Grandeurs et Mesures

Dimension: px
Commencer à balayer dès la page:

Download "Grandeurs et Mesures"

Transcription

1 Grandeurs et Mesures

2 Quelques phrases pour démarrer Répondre par correct ou incorrect : 1 ) Ce segment fait 3cm. 2 ) Ce segment a pour mesure 3cm. 3 ) Cette surface est de 3cm 2. 4 ) L aire de cette surface est de 3 cm 2 5 ) Il me faut 3m de ficelle. 6 ) Si le périmètre d une figure augmente, alors l aire de cette figure augmente nécessairement aussi.

3 Le volume du cylindre Etant donné un rectangle non carré, on peut fabriquer deux cylindres dont ce rectangle constitue la surface latérale :

4 Quelle est selon vous la bonne réponse? Les deux cylindres ont le même volume Le cylindre le plus haut a le plus grand volume Le cylindre le plus haut a le plus petit volume On ne peut pas savoir

5 Protocole expérimental Fabriquer deux cylindres avec deux rectangles en carton superposables. Découper les bases pour qu elles s ajustent et assembler les deux parties de façon étanche. Remplir l un des cylindres à ras bord avec du sable (ou de la semoule). Vider le sable dans l autre cylindre. Observer le résultat et faire une conjecture.

6 Solution mathématique Notons respectivement L la longueur et l la largeur du rectangle. Volume du cylindre le plus haut La hauteur est égale à la longueur L. La base du cylindre est le cercle de périmètre l et de rayon r donc l = 2π r d où r = l / 2π Le volume du cylindre est égal au produit de l aire du disque de base par la hauteur. V 1 = A 1 h L aire de la base du cylindre est donné par : A 1 = π r 2 = π (l/2π) 2 = l 2 / 4π Le volume du cylindre est donc égal à V 1 = L l 2 / 4π

7 Volume du cylindre le moins haut La base du cylindre est le cercle de périmètre L. La hauteur est égale à la longueur l. L aire de la base du cylindre est donnée par : A 2 = L 2 / 4π Le volume du cylindre est donc égal à V 2 = l L 2 / 4π

8 Conclusion Pour comparer V1 et V2, on calcule le rapport V 1 /V 2 = (L l 2 /4π) / (l L 2 /4π) = (Ll 2 4π) / (l L 2 4π) V 1 /V 2 = l / L comme l < L alors V 1 /V 2 < 1 d où V 1 < V 2 Pour tout rectangle non carré, le cylindre le plus haut a le plus petit volume. Le rapport du plus petit volume au plus grand volume est égal à l/l. Ce problème historique qui se posait aux paysans a été résolu par Galilée.

9 Quel est le plus grand rectangle? Aire, périmètre, encombrement?

10 Grandeur Tout caractère d un objet susceptible de variation chez cet objet, ou d un objet à l autre.

11 Un premier exemple très élémentaire : le cardinal d une collection Les objets sont les collections finies La grandeur est la taille de la collection ; elle peut être estimée à vue dans certains cas, sinon, la comparaison se fait par la correspondance terme à terme (protocole expérimental). L étalon est l unité au sens de «un objet» La mesure est le dénombrement associé à la structure numérique des entiers. On peut changer d étalon : la dizaine

12 Différentes grandeurs Des grandeurs non repérables par exemple : la gentillesse Des grandeurs repérables par exemple la température Des grandeurs mesurables : Relation d équivalence : avoir la même longueur que Relation d ordre total : être plus lourd que (au sens large) Un étalon permettant d attribuer un nombre : la mesure m Addition telle que m(x+y) = m(x)+m(y) Multiplication telle que km(x) = m(kx)

13 Objets: segments,polygones,cercle surfaces solides secteurs angulaires Nombres: mesure de Grandeurs: longueur aire volume angle masse

14 Avec le cube Longueurs: périmètre d une face longueur d une arête, longueur de toutes arêtes (qui n est pas la somme des périmètres des faces). Aire: aire d une face aire totale (qui est la somme des aires de chaque face). Volume: à l école: capacité, contenance au collège: volume angles masse

15 De quoi parle- t- on? 1. Paul et André ont acheté des chemises de même taille 2. Paul et André portent tous deux des chemises Paul et André ont acheté la même chemise

16 De quoi parle- t- on? 1. Le périmètre d un carré est 4 fois la longueur de son côté. 2. Le périmètre du carré est de 8 cm 3. Repasser le périmètre du carré en rouge

17 Pour comparer, il n est pas toujours nécessaire de mesurer, on peut estimer à l aide des sens (vue, toucher, ouïe, kinesthésie) ou mettre en place une procédure de comparaison.

