WHERE (Measures.[Unit Sales], [Time].[Year].[1997]) Slicer WHERE spécifie une tranche dimensionnelle dans le cube
16 WITH SET WITH SET permet la création d ensembles WITH SET [ChardonnayChablis] AS {[Product].[All Products].[Drink].[Good Chardonnay], [Product].[All Products].[Drink].[Pearl Chardonnay], [Product].[All Products].[Drink].[Portsmouth], [Product].[All Products].[Drink].[Walrus Chardonnay], SELECT [ChardonnayChablis] ON COLUMNS, {Measures.[Unit Sales]} ON ROWS FROM Sales
17 Calculated Members WITH MEMBER MDX permet de rajouter des calculs directement dans les requêtes MDX. Ceci s effectue grâce à la syntaxe : WITH MEMBER parent.name AS expression WITH MEMBER Measures.ProfitPercent AS (Measures.[Store Sales] - Measures.[Store Cost]) / (Measures.[Store Cost]), FORMAT_STRING = #.00%
18 WITH MEMBER [Measures].[Special Discount] AS [Measures].[Discount Amount] * 1.5 SELECT [Measures].[Special Discount] on COLUMNS, NON EMPTY [Product].[Product].MEMBERS ON Rows FROM [Adventure Works] WHERE [Product].[Category].[Bikes]
19 Calculated Members WITH MEMBER MDX permet de rajouter des calculs directement dans les requêtes MDX. Ceci s effectue grâce à la syntaxe : WITH MEMBER parent.name AS expression WITH MEMBER [Time].[First Half 97] AS [Time].[1997].[Q1] + [Time].[1997].[Q2] MEMBER [Time].[Second Half 97] AS [Time].[1997].[Q3] + [Time].[1997].[Q4]
20 Calculated Members WITH MEMBER [Time].[First Half 97] AS [Time].[1997].[Q1] + [Time].[1997].[Q2] MEMBER [Time].[Second Half 97] AS [Time].[1997].[Q3] + [Time].[1997].[Q4] SELECT {[Time].[First Half 97], [Time].[Second Half 97], [Time].[1997].CHILDREN} ON COLUMNS, {[Store].[Store Name].MEMBERS} ON ROWS
21 GENERATE Applique un jeu à chaque membre d un autre jeu, puis effectue la jointure par union des jeux résultants. Generate( Set_Expression1, Set_Expression2 [, ALL ] ) SELECT GENERATE( [Time].[Year].MEMBERS, {[Measures].[Unit Sales]}, ON 0
22 GENERATE Applique un jeu à chaque membre d un autre jeu, puis effectue la jointure par union des jeux résultants. Generate( Set_Expression1, Set_Expression2 [, ALL ] ) SELECT GENERATE( [Time].[Year].MEMBERS, {[Measures].MEMBERS}, ALL) ON 0
23 SELECT {GENERATE([Time].[Year].MEMBERS, {[Time].CURRENTMEMBER, [Time].CURRENTMEMBER.CHILDREN})} ON COLUMNS, [Promotions].[All Promotions].CHILDREN ON ROWS from Sales CURRENTMEMBER Retourne le membre actuel dans une hiérarchie spécifique au cours d une itération.
24 SELECT {GENERATE({[Store].[USA].[CA],[Store].[USA].[WA]}, DESCENDANTS([Store].CURRENTMEMBER, [Store Name]))} ON COLUMNS, [Promotions].[All Promotions].CHILDREN ON ROWS WHERE (Measures.[Unit Sales])
25 WITH MEMBER measures.x AS [Product].children.count SELECT Measures.X ON 0 COUNT Retourne le nombre de cellules d un ensemble
26 SELECT Measures.MEMBERS ON COLUMNS, TOPPERCENT({[Store].[Store City].MEMBERS}, 50, Measures.[Sales Count]) ON ROWS TOPPERCENT Trie un jeu en ordre décroissant et retourne un jeu de tuples avec les valeurs les plus élevées dont le total cumulé est égal ou supérieur à un pourcentage spécifié.
