Grandeurs et Mesures

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Grandeurs et Mesures"

Transcription

1 Grandeurs et Mesures

2 Quelques phrases pour démarrer Répondre par correct ou incorrect : 1 ) Ce segment fait 3cm. 2 ) Ce segment a pour mesure 3cm. 3 ) Cette surface est de 3cm 2. 4 ) L aire de cette surface est de 3 cm 2 5 ) Il me faut 3m de ficelle. 6 ) Si le périmètre d une figure augmente, alors l aire de cette figure augmente nécessairement aussi.

3 Le volume du cylindre Etant donné un rectangle non carré, on peut fabriquer deux cylindres dont ce rectangle constitue la surface latérale :

4 Quelle est selon vous la bonne réponse? Les deux cylindres ont le même volume Le cylindre le plus haut a le plus grand volume Le cylindre le plus haut a le plus petit volume On ne peut pas savoir

5 Protocole expérimental Fabriquer deux cylindres avec deux rectangles en carton superposables. Découper les bases pour qu elles s ajustent et assembler les deux parties de façon étanche. Remplir l un des cylindres à ras bord avec du sable (ou de la semoule). Vider le sable dans l autre cylindre. Observer le résultat et faire une conjecture.

6 Solution mathématique Notons respectivement L la longueur et l la largeur du rectangle. Volume du cylindre le plus haut La hauteur est égale à la longueur L. La base du cylindre est le cercle de périmètre l et de rayon r donc l = 2π r d où r = l / 2π Le volume du cylindre est égal au produit de l aire du disque de base par la hauteur. V 1 = A 1 h L aire de la base du cylindre est donné par : A 1 = π r 2 = π (l/2π) 2 = l 2 / 4π Le volume du cylindre est donc égal à V 1 = L l 2 / 4π

7 Volume du cylindre le moins haut La base du cylindre est le cercle de périmètre L. La hauteur est égale à la longueur l. L aire de la base du cylindre est donnée par : A 2 = L 2 / 4π Le volume du cylindre est donc égal à V 2 = l L 2 / 4π

8 Conclusion Pour comparer V1 et V2, on calcule le rapport V 1 /V 2 = (L l 2 /4π) / (l L 2 /4π) = (Ll 2 4π) / (l L 2 4π) V 1 /V 2 = l / L comme l < L alors V 1 /V 2 < 1 d où V 1 < V 2 Pour tout rectangle non carré, le cylindre le plus haut a le plus petit volume. Le rapport du plus petit volume au plus grand volume est égal à l/l. Ce problème historique qui se posait aux paysans a été résolu par Galilée.

9 Quel est le plus grand rectangle? Aire, périmètre, encombrement?

10 Grandeur Tout caractère d un objet susceptible de variation chez cet objet, ou d un objet à l autre.

11 Un premier exemple très élémentaire : le cardinal d une collection Les objets sont les collections finies La grandeur est la taille de la collection ; elle peut être estimée à vue dans certains cas, sinon, la comparaison se fait par la correspondance terme à terme (protocole expérimental). L étalon est l unité au sens de «un objet» La mesure est le dénombrement associé à la structure numérique des entiers. On peut changer d étalon : la dizaine

12 Différentes grandeurs Des grandeurs non repérables par exemple : la gentillesse Des grandeurs repérables par exemple la température Des grandeurs mesurables : Relation d équivalence : avoir la même longueur que Relation d ordre total : être plus lourd que (au sens large) Un étalon permettant d attribuer un nombre : la mesure m Addition telle que m(x+y) = m(x)+m(y) Multiplication telle que km(x) = m(kx)

13 Objets: segments,polygones,cercle surfaces solides secteurs angulaires Nombres: mesure de Grandeurs: longueur aire volume angle masse

14 Avec le cube Longueurs: périmètre d une face longueur d une arête, longueur de toutes arêtes (qui n est pas la somme des périmètres des faces). Aire: aire d une face aire totale (qui est la somme des aires de chaque face). Volume: à l école: capacité, contenance au collège: volume angles masse

15 De quoi parle- t- on? 1. Paul et André ont acheté des chemises de même taille 2. Paul et André portent tous deux des chemises Paul et André ont acheté la même chemise

16 De quoi parle- t- on? 1. Le périmètre d un carré est 4 fois la longueur de son côté. 2. Le périmètre du carré est de 8 cm 3. Repasser le périmètre du carré en rouge

17 Pour comparer, il n est pas toujours nécessaire de mesurer, on peut estimer à l aide des sens (vue, toucher, ouïe, kinesthésie) ou mettre en place une procédure de comparaison.