18 Comparer sans mesurer : par superposition

19 Comparer sans mesurer : par déplacements et superposition

20 Comparer sans mesurer : en reportant des longueurs

21 Comparaison indirecte

22 Exemple d une grandeur : la longueur Cycle 1 : Un objet a des critères Observer et comparer pour distinguer des critères, Classer ranger. Cycle 2 : Des objets sont comparables selon un critère comparaison directe comparaison indirecte Le mesurage : Construire des objets définis par des mesures ( unité de grandeur fixée), Mesurer des objets (grandeur à mesurer précisée) Les unités sont le mètre et le centimètre.

23 Cycle 3 La mesure est un critère fondamental Comparer des objets selon une grandeur Opérer sur des grandeurs sans mesurer. Estimer la mesure avant l utilisation d instruments. Maîtriser les unités légales du système métrique et de leurs relations. Exprimer le résultat d un mesurage par un nombre ou un encadrement Effectuer des calculs simples sur les mesures (utilisation des équivalences entre unités usuelles de longueur) Calculer le périmètre d un polygone. Sixième - Effectuer, pour les longueurs des changements d unités de mesure. - Comparer géométriquement des périmètres. - Calculer le périmètre d un polygone. - Connaître et utiliser la formule donnant la longueur d un cercle. Cinquième -. - Calculer le périmètre d une figure (Pour les polygones, dont le parallélogramme, la compréhension de la notion de périmètre suffit à la détermination de procédés de calcul ; les formules sont donc inutiles).

24 Pour pouvoir parler de la longueur d un objet, il faut pouvoir se ramener à un segment de droite. Comparer la longueur de deux objets, c est comparer les segments de droite correspondants.

25 Différents mots pour la grandeur «longueur» : Pour le cheval : la hauteur au garrot Pour un oiseau : l envergure Pour un être humain : la taille ; le tour de taille - de hanche - de cou ou de tête ; l empan de la main etc Pour un bâtiment : sa hauteur ; la longueur de sa façade ; sa largeur ou sa profondeur ; Pour une pièce : sa hauteur de plafond etc

26 Les mots du domaine des longueurs sont assez nombreux. sans être exhaustifs, citons hauteur d un monument, d un arbre (par contre la hauteur du Soleil est un angle) ; altitude d un sommet, d un avion en vol ; dénivelé d une route ; profondeur d une piscine, d un placard ; taille d une personne, tour de cou, tour de taille ; distance entre deux lieux, entre deux points ; largeur d un fleuve, d un rectangle ; périmètre d un polygone ; circonférence d un cercle Il est important pour l élève que tous ces mots, utilisés dans des contextes différents, se réfèrent au même concept, appelé en mathématiques «longueur».

27 La longueur n est pas nécessairement liée à directement à l encombrement : Longueur d un tuyau enroulé ; Longueur de l intestin ; Longueur d un coupon de tissu ; Longueur de fil sur une bobine électrique Longueur d une spirale etc.. Longueur de tube des cuivres (cor, trompette, tuba)

28 Des grandeurs sans mesure

29 Sans mesurer, on peut anticiper mentalement et/ou perceptivement les résultats d une comparaison

30 Classement des aires?

31 Classement des périmètres?

32 Dans un second temps, les comparaisons amènent à des rapports de grandeurs

33 Des rapports de grandeurs Le secteur angulaire droit peut être recouvert exactement par trois secteurs angulaires superposables au secteur angulaire jaune L angle droit est égal à 3 fois l angle jaune du triangle

34 Des rapports de grandeurs On peut recouvrir exactement le rectangle avec les deux cerfvolant qui sont superposables. L aire du rectangle est égale à deux fois l aire du cerf-volant

35 En conclusion : Sans utiliser la mesure, il est possible de comparer des grandeurs ou de trouver des rapports de grandeurs

36 Des grandeurs aux mesures

37 «Il est souvent commode, pour comparer toutes les grandeurs d un même domaine, de les comparer à une grandeur particulière...»: l unité. «Il devient dès lors possible d associer à chaque grandeur un nombre, appelé sa mesure relativement à cette unité» Document d accompagnement des programmes 2002 de l école élémentaire

38 On peut dans un premier temps, enrichir le travail de comparaison de grandeur, de la procédure par comptage d unités* Cette procédure devient plus efficace quand il s agit de transmettre par écrit, sans dessin, des informations permettant de construire un objet de même grandeur.