27 WITH MEMBER Measures.[Maximum Sales] AS MAX(DESCENDANTS([Time].CURRENTMEMBER, [Time].[Month]), Measures.[Unit Sales]) SELECT {[Time].[1997]} ON COLUMNS, [Product].[Product Category].MEMBERS ON ROWS WHERE (Measures.[Maximum Sales]) Autres mesures Les fonctions disponibles sont AVG, MEDIAN, MAX, MIN, VAR, and STDDEV
28 References MDX MSDN : The Baker s Dozen : 13 Tips for Querying OLAP Databases with MDX : Tutorial : Introduction to Multidimensional Expression (MDX). http: // act/ 2005/DAP SistDW/Material/2-SDW-Laboratorio pdf MDX resources :
OLAP : Mondrian + Pentaho. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- [email protected] Flavien Bouillot
OLAP : Mondrian + Pentaho Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- [email protected] Flavien Bouillot Outils Open Source Mondrian : serveur OLAP JFreeReport : ou9l de «Repor9ng» KeHle
2014/2015. Rapport 4 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ENCADRE PAR : MME L.LAMRINI ANOUAR OUFQIR SMARTSIR
2014/2015 Rapport 4 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ENCADRE PAR : ANOUAR OUFQIR MME L.LAMRINI SMARTSIR Table des matières Introduction... 2 Choix de l outil pour
ETL Extract - Transform - Load
ETL Extract - Transform - Load Concept général d analyse en ligne (rappels) Rémy Choquet - Université Lyon 2 - Master 2 IIDEE - 2006-2007 Plan Définitions La place d OLAP dans une entreprise OLAP versus
2 Serveurs OLAP et introduction au Data Mining
2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité
SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)
Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence
Introduction aux outils BI de SQL Server 2014. Création de cubes dans SQL Server Analysis Services (SSAS)
MIT820: Entrepôts de données et intelligence artificielle Introduction aux outils BI de SQL Server 2014 Création de cubes dans SQL Server Analysis Services (SSAS) Description générale Ce tutoriel a pour
et les Systèmes Multidimensionnels
Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées
Introduction à la B.I. Avec SQL Server 2008
Introduction à la B.I. Avec SQL Server 2008 Version 1.0 VALENTIN Pauline 2 Introduction à la B.I. avec SQL Server 2008 Sommaire 1 Présentation de la B.I. et SQL Server 2008... 3 1.1 Présentation rapide
Les Entrepôts de Données
Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations
L informatique des entrepôts de données
L informatique des entrepôts de données Daniel Lemire SEMAINE 10 Introduction à MDX 10.1. Présentation de la semaine Tout comme le modèle relationnel utilise SQL comme langage, le modèle OLAP utilise le
BI = Business Intelligence Master Data-ScienceCours 3 - Data
BI = Business Intelligence Master Data-Science Cours 3 - Datawarehouse UPMC 8 février 2015 Rappel L Informatique Décisionnelle (ID), en anglais Business Intelligence (BI), est l informatique à l usage
Hervé Couturier EVP, SAP Technology Development
Hervé Couturier EVP, SAP Technology Development Hervé Biausser Directeur de l Ecole Centrale Paris Bernard Liautaud Fondateur de Business Objects Questions à: Hervé Couturier Hervé Biausser Bernard Liautaud
SQL SERVER 2008, BUSINESS INTELLIGENCE
SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business
Bases de Données Avancées
1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,
Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani
Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................
Bases de Données OLAP
Bases de Données OLAP Hiver 2013/2014 Melanie Herschel [email protected] Université Paris Sud, LRI Chapitre 1 Introduction Détails administratifs Entrepôts de Données Perspective sur le semestre
La problématique. La philosophie ' ) * )
La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse
SQL Server 2014. SQL Server 2014. Implémentation d une solution. Implémentation d une solution de Business Intelligence.