18 Comparer sans mesurer : par superposition

19 Comparer sans mesurer : par déplacements et superposition

20 Comparer sans mesurer : en reportant des longueurs

21 Comparaison indirecte

22 Exemple d une grandeur : la longueur Cycle 1 : Un objet a des critères Observer et comparer pour distinguer des critères, Classer ranger. Cycle 2 : Des objets sont comparables selon un critère comparaison directe comparaison indirecte Le mesurage : Construire des objets définis par des mesures ( unité de grandeur fixée), Mesurer des objets (grandeur à mesurer précisée) Les unités sont le mètre et le centimètre.

23 Cycle 3 La mesure est un critère fondamental Comparer des objets selon une grandeur Opérer sur des grandeurs sans mesurer. Estimer la mesure avant l utilisation d instruments. Maîtriser les unités légales du système métrique et de leurs relations. Exprimer le résultat d un mesurage par un nombre ou un encadrement Effectuer des calculs simples sur les mesures (utilisation des équivalences entre unités usuelles de longueur) Calculer le périmètre d un polygone. Sixième - Effectuer, pour les longueurs des changements d unités de mesure. - Comparer géométriquement des périmètres. - Calculer le périmètre d un polygone. - Connaître et utiliser la formule donnant la longueur d un cercle. Cinquième -. - Calculer le périmètre d une figure (Pour les polygones, dont le parallélogramme, la compréhension de la notion de périmètre suffit à la détermination de procédés de calcul ; les formules sont donc inutiles).

24 Pour pouvoir parler de la longueur d un objet, il faut pouvoir se ramener à un segment de droite. Comparer la longueur de deux objets, c est comparer les segments de droite correspondants.

25 Différents mots pour la grandeur «longueur» : Pour le cheval : la hauteur au garrot Pour un oiseau : l envergure Pour un être humain : la taille ; le tour de taille - de hanche - de cou ou de tête ; l empan de la main etc Pour un bâtiment : sa hauteur ; la longueur de sa façade ; sa largeur ou sa profondeur ; Pour une pièce : sa hauteur de plafond etc

26 Les mots du domaine des longueurs sont assez nombreux. sans être exhaustifs, citons hauteur d un monument, d un arbre (par contre la hauteur du Soleil est un angle) ; altitude d un sommet, d un avion en vol ; dénivelé d une route ; profondeur d une piscine, d un placard ; taille d une personne, tour de cou, tour de taille ; distance entre deux lieux, entre deux points ; largeur d un fleuve, d un rectangle ; périmètre d un polygone ; circonférence d un cercle Il est important pour l élève que tous ces mots, utilisés dans des contextes différents, se réfèrent au même concept, appelé en mathématiques «longueur».

27 La longueur n est pas nécessairement liée à directement à l encombrement : Longueur d un tuyau enroulé ; Longueur de l intestin ; Longueur d un coupon de tissu ; Longueur de fil sur une bobine électrique Longueur d une spirale etc.. Longueur de tube des cuivres (cor, trompette, tuba)

28 Des grandeurs sans mesure

29 Sans mesurer, on peut anticiper mentalement et/ou perceptivement les résultats d une comparaison

30 Classement des aires?

31 Classement des périmètres?

32 Dans un second temps, les comparaisons amènent à des rapports de grandeurs

33 Des rapports de grandeurs Le secteur angulaire droit peut être recouvert exactement par trois secteurs angulaires superposables au secteur angulaire jaune L angle droit est égal à 3 fois l angle jaune du triangle

34 Des rapports de grandeurs On peut recouvrir exactement le rectangle avec les deux cerfvolant qui sont superposables. L aire du rectangle est égale à deux fois l aire du cerf-volant

35 En conclusion : Sans utiliser la mesure, il est possible de comparer des grandeurs ou de trouver des rapports de grandeurs

36 Des grandeurs aux mesures

37 «Il est souvent commode, pour comparer toutes les grandeurs d un même domaine, de les comparer à une grandeur particulière...»: l unité. «Il devient dès lors possible d associer à chaque grandeur un nombre, appelé sa mesure relativement à cette unité» Document d accompagnement des programmes 2002 de l école élémentaire

38 On peut dans un premier temps, enrichir le travail de comparaison de grandeur, de la procédure par comptage d unités* Cette procédure devient plus efficace quand il s agit de transmettre par écrit, sans dessin, des informations permettant de construire un objet de même grandeur.

39 Différents étalons (Différentes formes) pour une même unité 1L 1L 1L

40 Etalon Objet ou instrument qui matérialise une unité de mesure, et sert de référence, de modèle légal : mètre étalon, étalon de masse, de poids etc.. (Le Petit Larousse Illustré, 1994)

41 Différents étalons (Différentes formes) pour une même unité A vous : L unité choisie est l aire d un carré de coté 1. Dessiner au moins quatre étalons pour cette unité (surfaces de formes différentes ayant même aire).