39 Différents étalons (Différentes formes) pour une même unité 1L 1L 1L

40 Etalon Objet ou instrument qui matérialise une unité de mesure, et sert de référence, de modèle légal : mètre étalon, étalon de masse, de poids etc.. (Le Petit Larousse Illustré, 1994)

41 Différents étalons (Différentes formes) pour une même unité A vous : L unité choisie est l aire d un carré de coté 1. Dessiner au moins quatre étalons pour cette unité (surfaces de formes différentes ayant même aire).

42 Différents étalons pour une même unité 1 unité D après «le tour de l aire» (IREM de Lyon)

43 Le système métrique Des unités en relation les unes avec les autres dans des rapports qui sont des multiples de 10 Un système très largement utilisé dans la plupart des pays pour la vie quotidienne et les activités scientifiques Les élèves doivent être familiarisés avec la signification des préfixes usuels ( Kilo, hecto ) Les exercices de transformations de mesure doivent rester raisonnables.

44 Le travail de mesure

45 La mesure peut être obtenue : par une estimation, par un mesurage, par une lecture directe dans un énoncé, par un raisonnement et un calcul.

46 Estimation Il est souhaitable d apprendre à estimer avant de procéder au mesurage, Soit à l œil, soit par geste, soit à partir de mesures connues.

47 La mesure peut être obtenue : par une estimation, par un mesurage, par une lecture directe dans un énoncé, par un raisonnement et un calcul.

48 Mesurage La mesure est la plupart du temps obtenue par lecture d une graduation ( sauf pour les aires). La fabrication d un instrument de mesure permet de soulever la question du choix d un étalon pour une unité donnée, et de la graduation. Une réflexion sur la précision des mesures doit être menée lors des activités de mesurage.

49 La mesure peut être obtenue : par une estimation, par un mesurage, par une lecture directe dans un énoncé, par un raisonnement et un calcul.

50 Lecture directe Dans des problèmes de mesures la prise d information peut se faire par mesurage, par lecture de côtes, par calcul. Le choix de la lecture directe de l information n est pas toujours évident pour l élève.

51 Prise d information A B C Quelle est la mesure de BC? Mesurage

52 Prise d information A B 7 cm C Quelle est la mesure de BC? Lecture directe

53 Prise d information A Sur ce dessin 1cm représente 5 cm. B 7 cm C Quelle est la mesure de BC? Calcul

54 La mesure peut être obtenue : par une estimation, par un mesurage, par une lecture directe dans un énoncé, par un raisonnement et un calcul.

55 Raisonnement et calcul 12 cm 10 cm Sophie a dessiné 3 étiquettes rectangulaires toutes identiques sur une plaque de carton, comme le montre le dessin. a) Calcule la longueur réelle d une étiquette b) Calcule la largeur réelle d une étiquette D après l évaluation 6 ième

56 Raisonnement et calcul 4,5 m 7,5 m A 6 m La surface B est obtenue en collant 4 figures A comme le montre le dessin. Calculer le périmètre de B. B

57 Raisonnement et calcul?? 100? Quelle est la masse inconnue?

58 Raisonnement et calcul Combien de temps s est écoulé entre 9 h 27 min et 11 h 5 min? min 1 heure 5 min ou 2 heures ou 1 heure 33 min - (27min-5min) 5 min 33min + 1 heure + 5 min Avec des cadrans

59 Exemples à l école et au collège OBJET GRANDEUR MESURE Segment Contour d'une surface plane Longueur Nombre d unités Surface plane Aire Nombre d'unités. Solide Secteur angulaire Volume ( capacité) Masse angle formule du périmètre du carré et du rectangle, de la longueur du cercle. formule de l aire d un rectangle, d un triangle, d un parallélogramme, d une sphère. Nombre d'unités. formule du volume du pavé droit, du prisme droit, du cylindre de révolution, de la pyramide, du cône de révolution, de la boule. Nombre d'unités (gabarit) Pas de formule Temps durée Pas de techniques de calculs