Ce livre sur s adresse à toutes les personnes désireuses de mettre en œuvre les techniques de l informatique décisionnelle (ou BI, Business Intelligence) à l aide des composants de la suite Microsoft :
Bases de données multidimensionnelles et mise en œuvre dans Oracle
Bases de données multidimensionnelles et mise en œuvre dans Oracle 1 Introduction et Description générale Les bases de données relationnelles sont très performantes pour les systèmes opérationnels (ou
Business Intelligence Reporting
Maître de stage : Claude Bordanave Sirinya ON-AT Année 2011 / 2012 Master1 Informatique Université Bordeaux 1 SOMMAIRE REMERCIEMENTS...4 INTRODUCTION...4 I) PRESENTATION DE L ENTREPRISE... 5 1) Raison
BI2 : Un profil UML pour les Indicateurs Décisionnels
BI2 : Un profil UML pour les Indicateurs Décisionnels Sandro Bimonte Irstea, TSCF, 9 Av. Blaise Pascal, 63178, Aubière, France [email protected] Thème de Recherche MOTIVE www.irstea.fr 2 Plan Motivations
BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise
BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la
Oracle Décisionnel : Modèle OLAP et Vue matérialisée D BILEK
Oracle Décisionnel : Modèle OLAP et Vue matérialisée SOMMAIRE Introduction Le modèle en étoiles Requêtes OLAP Vue matérialisée Fonctions Roll up et Cube Application Introduction Data Warehouse Moteur OLAP
TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3
TP2_1 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 03/11/2014 Plan du TP 2 Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Présentation de la suite Microsoft BI Présentation
Business Intelligence : Informatique Décisionnelle
Business Intelligence : Informatique Décisionnelle On appelle «aide à la décision», «décisionnel», ou encore «business intelligence», un ensemble de solutions informatiques permettant l analyse des données
L offre décisionnel IBM. Patrick COOLS Spécialiste Business Intelligence
L offre décisionnel IBM Patrick COOLS Spécialiste Business Intelligence Le marché du Business Intelligence L enjeux actuel des entreprises : devenir plus «agiles» Elargir les marchés tout en maintenant
Introduction. Informatique décisionnelle et data mining. Data mining (fouille de données) Cours/TP partagés. Information du cours
Information du cours Informatique décisionnelle et data mining www.lia.univ-avignon.fr/chercheurs/torres/cours/dm Juan-Manuel Torres [email protected] LIA/Université d Avignon Cours/TP
Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique
Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché
Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé
ESNE Travail de diplôme 2011 Business Intelligence Open Source SpagoBI/Talend Résumé I.Cirillo 2010-2011 Introduction Le laboratoire de base de données de l ESNE a mis en place, il y a quelques années,
Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016
Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques
Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel
Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 10 Introduction 1. Présentation du décisionnel 15 1.1 La notion de décideur 15 1.2 Les facteurs d'amélioration
Urbanisation des SI-NFE107
OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle
Business Intelligence avec SQL Server 2014 Maîtrisez les concepts et réalisez un système décisionnel
Avant-propos 1. À qui s'adresse ce livre? 9 2. Les pré-requis 10 3. Les objectifs du livre 11 Introduction 1. Présentation du décisionnel 13 1.1 La notion de décideur 14 1.2 Les facteurs d'amélioration
FreeAnalysis. Schema Designer. Cubes
FreeAnalysis Schema Designer Cubes Charles Martin et Patrick Beaucamp BPM Conseil Contact : [email protected], [email protected] Janvier 2013 Document : BPM_Vanilla_FreeAnalysisSchemaDesigner_v4.2_FR.odt
Présentation Windows Azure Hadoop Big Data - BI
Présentation Windows Azure Hadoop Big Data - BI Sommaire 1. Architecture Hadoop dans Windows Azure... 3 2. Requête Hive avec Hadoop dans Windows Azure... 4 3. Cas d études... 5 3.1 Vue : Administrateur...