42 Différents étalons pour une même unité 1 unité D après «le tour de l aire» (IREM de Lyon)

43 Le système métrique Des unités en relation les unes avec les autres dans des rapports qui sont des multiples de 10 Un système très largement utilisé dans la plupart des pays pour la vie quotidienne et les activités scientifiques Les élèves doivent être familiarisés avec la signification des préfixes usuels ( Kilo, hecto ) Les exercices de transformations de mesure doivent rester raisonnables.

44 Le travail de mesure

45 La mesure peut être obtenue : par une estimation, par un mesurage, par une lecture directe dans un énoncé, par un raisonnement et un calcul.

46 Estimation Il est souhaitable d apprendre à estimer avant de procéder au mesurage, Soit à l œil, soit par geste, soit à partir de mesures connues.

47 La mesure peut être obtenue : par une estimation, par un mesurage, par une lecture directe dans un énoncé, par un raisonnement et un calcul.

48 Mesurage La mesure est la plupart du temps obtenue par lecture d une graduation ( sauf pour les aires). La fabrication d un instrument de mesure permet de soulever la question du choix d un étalon pour une unité donnée, et de la graduation. Une réflexion sur la précision des mesures doit être menée lors des activités de mesurage.

49 La mesure peut être obtenue : par une estimation, par un mesurage, par une lecture directe dans un énoncé, par un raisonnement et un calcul.

50 Lecture directe Dans des problèmes de mesures la prise d information peut se faire par mesurage, par lecture de côtes, par calcul. Le choix de la lecture directe de l information n est pas toujours évident pour l élève.

51 Prise d information A B C Quelle est la mesure de BC? Mesurage

52 Prise d information A B 7 cm C Quelle est la mesure de BC? Lecture directe

53 Prise d information A Sur ce dessin 1cm représente 5 cm. B 7 cm C Quelle est la mesure de BC? Calcul

54 La mesure peut être obtenue : par une estimation, par un mesurage, par une lecture directe dans un énoncé, par un raisonnement et un calcul.

55 Raisonnement et calcul 12 cm 10 cm Sophie a dessiné 3 étiquettes rectangulaires toutes identiques sur une plaque de carton, comme le montre le dessin. a) Calcule la longueur réelle d une étiquette b) Calcule la largeur réelle d une étiquette D après l évaluation 6 ième

56 Raisonnement et calcul 4,5 m 7,5 m A 6 m La surface B est obtenue en collant 4 figures A comme le montre le dessin. Calculer le périmètre de B. B

57 Raisonnement et calcul?? 100? Quelle est la masse inconnue?

58 Raisonnement et calcul Combien de temps s est écoulé entre 9 h 27 min et 11 h 5 min? min 1 heure 5 min ou 2 heures ou 1 heure 33 min - (27min-5min) 5 min 33min + 1 heure + 5 min Avec des cadrans

59 Exemples à l école et au collège OBJET GRANDEUR MESURE Segment Contour d'une surface plane Longueur Nombre d unités Surface plane Aire Nombre d'unités. Solide Secteur angulaire Volume ( capacité) Masse angle formule du périmètre du carré et du rectangle, de la longueur du cercle. formule de l aire d un rectangle, d un triangle, d un parallélogramme, d une sphère. Nombre d'unités. formule du volume du pavé droit, du prisme droit, du cylindre de révolution, de la pyramide, du cône de révolution, de la boule. Nombre d'unités (gabarit) Pas de formule Temps durée Pas de techniques de calculs

60 Reprise de Quelques phrases pour démarrer Répondre par vrai ou faux : 1 ) Ce segment fait 3cm. 2 ) Ce segment a pour mesure 3cm. 3 ) Cette surface est de 3cm 2. 4 ) L aire de cette surface est de 3 cm 2 5 ) Il me faut 3m de ficelle. 6 ) Si le périmètre d une figure augmente, alors l aire de cette figure augmente nécessairement aussi.

61 Réponses (du point de vue des mathématiques) 1 ) Ce segment fait 3cm. INCORRECT 2 ) Ce segment a pour mesure 3cm. INCORRECT 3 ) Cette surface est de 3cm 2. INCORRECT 4 ) L aire de cette surface est de 3 cm 2 CORRECT 5 ) Il me faut 3m de ficelle. INCORRECT 6 ) Si le périmètre d une figure augmente, alors l aire de cette figure augmente nécessairement aussi. FAUX

Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) 1.1. Proportionnalité.

Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) 1.1. Proportionnalité. Cycle 3 de l'école primaire Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) Classe de 6ème du collège Le texte en caractère droit indique des

Plus en détail

Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème

Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème Lundi Matin - «Comparatif des programmes de CM2 et 6 ème» Page 1 Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème CM2 6 ème Plus tard... Vocabulaire divers Le vocabulaire

Plus en détail

Comparatif des programmes de mathématiques Cycle 3 et 6 ème

Comparatif des programmes de mathématiques Cycle 3 et 6 ème Comparatif des programmes de mathématiques Cycle 3 et 6 ème 1 - Nombres et calcul Cycle 3 L étude organisée des nombres est poursuivie jusqu au milliard, mais des nombres plus grands peuvent être rencontrés

Plus en détail

Ressources pour l école élémentaire

Ressources pour l école élémentaire Ressources pour l école élémentaire éduscol Mathématiques Progressions pour le cours élémentaire deuxième année et le cours moyen Ces documents peuvent être utilisés et modifiés librement dans le cadre

Plus en détail

Mme. Lemonnier Progression mathématiques : «A portée de maths» CM2

Mme. Lemonnier Progression mathématiques : «A portée de maths» CM2 Mme. Lemonnier Progression mathématiques : «A portée de maths» CM2 Nombres et Calcul et OGD (lundi) Géométrie/Grandeurs et mesures (mardi) Nombres et Calcul et OGD (jeudi) Géométrie/Grandeurs et mesures

Plus en détail

Des exemples de situations de primaire éclairant l élaboration de situations : liaison CM2/6 e

Des exemples de situations de primaire éclairant l élaboration de situations : liaison CM2/6 e Des exemples de situations de primaire éclairant l élaboration de situations : liaison CM2/6 e SOMMAIRE I Les programmes et les différences de conditions pédagogiques II La géométrie dans le plan III La

Plus en détail

Les nouveaux programmes de l école primaire

Les nouveaux programmes de l école primaire Les nouveaux programmes de l école primaire Mathématiques Document d accompagnement Grandeurs et mesure à l école élémentaire Ministère de l'éducation nationale, de l Enseignement supérieur et de la Recherche

Plus en détail

6 ème 5 ème 4 ème 3 ème

6 ème 5 ème 4 ème 3 ème Collège LOUIS PASTEUR - S.E.G.P.A.36, avenue du Collège - 57380 FAULQUEMONT ( 03 87 50 11 40 http://www4.ac-nancy-metz.fr/clg-pasteur-faulquemont/ PROPOSITION DE PROGRAMMATION PAR COMPÉTENCE ET CONNAISSANCE

Plus en détail

11 Géométrie. dans l espace. Chapitre

11 Géométrie. dans l espace. Chapitre hapitre éométrie dans l espace e chapitre reprend prolonge le travail fait en collège en géométrie dans l espace Les activités de conjecture de démonstration de construction de figures sont poursuivies

Plus en détail

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S CLASSES DE PREMIERES GÉNÉRALES ET TECHNOLOGIQUES OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 01 Durée : 4 heures Série S Les calculatrices sont autorisées. Ce sujet comporte 4 exercices

Plus en détail

VG1 ÉPREUVE CANTONALE DE RÉFÉRENCE DE MATHÉMATIQUES 10VG NIVEAU 1 MAI 2015 1 RE PARTIE SANS CALCULATRICE

VG1 ÉPREUVE CANTONALE DE RÉFÉRENCE DE MATHÉMATIQUES 10VG NIVEAU 1 MAI 2015 1 RE PARTIE SANS CALCULATRICE ÉPREUVE CANTONALE DE RÉFÉRENCE DE MATHÉMATIQUES VG1 10VG NIVEAU 1 MAI 2015 1 RE PARTIE SANS CALCULATRICE Nom Prénom Classe Etablissement Durée de l épreuve : 25 minutes. Matériel à disposition : matériel

Plus en détail

Géométrie des Transformations

Géométrie des Transformations Géométrie des Transformations Plan des activités de PREMIÈRE ANNÉE SECONDAIRE Thème 1 Dans le plan et dans l'espace: droites, demi droites, segments de droites et plans Plans dans l'espace Droites, demi

Plus en détail

Exercices de 5 ème Chapitre 8 Volumes Énoncés. 3. Quelle est la nature des faces latérales de ce solide et la nature de leur représentation?

Exercices de 5 ème Chapitre 8 Volumes Énoncés. 3. Quelle est la nature des faces latérales de ce solide et la nature de leur représentation? Énoncés Exercice 1 1. Quel est la nature précise du solide représenté ci-contre? Compléter sa perspective cavalière. 2. Donner le nombre de sommets, d'arêtes et de faces de ce solide. 3. Quelle est la

Plus en détail

N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : 0 1 2 3 4 5 6 7 8 9

N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : 0 1 2 3 4 5 6 7 8 9 N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : 0 1 2 3 4 5 6 7 8 9 N2 : LES NOMBRES Avec ces chiffres, on peut écrire des