60 Reprise de Quelques phrases pour démarrer Répondre par vrai ou faux : 1 ) Ce segment fait 3cm. 2 ) Ce segment a pour mesure 3cm. 3 ) Cette surface est de 3cm 2. 4 ) L aire de cette surface est de 3 cm 2 5 ) Il me faut 3m de ficelle. 6 ) Si le périmètre d une figure augmente, alors l aire de cette figure augmente nécessairement aussi.

61 Réponses (du point de vue des mathématiques) 1 ) Ce segment fait 3cm. INCORRECT 2 ) Ce segment a pour mesure 3cm. INCORRECT 3 ) Cette surface est de 3cm 2. INCORRECT 4 ) L aire de cette surface est de 3 cm 2 CORRECT 5 ) Il me faut 3m de ficelle. INCORRECT 6 ) Si le périmètre d une figure augmente, alors l aire de cette figure augmente nécessairement aussi. FAUX

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

Indications pour une progression au CM1 et au CM2

Indications pour une progression au CM1 et au CM2 Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir

Plus en détail

Problèmes de dénombrement.

Problèmes de dénombrement. Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers

Plus en détail

Une brique dans le cartable. Du Plan à l Ouvrage

Une brique dans le cartable. Du Plan à l Ouvrage Une brique dans le cartable Du Plan à l Ouvrage Une brique dans le cartable Du plan à l ouvrage Visites et rencontres possibles - Rencontre avec un architecte o Voir la création des plans (orientation

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation

Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation Socle commun - palier 2 : Compétence 3 : les principaux éléments de mathématiques Grandeurs et mesures Compétences : Comparer des surfaces selon leurs aires (par pavage) Mesurer l aire d une surface par

Plus en détail

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)

EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES) EXAMEN : CAP ADAL SESSION 20 N du sujet : 02. FOLIO : /6 Rédiger les réponses sur ce document qui sera intégralement remis à la fin de l épreuve. L usage de la calculatrice est autorisé. Exercice : (7

Plus en détail

Thème 17: Optimisation

Thème 17: Optimisation OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir

Plus en détail

EVALUATIONS MI-PARCOURS CM2

EVALUATIONS MI-PARCOURS CM2 Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice

Plus en détail

Du Premier au Second Degré

Du Premier au Second Degré Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Diviser un nombre décimal par 10 ; 100 ; 1 000

Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

Proposition de programmes de calculs en mise en train

Proposition de programmes de calculs en mise en train Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.

Plus en détail

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable

Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux

Plus en détail

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement. «Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1................................................................................................... 367 Je redécouvre le parallélépipède rectangle..........................................................

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

DISQUE DUR. Figure 1 Disque dur ouvert

DISQUE DUR. Figure 1 Disque dur ouvert DISQUE DUR Le sujet est composé de 8 pages et d une feuille format A3 de dessins de détails, la réponse à toutes les questions sera rédigée sur les feuilles de réponses jointes au sujet. Toutes les questions

Plus en détail

Savoir lire une carte, se situer et s orienter en randonnée

Savoir lire une carte, se situer et s orienter en randonnée Savoir lire une carte, se situer et s orienter en randonnée Le b.a.-ba du randonneur Fiche 2 Lire une carte topographique Mais c est où le nord? Quel Nord Le magnétisme terrestre attire systématiquement

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Mesures et incertitudes

Mesures et incertitudes En physique et en chimie, toute grandeur, mesurée ou calculée, est entachée d erreur, ce qui ne l empêche pas d être exploitée pour prendre des décisions. Aujourd hui, la notion d erreur a son vocabulaire

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES MES 1 Les mesures de longueurs MES 2 Lecture de l heure MES 3 Les mesures de masse MES 4 Comparer des longueurs, périmètres.