Business Intelligence avec Excel, Power BI et Office 365
Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10
Les entrepôts de données
Les entrepôts de données Lydie Soler Janvier 2008 U.F.R. d informatique Document diffusé sous licence Creative Commons by-nc-nd (http://creativecommons.org/licenses/by-nc-nd/2.0/fr/) 1 Plan Introduction
Fouille de Données : OLAP & Data Warehousing
Fouille de Données : OLAP & Data Warehousing Nicolas Pasquier Université de Nice Sophia-Antipolis Laboratoire I3S Chapitre 2. Data warehousing Définition : qu est-ce que le data warehousing? Entrepôt de
CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE. Edition 2012
CATALOGUE DE FORMATIONS BUSINESS INTELLIGENCE Edition 2012 AGENDA Qui sommes nous? Présentation de Keyrus Keyrus : Expert en formations BI Nos propositions de formation 3 modes de formations Liste des
SWISS ORACLE US ER GRO UP. www.soug.ch. Newsletter 5/2014 Sonderausgabe. OBIF DB licensing with VMware Delphix 12c: SQL Plan / Security Features
SWISS ORACLE US ER GRO UP www.soug.ch Newsletter 5/2014 Sonderausgabe OBIF DB licensing with VMware Delphix 12c: SQL Plan / Security Features 42 TIPS&TECHNIQUES Alexandre Tacchini, Benjamin Gaillard, Fabien
Introduction à Business Objects. J. Akoka I. Wattiau
Introduction à Business Objects J. Akoka I. Wattiau Introduction Un outil d'aide à la décision accès aux informations stockées dans les bases de données et les progiciels interrogation génération d'états
MTI820 Entrepôts de données et intelligence d affaires. Les applica+ons de BI
MTI820 Entrepôts de données et intelligence d affaires Les applica+ons de BI Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaEi, C. Desrosiers 1 Le cycle de vie d un projet en BI Diagramme
SQL Server 2012 et SQL Server 2014
SQL Server 2012 et SQL Server 2014 Principales fonctions SQL Server 2012 est le système de gestion de base de données de Microsoft. Il intègre un moteur relationnel, un outil d extraction et de transformation
BI = Business Intelligence Master Data-Science
BI = Business Intelligence Master Data-Science UPMC 25 janvier 2015 Organisation Horaire Cours : Lundi de 13h30 à 15h30 TP : Vendredi de 13h30 à 17h45 Intervenants : Divers industriels (en cours de construction)
SGBDR. Systèmes de Gestion de Bases de Données (Relationnelles)
SGBDR Systèmes de Gestion de Bases de Données (Relationnelles) Plan Approches Les tâches du SGBD Les transactions Approche 1 Systèmes traditionnels basés sur des fichiers Application 1 Gestion clients
1 Introduction et installation
TP d introduction aux bases de données 1 TP d introduction aux bases de données Le but de ce TP est d apprendre à manipuler des bases de données. Dans le cadre du programme d informatique pour tous, on
Entrepôt de données 1. Introduction
Entrepôt de données 1 (data warehouse) Introduction 1 Présentation Le concept d entrepôt de données a été formalisé pour la première fois en 1990 par Bill Inmon. Il s agissait de constituer une base de
Business Intelligence
avec Excel, Power BI et Office 365 Téléchargement www.editions-eni.fr.fr Jean-Pierre GIRARDOT Table des matières 1 Avant-propos A. À qui s adresse ce livre?..................................................
TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3
TP2 DE BUSINESS INTELLIGENCE ISIMA ZZ3 F3 30/11/2011 Plan du TP 2 Rappel sur la chaine de BI Présentation de la suite Microsoft BI Ateliers sur SSIS (2H) Ateliers sur RS (2H) 3 Rappel sur la chaine de
Le langage SQL Rappels
Le langage SQL Rappels Description du thème : Présentation des principales notions nécessaires pour réaliser des requêtes SQL Mots-clés : Niveau : Bases de données relationnelles, Open Office, champs,
BIRT (Business Intelligence and Reporting Tools)
BIRT (Business Intelligence and Reporting Tools) Introduction Cette publication a pour objectif de présenter l outil de reporting BIRT, dans le cadre de l unité de valeur «Data Warehouse et Outils Décisionnels»
LES ENTREPOTS DE DONNEES
Module B4 : Projet des Systèmes d information Lille, le 25 mars 2002 LES ENTREPOTS DE DONNEES Problématique : Pour capitaliser ses informations, une entreprise doit-elle commencer par mettre en œuvre des