Plus en détail

PREVENIR LA DIFFICULTE SCOLAIRE. en MATHEMATIQUES PAR LA CONNAISSANCE. DES PROGRAMMMES CM2 ET 6 ème

PREVENIR LA DIFFICULTE SCOLAIRE. en MATHEMATIQUES PAR LA CONNAISSANCE. DES PROGRAMMMES CM2 ET 6 ème PREVENIR LA DIFFICULTE SCOLAIRE en MATHEMATIQUES PAR LA CONNAISSANCE DES PROGRAMMMES CM2 ET 6 ème JL GUEGUEN CPC Pontivy Les enseignants de CM2 méconnaissent souvent de façon approfondie les programmes

Plus en détail

DOMAINE ESTIMATION, GRANDEURS ET MESURES (EGM)

DOMAINE ESTIMATION, GRANDEURS ET MESURES (EGM) DOMAINE ESTIMATION, GRANDEURS ET MESURES (EGM) Le domaine Estimation, Grandeurs et Mesures (EGM) comprend deux ensembles de modules qui correspondent respectivement à ESTIMATION (modules 1a et 1b) et à

Plus en détail

Programme Personnalisé de Réussite Educative CE2

Programme Personnalisé de Réussite Educative CE2 Programme Personnalisé de Réussite Educative CE2 Nom de l élève : Date de naissance : Classe : Nom de l enseignant : Nom de l école : Adresse : N de téléphone : La loi d orientation et de programme pour

Plus en détail

COURS : GÉOMÉTRIE DANS L ESPACE

COURS : GÉOMÉTRIE DANS L ESPACE CHAPITE 6 COUS : GÉOMÉTIE DANS L ESPACE Extrait du programme de la classe de 3 ème : Sphère CONTENU COMPÉTENCES EXIGIBLES COMMENTAIES - Savoir que la section d une sphère par un plan est un cercle. - Savoir

Plus en détail

Cours de mathématiques pour la classe de Sixième

Cours de mathématiques pour la classe de Sixième Cours de mathématiques pour la classe de Sixième Anne Craighero - Florent Girod 1 Année scolaire 2014 / 2015 1. Externat Notre Dame - Grenoble Table des matières 1 Nombres décimaux 4 I lire et écrire des

Plus en détail

Géométrie synthétique : Juillet 2005 (première série) Nom. Question 3 : (25%) Numéro

Géométrie synthétique : Juillet 2005 (première série) Nom. Question 3 : (25%) Numéro Géométrie synthétique : Juillet 2005 (première série) Question 3 : (25%) On donne dans le même plan, un point fixe F, et un cercle fixe de centre O et de rayon R. Par F, on mène une droite qui intersecte

Plus en détail

Renforcer ses compétences

Renforcer ses compétences Renforcer ses compétences en mathématiques Tome 1 AVANT PROPOS Vos études ou vos activités professionnelles vous ont peut-être éloignés des mathématiques et ceci, parfois depuis longtemps. Vous souhaitez

Plus en détail

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame Diplôme National du Brevet Épreuve blanche Proposition de corrigé Externat Notre Dame Vendredi 9 décembre 2011 durée de l'épreuve : 2 h I - Activités numériques II - Activités géométriques III Problème

Plus en détail

Grandeurs et mesures. au cycle 3

Grandeurs et mesures. au cycle 3 Grandeurs et mesures Sources au cycle 3 Programmes 2008 Didacticiens Claude Maurin, PIUFM Aix-Marseille Gérard Gerdil-Margueron, IUFM-UJF Grenoble - INRP-Ermel P.Delhaye PIUFM Amiens Manuels de cycle 3

Plus en détail

TRAVAIL PRATIQUE. 2x + 1. x + 1

TRAVAIL PRATIQUE. 2x + 1. x + 1 A - Polynômes et factorisation Résultats d apprentissage générau C COMMUNICATION RP RÉSOLUTION DE PROBLÈMES L LIENS R RAISONNEMENT E ESTIMATION ET CALCUL MENTAL T TECHNOLOGIE V VISUALISATION généraliser

Plus en détail

La résolution de problèmes. mathématiques. Au Cycle 3. Atelier pour les suppléants Valence 26/01/11 DDEC 07 / 26

La résolution de problèmes. mathématiques. Au Cycle 3. Atelier pour les suppléants Valence 26/01/11 DDEC 07 / 26 La résolution de problèmes 00 000 00 0 000 000 0 mathématiques Au Cycle 3 Atelier pour les suppléants Valence 26/0/ DDEC 07 / 26 Objectifs de l atelier 00 000 00 0 000 000 0 Relire les programmes 2008

Plus en détail

SEGPA du Collège P. MESSMER de SARREBOURG. Programmation de la 6ème à la 3ème. Les Principaux éléments de mathématiques