Plus en détail

Le contexte. Le questionnement du P.E.R. :

Le contexte. Le questionnement du P.E.R. : Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et

Plus en détail

Les problèmes de la finale du 21éme RMT

Les problèmes de la finale du 21éme RMT 21 e RMT Finale mai - juin 2013 armt2013 1 Les problèmes de la finale du 21éme RMT Titre Catégorie Ar Alg Geo Lo/Co Origine 1. La boucle (I) 3 4 x x rc 2. Les verres 3 4 x RZ 3. Les autocollants 3 4 x

Plus en détail

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ] Les moments de force Les submersibles Mir peuvent plonger à 6 000 mètres, rester en immersion une vingtaine d heures et abriter 3 personnes (le pilote et deux observateurs), dans une sphère pressurisée

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

Problèmes sur le chapitre 5

Problèmes sur le chapitre 5 Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire

Plus en détail

Cercle trigonométrique et mesures d angles

Cercle trigonométrique et mesures d angles Cercle trigonométrique et mesures d angles I) Le cercle trigonométrique Définition : Le cercle trigonométrique de centre O est un cercle qui a pour rayon 1 et qui est muni d un sens direct : le sens inverse

Plus en détail

Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français

Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français Avant de débuter, demander aux élèves de préparer le matériel suivant : crayon à papier, gomme,

Plus en détail

Situations d apprentissage. Mat-2101-3

Situations d apprentissage. Mat-2101-3 Situations d apprentissage Mat-2101-3 Un vendredi au chalet (Activités 1, 2 et 3) Le taxi (Activités 1 et 2) Un entrepôt «sans dessus dessous» (Activités 1, 2, 3 et 4) France Dugal Diane Garneau Commission

Plus en détail

Les calques : techniques avancées

Les calques : techniques avancées Les calques : techniques avancées 9 Au cours de cette leçon, vous apprendrez à : importer un calque d un autre fichier ; créer un masque d écrêtage ; créer et modifier un calque de réglage ; employer les

Plus en détail

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1................................................................................................... 305 Je calcule la longueur d un cercle.......................................................................

Plus en détail

Sillage Météo. Notion de sillage

Sillage Météo. Notion de sillage Sillage Météo Les représentations météorologiques sous forme d animation satellites image par image sont intéressantes. Il est dommage que les données ainsi visualisées ne soient pas utilisées pour une

Plus en détail

Apprendre à résoudre des problèmes numériques. Utiliser le nombre pour résoudre des problèmes

Apprendre à résoudre des problèmes numériques. Utiliser le nombre pour résoudre des problèmes Apprendre à résoudre des problèmes numériques Utiliser le nombre pour résoudre des problèmes Ce guide se propose de faire le point sur les différentes pistes pédagogiques, qui visent à construire le nombre,

Plus en détail

Ch.G3 : Distances et tangentes

Ch.G3 : Distances et tangentes 4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux [email protected] IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

LES ESCALIERS. Les mots de l escalier

LES ESCALIERS. Les mots de l escalier Les mots de l escalier L escalier :ouvrage constitué d une suite régulière de plans horizontaux (marches et paliers) permettant, dans une construction, de passer à pied d un étage à un autre. L emmarchement

Plus en détail

Plus petit, plus grand, ranger et comparer

Plus petit, plus grand, ranger et comparer Unité 11 Plus petit, plus grand, ranger et comparer Combien y a-t-il de boules sur la tige A? Sur la tige B? A B Le nombre de boules sur la tige A est plus grand que sur la tige B. On écrit : > 2 On lit

Plus en détail

Révision mars 2015. 2. Un terrain que la famille Boisvert veut acheter mesure 100m par 200m. Calcule la longueur de ses diagonales.

Révision mars 2015. 2. Un terrain que la famille Boisvert veut acheter mesure 100m par 200m. Calcule la longueur de ses diagonales. Révision mars 2015 1. Mario part de sa maison. Pour se rendre au restaurant, sa famille doit conduire 11,5 km vers le nord et ensuite ils doivent tourner vers l ouest pendant 5,4km. Calcule la distance

Plus en détail

Si c était une machine, ce serait un ordinateur génial pour voyager dans le temps et vers les autres continents.