Compétences Business Objects - 2014
Compétences Business Objects - 2014 «Mars-Juin 2014. Réf : Version 1 Page 1 sur 34 Sommaire CONTEXTE DE LA REMISE A NIVEAU EN AUTOFORMATION... 3 1. MODELISATION... 4 1.1 DESCRIPTION FONCTIONNEL DE L'APPLICATION
Plan. Ce qu est le datawarehouse? Un modèle multidimensionnel. Architecture d un datawarehouse. Implémentation d un datawarehouse
Datawarehouse 1 Plan Ce qu est le datawarehouse? Un modèle multidimensionnel Architecture d un datawarehouse Implémentation d un datawarehouse Autres développements de la technologie data cube 2 Ce qu
Projet M1 Sujet 21 : Développement d'un logiciel simplifié de type Business Object
Florent Dubien Antoine Pelloux IUP GMI Avignon Projet M1 Sujet 21 : Développement d'un logiciel simplifié de type Business Object Professeur Tuteur : Thierry Spriet 1. Cadre du projet... 3 2. Logiciel
Chapitre IX. L intégration de données. Les entrepôts de données (Data Warehouses) Motivation. Le problème
Chapitre IX L intégration de données Le problème De façon très générale, le problème de l intégration de données (data integration) est de permettre un accès cohérent à des données d origine, de structuration
EXCEL & XLCubed 10 raisons d en faire l assise de votre Managed Self-Service BI
EXCEL & XLCubed 10 raisons d en faire l assise de votre Managed Self-Service BI Préambule Excel au centre de la solution Si vous manipulez des rapports et tableaux de bord en somme des données - vous connaissez
Méthodologie de conceptualisation BI
Méthodologie de conceptualisation BI Business Intelligence (BI) La Business intelligence est un outil décisionnel incontournable à la gestion stratégique et quotidienne des entités. Il fournit de l information
Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement
Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données
Business Intelligence simple et efficace avec Excel et PowerPivot
Présentation de PowerPivot A. L analyse de données 7 1. Activité 7 2. Définitions 8 a. Mesures et dimensions 8 b. Traitement et analyse 8 c. Robustesse et confiance 9 B. Des solutions pour les gros volumes
Grégoire de Lassence. Copyright 2006, SAS Institute Inc. All rights reserved.
Grégoire de Lassence 1 Grégoire de Lassence Responsable Pédagogie et Recherche Département Académique Tel : +33 1 60 62 12 19 [email protected] http://www.sas.com/france/academic SAS dans
Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France
Innovative BI with SAP Jean-Michel JURBERT D. de Marché BI, HANA, BIG DATA _ SAP France 2013 SAP AG. All rights reserved. Customer 1 Rôles et Attentes Instantanéité BIG DATA Users IT Real Time SAP HANA
Tout ce que vous avez toujours voulu savoir sur SAP HANA. Sans avoir jamais osé le demander
Tout ce que vous avez toujours voulu savoir sur SAP HANA Sans avoir jamais osé le demander Agenda Pourquoi SAP HANA? Qu est-ce que SAP HANA? SAP HANA pour l intelligence d affaires SAP HANA pour l analyse
Skills Technology Software PARTENAIRE TECHNOLOGIQUE DE VOTRE DÉVELOPPEMENT
Skills Technology Software w w w.s PARTENAIRE TECHNOLOGIQUE DE VOTRE DÉVELOPPEMENT ka ty s. co m E U OG ION L TA AT A C RM FO Accélérateur de votre RÉUSSITE 2 Formation Aujourd hui, la formation constitue
Les bases de données
Les bases de données Introduction aux fonctions de tableur et logiciels ou langages spécialisés (MS-Access, Base, SQL ) Yves Roggeman Boulevard du Triomphe CP 212 B-1050 Bruxelles (Belgium) Idée intuitive
Workflow/DataWarehouse/DataMining. 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1
Workflow/DataWarehouse/DataMining 14-09-98 LORIA - Université d automne 1998 - Informatique décisionnelle - L. Mirtain 1 plan Workflow DataWarehouse Aide à la décision DataMinig Conclusion 14-09-98 LORIA
Introduction à ORACLE WAREHOUSE BUILDER Cédric du Mouza
Introduction à ORACLE WAREHOUSE BUILDER Cédric du Mouza Avant de commencer à travailler avec le produit, il est nécessaire de comprendre, à un haut niveau, les problèmes en réponse desquels l outil a été
QU EST-CE QUE LE DECISIONNEL?