SEGPA du Collège P. MESSMER de SARREBOURG. Programmation de la 6ème à la 3ème. Les Principaux éléments de mathématiques SEGPA du Collège P. MESSMER de SARREBOURG Programmation de la 6ème à la 3ème Les Principaux éléments de mathématiques 6ème Restituer les tables d'addition et de multiplication de 2 à 9. Utiliser les fonctions

Plus en détail

Description de l activité. Bulles

Description de l activité. Bulles Description de l activité Bulles Niveaux concernés : école élémentaire. Effectif : classe entière. Durée de l atelier : environ 45 minutes. Matériel à prévoir : une cuvette ou un seau de 30 cm de profondeur;

Plus en détail

ÉPREUVE EXTERNE COMMUNE CE1D 2010

ÉPREUVE EXTERNE COMMUNE CE1D 2010 NOM : Prénom : Classe : MINISTÈRE DE LA COMMUNAUTÉ FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Pour cette première partie : la calculatrice est interdite tu auras besoin de ton matériel

Plus en détail

Figures et solides géométriques

Figures et solides géométriques Cellule de Géométrie Figures et solides géométriques Partie pratique (de 5 à 11 ans) JOURNÉES NATIONALES APMEP METZ 2012 Danielle POPELER Michel DEMAL Sommaire Partie pratique 1. Figures géométriques en

Plus en détail

Fabrication - Cycle 3

Fabrication - Cycle 3 Comment vole un avion? Fabrication - Cycle 3 1. Mise en situation. Faire émerger les représentations des enfants. Déroulement : Connaissez-vous des objets qui «utilisent» l air pour bouger? Lister les

Plus en détail

CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES

CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Ministère de l'éducation nationale Session 2008 MAT-08-PG3 Repère à reporter sur la copie CONCOURS DE RECRUTEMENT DE PROFESSEURS DES ECOLES Mercredi 30 avril 2008 - de 8h 30 à 11h 30 Deuxième épreuve d'admissibilité

Plus en détail

1 Extrait du DNB Juin 2014 3ème

1 Extrait du DNB Juin 2014 3ème Exemples d activités et extraits d évaluations Pour chacune des évaluations et activités suivantes, 1 résoudre le problème et anticiper les différentes démarches que les élèves pourraient envisager 2 déterminer,

Plus en détail

Année de CM2 2010-2011 Livret scolaire de ARNAUD Jean-Baptiste

Année de CM2 2010-2011 Livret scolaire de ARNAUD Jean-Baptiste École Primaire Fictive RyXéo 21, avenue Eugène et Marc Dulout 33600 Pessac Année de CM2 2010-2011 Livret scolaire de ARNAUD Jean-Baptiste Français Écriture Copier sans erreur un tete d'au moins quinze

Plus en détail

Mathématiques Collège Pierre de Coubertin Chevreuse. Cahier de vacances Correction

Mathématiques Collège Pierre de Coubertin Chevreuse. Cahier de vacances Correction Mathématiques Collège Pierre de Coubertin Chevreuse Cahier de vacances Correction SÉQUENCE 1 SÉRIE 1 1 12 objets identiques pèsent en tout 240 grammes. Combien pèsent 2 de ces objets? 240 12 = 20 20 x

Plus en détail

CORRECTION DU BREVET BLANC ---- MAI 2010 1 PARTIE : ACTIVITES NUMERIQUES

CORRECTION DU BREVET BLANC ---- MAI 2010 1 PARTIE : ACTIVITES NUMERIQUES CORRECTION DU BREVET BLANC ---- MAI 010 4 points sont attribués pour la qualité de la rédaction, le soin et la présentation. points correspondent au soin et à la propreté, ils sont proportionnels à la

Plus en détail

BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points) Exercice

Plus en détail

Construction d une boîte-cadeau

Construction d une boîte-cadeau Construction d une boîte-cadeau Cahier de l équipe Noms : Groupe : 2 3 Présentation du travail Mise en situation : La fête des Mères arrive bientôt. Votre tante Hortense vous demande votre aide pour faire

Plus en détail

D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses

D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses LES ABEILLES D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses 1. Présentation de la trame : Recherche et synthèse d infos Notion d optimisation Intérêt et

Plus en détail

Mathématiques Complément et synthèse I

Mathématiques Complément et synthèse I Définition du domaine d'examen MAT-4- Mathématiques Complément et synthèse I Mise à jour novembre 004 Définition du domaine d'examen MAT-4- Mathématiques Complément et synthèse I Mise à jour novembre 004

Plus en détail

L'enseignement des mathématiques : RESOLUTION DE PROBLEMES. Exemples de situations et ressources / cycles 2 et 3. Audrey Bertin, CPC 2013-2014

L'enseignement des mathématiques : RESOLUTION DE PROBLEMES. Exemples de situations et ressources / cycles 2 et 3. Audrey Bertin, CPC 2013-2014 L'enseignement des mathématiques : RESOLUTION DE PROBLEMES Exemples de situations et ressources / cycles 2 et 3 Audrey Bertin, CPC 2013-2014 1. La place des problèmes dans les programmes : B.O n 3 H.S

Plus en détail

Deuxième épreuve d admission. Exemples de sujets

Deuxième épreuve d admission. Exemples de sujets Deuxième épreuve d admission. Exemples de sujets Thème : probabilités 1) On lance deux dés équilibrés à 6 faces et on note la somme des deux faces obtenues. 1.a) Donner un univers associé cette expérience.