Si c était une machine, ce serait un ordinateur génial pour voyager dans le temps et vers les autres continents. En classe, nous avons imaginé à quoi ressemblerait l école qui nous apprendrait à grandir heureux. Nous avons joué à «si c était» et improvisé, par ce jeu oral, autour du thème de l école de nos rêves

Plus en détail

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES

ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE

Plus en détail

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet

TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

UN TOURNOI A GAGNER ENSEMBLE

UN TOURNOI A GAGNER ENSEMBLE UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir

Plus en détail

Ablation de sutures. Module soins infirmiers

Ablation de sutures. Module soins infirmiers Ablation de sutures Module soins infirmiers Equipe enseignante de l IFSI du Centre Hospitalier de ROUBAIX Diaporama réalisé par : Stéphane Dubus, Formateur I. Définition Il s agit d ôter les sutures cutanées

Plus en détail

My Custom Design ver.1.0

My Custom Design ver.1.0 My Custom Design ver.1.0 Logiciel de création de données de broderie Mode d emploi Avant d utiliser ce logiciel, veuillez lire attentivement ce mode d emploi pour bien l utiliser correctement. Conservez

Plus en détail

point On obtient ainsi le ou les points d inter- entre deux objets».

point On obtient ainsi le ou les points d inter- entre deux objets». Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle

Plus en détail

DOSSIER TECHNIQUE R-GO SPA. Production et assemblage 100 % Française. 3 Rue Pierre Mendès France 61200 ARGENTAN

DOSSIER TECHNIQUE R-GO SPA. Production et assemblage 100 % Française. 3 Rue Pierre Mendès France 61200 ARGENTAN DOSSIER TECHNIQUE R-GO SPA R-GO SPA Production et assemblage 100 % Française 1 Implantation technique Il faut retenir que la partie technique a un encombrement total de 250 cm par 90 cm au minimum, et

Plus en détail

LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION

LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION DES NOMBRES par Jean-Luc BREGEON professeur formateur à l IUFM d Auvergne LE PROBLÈME DE LA REPRÉSENTATION DES NOMBRES On ne conçoit pas un premier enseignement

Plus en détail

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie? Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.

Plus en détail

Trois personnes mangent dans un restaurant. Le serveur

Trois personnes mangent dans un restaurant. Le serveur 29=30 Trois personnes mangent dans un restaurant. Le serveur leur amène une addition de 30 francs. Les trois personnes décident de partager la facture en trois, soit 10 francs chacun. Le serveur rapporte

Plus en détail

Prêt(e) pour le CE1. Tu es maintenant au CE1. Avant de commencer les leçons, nous allons réviser avec toi!

Prêt(e) pour le CE1. Tu es maintenant au CE1. Avant de commencer les leçons, nous allons réviser avec toi! Jour Prêt(e) pour le CE Tu es maintenant au CE. vant de commencer les leçons, nous allons réviser avec toi! Géométrie Retrouver un itinéraire en tenant compte des informations. Lis les explications de

Plus en détail

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)

Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs) (d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation

Plus en détail

LA MESURE DE LA PRESSION

LA MESURE DE LA PRESSION LA MESURE DE LA PRESSION La mesure de la pression s effectue à l aide d un baromètre. Il s agit d un instrument permettant de repérer la pression de l atmosphère dans laquelle il se trouve et ses variations

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

Le seul ami de Batman

Le seul ami de Batman Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective

Plus en détail

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF OLYMPIADES ACADEMIQUES DE MATHEMATIQUES 15 mars 2006 CLASSE DE PREMIERE ES, GMF Durée : 4 heures Les quatre exercices sont indépendants Les calculatrices sont autorisées L énoncé comporte trois pages Exercice

Plus en détail

Vous devez tout d abord réaliser l esquisse (le dessin de la pièce en 2 dimensions) avant de mettre cette pièce en volume.

Vous devez tout d abord réaliser l esquisse (le dessin de la pièce en 2 dimensions) avant de mettre cette pièce en volume. Lancer le logiciel SolidWorks en double-cliquant sur l icône ci-contre. Cliquer sur «fichier», puis «nouveau» puis cliquer sur l icône ci-contre et Cliquer sur OK. Vous devez tout d abord réaliser l esquisse

Plus en détail

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F)

PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F) PROGRAMME D HABILETÉS EN FAUTEUIL ROULANT (WSP-F) LIGNES DIRECTRICES POUR LE PARCOURS À OBSTACLES VERSION 4.1 CANADIENNE-FRANÇAISE Les activités d entraînement et d évaluation du WSP-F 4.1 peuvent se dérouler