La plupart des entreprises disposent d une masse considérable d informations sur leurs clients, leurs produits, leurs ventes Toutefois ces données sont cloisonnées par les applications utilisées ou parce
et les Systèmes Multidimensionnels
Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Data warehouse (DW) Le Data warehouse (entrepôt de données) est une collection de données orientées sujet, intégrées, non volatiles
NFA 008. Introduction à NoSQL et MongoDB 25/05/2013
NFA 008 Introduction à NoSQL et MongoDB 25/05/2013 1 NoSQL, c'est à dire? Les bases de données NoSQL restent des bases de données mais on met l'accent sur L'aspect NON-relationnel L'architecture distribuée
Business Intelligence avec SQL Server 2012
Editions ENI Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Collection Solutions Informatiques Table des matières Les éléments à télécharger sont disponibles
Les Entrepôts de Données. (Data Warehouses)
Les Entrepôts de Données (Data Warehouses) Pr. Omar Boussaid Département d'informatique et de Sta5s5que Université Lyon2 - France Les Entrepôts de Données 1. Généralités, sur le décisionnel 2. L'entreposage
Management des Systèmes d Information
Spécialité Réseaux (RES) UE: Management des systèmes d'information [mnsi, NI303] M2IRT 2012 1 ère année Management des Systèmes d Information Unité 2 - Les principaux types de SI dans l entreprise Gilles
Bases de données cours 4 Construction de requêtes en SQL. Catalin Dima
Bases de données cours 4 Construction de requêtes en SQL Catalin Dima Requêtes SQL et langage naturel Énoncés en langage naturel. Traduction en SQL? Correspondance entre syntagmes/phrases et opérations
IBM System i. DB2 Web Query for System i : le successeur de Query/400? Oui, mais bien plus!!!
DB2 Web Query for System i : le successeur de Query/400? Oui, mais bien plus!!! Stéphane MICHAUX Philippe BOURGEOIS Christian GRIERE [email protected] [email protected] [email protected] Les
Bases de données avancées Introduction
Bases de données avancées Introduction Dan VODISLAV Université de Cergy-Pontoise Master Informatique M1 Cours BDA Plan Objectifs et contenu du cours Rappels BD relationnelles Bibliographie Cours BDA (UCP/M1)
Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales
Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire
Bases de Données. Stella MARC-ZWECKER. [email protected]. Maître de conférences Dpt. Informatique - UdS
Bases de Données Stella MARC-ZWECKER Maître de conférences Dpt. Informatique - UdS [email protected] 1 Plan du cours 1. Introduction aux BD et aux SGBD Objectifs, fonctionnalités et évolutions
Introduction aux SGBDR
1 Introduction aux SGBDR Pour optimiser une base Oracle, il est important d avoir une idée de la manière dont elle fonctionne. La connaissance des éléments sous-jacents à son fonctionnement permet de mieux
Chapitre VIII. Les bases de données. Orientées Objet. Motivation
Chapitre VIII Motivation Le modèle relationnel connaît un très grand succès et s avère très adéquat pour les applications traditionnelles des bases de données (gestion) Les bases de données Orientées Objet
Lamia Oukid, Ounas Asfari, Fadila Bentayeb, Nadjia Benblidia, Omar Boussaid. 14 Juin 2013
Cube de textes et opérateur d'agrégation basé sur un modèle vectoriel adapté Text Cube Model and aggregation operator based on an adapted vector space model Lamia Oukid, Ounas Asfari, Fadila Bentayeb,
palais des congrès Paris 7, 8 et 9 février 2012
palais des congrès Paris 7, 8 et 9 février 2012 Analysis Services 2012 BI Personnelle, couche sémantique, cube, quelle(s) solution(s) pour un nouveau projet décisionnel? 08/02/2012 Aurélien KOPPEL Microsoft
HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences.