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Juin 2014 Durée : 2h00 Calculatrice autorisée Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Pour chaque

Plus en détail

Année scolaire 2006-2007

Année scolaire 2006-2007 INSPECTION ACADEMIQUE EURE ET LOIR Évaluation des compétences nécessaires en Mathématiques En fin de cycle 3 Année scolaire 2006-2007 Nom Prénom Classe de École page 2 MATHEMATIQUES EXERCICE 1 GRANDEURS

Plus en détail

DESCRIPTION DE COURS. Nom du cours : Mathématiques 8. Nom de l enseignante : Mme Dianne L. Doucet. Année Scolaire : 2009 2010

DESCRIPTION DE COURS. Nom du cours : Mathématiques 8. Nom de l enseignante : Mme Dianne L. Doucet. Année Scolaire : 2009 2010 DESCRIPTION DE COURS Nom du cours : Mathématiques 8 Nom de l enseignante : Mme Dianne L. Doucet Année Scolaire : 2009 2010 1. Description du cours : Le programme de mathématiques de la 8 e année vise à

Plus en détail

MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010. Mathématiques. Livret 1. Mme Cochez-ARU2 Page 1/19

MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010. Mathématiques. Livret 1. Mme Cochez-ARU2 Page 1/19 MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Mme Cochez-ARU2 Page 19 ATTENTION Pour cette première partie : la calculatrice est interdite tu auras besoin

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

I n t r o d u c t i o n a u x ( 2 0 S ) m a t h é m a t i q u e s a p p l i q u é e s e t p r é - c a l c u l 1 0 e a n n é e

I n t r o d u c t i o n a u x ( 2 0 S ) m a t h é m a t i q u e s a p p l i q u é e s e t p r é - c a l c u l 1 0 e a n n é e I n t r o d u c t i o n a u x m a t h é m a t i q u e s a p p l i q u é e s e t p r é - c a l c u l 0 e a n n é e ( 0 S ) Examen de préparation de mi-session Corrigé I n t r o d u c t i o n a u x m a

Plus en détail

Le lexique géométrique

Le lexique géométrique Le lexique géométrique Document réalisé, sous la direction de : M. DETILLEUX, I-IPR de Mathématiques Mme GIEN, Inspectrice de l'education Nationale dans le cadre des temps de concertation écoles / collège

Plus en détail

Evaluations nationales CE2 MATHS - COMPETENCES ATTENDUES A L ENTREE EN CYCLE III

Evaluations nationales CE2 MATHS - COMPETENCES ATTENDUES A L ENTREE EN CYCLE III Evaluations nationales CE2 MATHS - COMPETENCES ATTENDUES A L ENTREE EN CYCLE III Champs Compétences / Composantes Typologie des erreurs possibles Suggestions de remédiation Connaissance des nombres entiers

Plus en détail

Mathématiques CM2. Fichier d activités. Auteur : Claude Guillaume. Coordination : Expert : Alain Bonichon Sylvie Dhotel, chef de projet.

Mathématiques CM2. Fichier d activités. Auteur : Claude Guillaume. Coordination : Expert : Alain Bonichon Sylvie Dhotel, chef de projet. Mathématiques CM2 Fichier d activités Auteur : Claude Guillaume Coordination : Alain Bonichon Sylvie Dhotel, chef de proj Expert : Marie Mégard Ce cours est la propriété du Cned. Les images textes intégrés

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace A l école primaire Cycle 2 (programme du 19/06/2008) CP CE1 Reconnaître et nommer le cube et le pavé droit. Reconnaître, décrire, nommer quelques solides droits : cube, pavé Manuel

Plus en détail

Brevet blanc de mathématiques Mars 2014 BREVET BLANC MARS 2014 MATHEMATIQUES COLLEGE STANISLAS-NICE. Durée de l épreuve : 2 h 00

Brevet blanc de mathématiques Mars 2014 BREVET BLANC MARS 2014 MATHEMATIQUES COLLEGE STANISLAS-NICE. Durée de l épreuve : 2 h 00 BREVET BLANC MARS 2014 MATHEMATIQUES COLLEGE STANISLAS-NICE Durée de l épreuve : 2 h 00 Ce sujet comporte 5 pages numérotées de 1/5 à 5/5. Dès que ce sujet vous est remis, assurez-vous qu il est complet.