Plus en détail

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)

Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice) Utilisation de l'ordinateur et apport des TIC en enseignement (1NP) Module 03 Maîtriser les fonctionnalités d un traitement de texte. Sens du Module De nombreux documents remis aux enfants sont réalisés

Plus en détail

NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2

NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 Résultats aux évaluations nationales CM2 Annexe 1 Résultats de l élève Compétence validée Lire / Ecrire / Vocabulaire / Grammaire / Orthographe /

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble.. 1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé

Plus en détail

Bien concevoir son projet de SALLE DE BAINS

Bien concevoir son projet de SALLE DE BAINS Bien concevoir son projet de SALLE DE BAINS Une salle de bains bien pensée...... Lapeyre vous aide à la réaliser Un projet bien préparé, c est la clé de la réussite. Avant de rencontrer un conseiller LAPEYRE,

Plus en détail

1001-B Semoir de précision pour jardin EarthWay Assemblage et fonctionnement

1001-B Semoir de précision pour jardin EarthWay Assemblage et fonctionnement 1001-B Semoir de précision pour jardin EarthWay Assemblage et fonctionnement Félicitation à l occasion de votre achat de ce nouveau semoir EarthWay. Veillez nous contacter si vous avez de la difficulté

Plus en détail

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS

Niveau 2 nde THEME : L UNIVERS. Programme : BO spécial n 4 du 29/04/10 L UNIVERS Document du professeur 1/7 Niveau 2 nde THEME : L UNIVERS Physique Chimie SPECTRES D ÉMISSION ET D ABSORPTION Programme : BO spécial n 4 du 29/04/10 L UNIVERS Les étoiles : l analyse de la lumière provenant

Plus en détail

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? LA PUISSANCE DES MOTEURS Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? Chaque modèle y est décliné en plusieurs versions, les différences portant essentiellement sur la puissance

Plus en détail

Tp_chemins..doc. Dans la barre "arche 2" couleur claire 1/5 21/01/13

Tp_chemins..doc. Dans la barre arche 2 couleur claire 1/5 21/01/13 TP de création : utilisation des chemins vectoriels Finis les mauvais rêves : vous aurez enfin votre dreamcatcher (Indienss des Grands Lacs) 1 ) Créez une nouvelle image de 300 pixels sur 600 pixels en

Plus en détail

Jean Dubuffet AUTOPORTRAIT II - 1966

Jean Dubuffet AUTOPORTRAIT II - 1966 Jean Dubuffet AUTOPORTRAIT II - 1966 MON VISAGE A LA MANIERE DE JEAN DUBUFFET OBJECTIFS - utiliser son expérience sensorielle visuelle pour produire une œuvre picturale. - réaliser une œuvre s'inspirant

Plus en détail

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par

Plus en détail

Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année

Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année PALIER 2 CM2 La maîtrise de la langue française DIRE S'exprimer à l'oral comme à l'écrit dans un vocabulaire approprié

Plus en détail

Activités pour la maternelle PS MS GS

Activités pour la maternelle PS MS GS Gcompris V.8.4.4 linux 1 Activités pour la maternelle SOMMAIRE : Gcompris : Qu est-ce que c est? 2 Remarques et problèmes rencontrés dans la mise en œuvre en classe 3 Liste des activités pour la maternelle

Plus en détail

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière

Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Séquence 9 Consignes de travail Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Travaillez les cours d application de physique. Travaillez les exercices

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013 Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane

Plus en détail

GUIDE D INSTALLATION. La première enveloppe pare air et perméable à la vapeur d eau AVANTAGES

GUIDE D INSTALLATION. La première enveloppe pare air et perméable à la vapeur d eau AVANTAGES GUIDE D INSTALLATION La première enveloppe pare air et perméable à la vapeur d eau AVANTAGES Possède une résistance thermique élevée Réduit la circulation d air à travers les murs Évite la formation d

Plus en détail

Triangles isométriques Triangles semblables

Triangles isométriques Triangles semblables Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction

Plus en détail

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides

Plus en détail

MAT2027 Activités sur Geogebra

MAT2027 Activités sur Geogebra MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il