Notre alliance, Votre atout. HERMES SYSTEM et BEWISE souhaitent vous offrir les meilleures compétences. C est de cette philosophie qu est née notre partenariat avec la société toulousaine (31) Bewise,
BI Open Source Octobre 2012. Alioune Dia, Consultant BI [email protected]
BI Open Source Octobre 2012 Alioune Dia, Consultant BI [email protected] 1 Le groupe, en bref 2004 Date de création +7M * Chiffre d affaires 2012 +80 Collaborateurs au 06/2011 35% Croissance chiffre
TP Contraintes - Triggers
TP Contraintes - Triggers 1. Préambule Oracle est accessible sur le serveur Venus et vous êtes autorisés à accéder à une instance licence. Vous utiliserez l interface d accés SQL*Plus qui permet l exécution
DEMARREZ RAPIDEMENT VOTRE EVALUATION
Pentaho Webinar 30 pour 30 DEMARREZ RAPIDEMENT VOTRE EVALUATION Resources & Conseils Sébastien Cognet Ingénieur avant-vente 1 Vous venez de télécharger une plateforme moderne d intégration et d analyses
Intelligence Economique - Business Intelligence
Intelligence Economique - Business Intelligence Notion de Business Intelligence Dès qu'il y a une entreprise, il y a implicitement intelligence économique (tout comme il y a du marketing) : quelle produit
Théories de la Business Intelligence
25 Chapitre 2 Théories de la Business Intelligence 1. Architectures des systèmes décisionnels Théories de la Business Intelligence Depuis les premières requêtes sur les sources de données OLTP consolidées
Introduction aux outils BI de SQL Server 2014. Fouille de données avec SQL Server Analysis Services (SSAS)
MIT820: Entrepôts de données et intelligence artificielle Introduction aux outils BI de SQL Server 2014 Fouille de données avec SQL Server Analysis Services (SSAS) Description générale Ce tutoriel a pour
Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation
Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions
Domaines d intervention
MANAGEMENT INFORMATIQUE 1 PLACE DE L EGALITE 78280 GUYANCOURT TELEPHONE + 33 1 30 48 54 34 TELECOPIE + 33 1 30 48 54 34 INFOS mailto:[email protected] Société Présentation Société Notre
Bases de données et sites WEB Licence d informatique LI345
Bases de données et sites WEB Licence d informatique LI345 Anne Doucet [email protected] http://www-bd.lip6.fr/ens/li345-2013/index.php/lescours 1 Contenu Transactions en pratique Modèle relationnel-objet
Installation de SCCM 2012 (v2)
Installation de SCCM 2012 (v2) Tutorial conçu et rédigé par Michel de CREVOISIER SOURCES Installation de SCCM 2012 : http://blog-en.netvnext.com/2011/11/installing-sccm-2012-rc1-primary-site.html Configuration
IBM Cognos Enterprise
IBM Cognos Enterprise Leveraging your investment in SPSS Les défis associés à la prise de décision 1 sur 3 Business leader prend fréquemment des décisions sans les informations dont il aurait besoin 1
Business Intelligence simple et efficace
Business Intelligence simple et efficace avec Excel et PowerPivot Jean-Philippe GOUIGOUX Table des matières 1 Chapitre 1 Présentation de PowerPivot A. L analyse de données.....................................................
Le Langage SQL version Oracle
Université de Manouba École Supérieure d Économie Numérique Département des Technologies des Systèmes d Information Le Langage SQL version Oracle Document version 1.1 Mohamed Anis BACH TOBJI [email protected]
Formation Cloudera Data Analyst Utiliser Pig, Hive et Impala avec Hadoop
Passez au niveau supérieur en termes de connaissance grâce à la formation Data Analyst de Cloudera. Public Durée Objectifs Analystes de données, business analysts, développeurs et administrateurs qui ont
Entreprise et Big Data
Entreprise et Big Data Christophe Favart Chef Architecte, SAP Advanced Development, Business Information Technology Public Juin 2013 Agenda SAP Données d Entreprise Big Data en entreprise Solutions SAP
Langage SQL : créer et interroger une base
Langage SQL : créer et interroger une base Dans ce chapitre, nous revenons sur les principales requêtes de création de table et d accès aux données. Nous verrons aussi quelques fonctions d agrégation (MAX,