Plus en détail

Réseau d Éducation Prioritaire de Harnes. Défis-math 2001-2009. Énoncés

Réseau d Éducation Prioritaire de Harnes. Défis-math 2001-2009. Énoncés Réseau d Éducation Prioritaire de Harnes Défis-math 2001-2009 Énoncés Défi-math 2001 Défi-math 2001 Défi n 1 On ne peut se déplacer dans ce labyrinthe qu en montant vers une case contenant un nombre plus

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

A l heure de Pâques Equipe rouge : Les «monsieur et madame» branchés

A l heure de Pâques Equipe rouge : Les «monsieur et madame» branchés A l heure de Pâques Equipe rouge : Les «monsieur et madame» branchés Temps de Préparation : 2 h environ RECAPITULATIF Monsieur moustache : Œuf noir pulvérisé au flocage noir, moustache pâte amande orange

Plus en détail

Sommaire de la séquence 10

Sommaire de la séquence 10 Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................

Plus en détail

NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine

NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine NOTICE TECHNIQUE SSC : Système Solaire Combiné eau chaude sanitaire / appui chauffage maison / appui eau chaude piscine «Capteur autonome eau chaude» Choix de la gamme ECOAUTONOME a retenu un capteur solaire

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Construction de la bissectrice d un angle

Construction de la bissectrice d un angle onstruction de la bissectrice d un angle 1. Trace un angle. 1. 2. Trace un angle cercle. de centre (le sommet de l angle) et de rayon quelconque. 1. 2. 3. Trace Le cercle un angle cercle coupe. de la demi-droite

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Principe d assemblage Structure modulaire CAPENA bassin rectangulaire avec escalier Hauteur panneaux 1,2 ou 1,5 mètres Montage sur pieds

Principe d assemblage Structure modulaire CAPENA bassin rectangulaire avec escalier Hauteur panneaux 1,2 ou 1,5 mètres Montage sur pieds Principe d assemblage Structure modulaire CAPENA bassin rectangulaire avec escalier Hauteur panneaux 1,2 ou 1,5 mètres Montage sur pieds CAPENA GmbH - PISCINES - Gruber Strasse 6-85551 KIRCHHEIM Allemagne

Plus en détail

Vue 2D / 3D / Dessin / Cotation Utilise : Logiciel edrawings Fichier.EPRT Dossier Tp-eDrawings

Vue 2D / 3D / Dessin / Cotation Utilise : Logiciel edrawings Fichier.EPRT Dossier Tp-eDrawings Vue 2D / 3D / Dessin / Cotation Utilise : Logiciel edrawings.eprt Dossier Tp-eDrawings TP EDRAWINGS INITIATION A LA CONCEPTION ASSISTÉE PAR ORDINATEUR (CAO) Les icônes Zoom au mieux pour obtenir un affichage

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Installez votre paroi remplie Zenturo et Zenturo Super pour un beau mur décoratif

Installez votre paroi remplie Zenturo et Zenturo Super pour un beau mur décoratif Installez votre paroi remplie Zenturo et Zenturo Super pour un beau mur décoratif Lors de l installation de la clôture Zenturo ou Zenturo Super en tant que mur décoratif, vous devez tenir compte de quelques

Plus en détail

Franck VAUTIER, Jean-Pierre TOUMAZET, Erwan ROUSSEL, Marlène FAURE, Mohamed ABADI, Marta FLOREZ, Bertrand DOUSTEYSSIER

Franck VAUTIER, Jean-Pierre TOUMAZET, Erwan ROUSSEL, Marlène FAURE, Mohamed ABADI, Marta FLOREZ, Bertrand DOUSTEYSSIER Utilisation d images dérivées d un jeu de données LIDAR pour la détection automatisée de vestiges archéologiques (programme de recherche méthodologique LiDARCHEO) Franck VAUTIER, Jean-Pierre TOUMAZET,

Plus en détail

Document d aide au suivi scolaire

Document d aide au suivi scolaire Document d aide au suivi scolaire Ecoles Famille Le lien Enfant D une école à l autre «Enfants du voyage et de familles non sédentaires» Nom :... Prénom(s) :... Date de naissance :... Ce document garde

Plus en détail

5 ème Chapitre 4 Triangles

5 ème Chapitre 4 Triangles 5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du

Plus en détail