Plus en détail

Différents niveaux de géométrie

Différents niveaux de géométrie Géométrie et TUIC Qui suis-je? Différents niveaux de géométrie Cela se voit. Je le sais parce que je l ai vu et que je possède des connaissances antérieures. Géométrie de la perception Est vrai ce qui

Plus en détail

Se dépayser pour interroger les choix de l enseignement français de la géométrie. Voyage au Chili.

Se dépayser pour interroger les choix de l enseignement français de la géométrie. Voyage au Chili. Se dépayser pour interroger les choix de l enseignement français de la géométrie. Voyage au Chili. Corine Castela, corine.castela@rouen.iufm.fr Catherine Houdement, catherine.houdement@rouen.iufm.fr MC

Plus en détail

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EXERCICES DE REVISIONS MATHEMATIQUES CM2 EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser

Plus en détail

Évaluation de fin du troisième trimestre 2006/2007 Compétences attendues (fin du cycle 2) Mathématiques

Évaluation de fin du troisième trimestre 2006/2007 Compétences attendues (fin du cycle 2) Mathématiques Nom :... Prénom :... Date... /... /... Évaluation de fin du troisième trimestre 2006/2007 Compétences attendues (fin du cycle 2) Mathématiques Connaître ou reconstruire très rapidement les résultats des

Plus en détail

Nouvelle édition. C ntrat. Math. Willy Nouten Jacqueline Van Roy Willy Van Roy

Nouvelle édition. C ntrat. Math. Willy Nouten Jacqueline Van Roy Willy Van Roy C ntrat 5 b Math Nouvelle édition Willy Nouten Jacqueline Van Roy Willy Van Roy AVANT- PROPOS Après plusieurs années de succès de la collection Contrat Math, nous sommes allés à la rencontre des enseignants.

Plus en détail

PROGRAMME DE TRAVAIL INTERNE

PROGRAMME DE TRAVAIL INTERNE Version 0.1 1/6 Semestre 1 Calcul professionnel 120 périodes selon OrFo 1.1.1 Arithmétique - algèbre Base de sciences naturelles Généralités unités C2 2 + / et calcul avec parenthèses 2 Multiplications

Plus en détail

Plusieurs façons de tracer deux parallèles CM1-CM2

Plusieurs façons de tracer deux parallèles CM1-CM2 Plusieurs façons de tracer deux parallèles CM1-CM2 Séance 1 : l écart constant entre deux droites parallèles donner une définition fonctionnelle du parallélisme de deux droites ; exhiber un procédé de

Plus en détail

Mathématiques. Questions de test diffusées, 2015. Cycle moyen. année. Test en lecture, écriture et mathématiques DIRECTIVES

Mathématiques. Questions de test diffusées, 2015. Cycle moyen. année. Test en lecture, écriture et mathématiques DIRECTIVES Questions de test diffusées, 2015 Cycle moyen 6e année Mathématiques Test en lecture, écriture et mathématiques DIRECTIVES Comment répondre aux questions choix multiple Comme ceci : et non comme cela :

Plus en détail

MATHÉMATIQUES PROGRAMMES DE. 1 ère & 2 ème Années secondaires

MATHÉMATIQUES PROGRAMMES DE. 1 ère & 2 ème Années secondaires RÉPUBLIQUE TUNISIENNE MINISTERE DE L EDUCATION ET DE LA FORMATION DIRECTION GENERALE DES PROGRAMMES ET DE LA FORMATION CONTINUE ------------------------------ DIRECTION DES PROGRAMMES ET DES MANUELS SCOLAIRES

Plus en détail

CONSTRUCTION DU NOMBRE A L ECOLE MATERNELLE. 2 Ordinalité et cardinalité

CONSTRUCTION DU NOMBRE A L ECOLE MATERNELLE. 2 Ordinalité et cardinalité CONSTRUCTION DU NOMBRE A L ECOLE MATERNELLE 2 Ordinalité et cardinalité Yvonne SEMANAZ Groupe Mathématiques Stage Maternelle - IA 38 janvier 2012 Compétences abordées : Cardinalité = être capable de dire

Plus en détail

LES NOUVEAUX PROGRAMMES DE

LES NOUVEAUX PROGRAMMES DE LES NOUVEAUX PROGRAMMES DE PHYSIQUE CHIMIE EN PREMIÈRE ANNÉE DE CPGE 1 CONTEXTE La réforme des voies générale et technologique. La notion de compétence : en amont dans le lycée et en aval dans les écoles.

Plus en détail

Une énigme par jour CP / CE1 Semaine des maths 2012 Circonscription Marcq-en-Barœul

Une énigme par jour CP / CE1 Semaine des maths 2012 Circonscription Marcq-en-Barœul Ces «énigmes» permettent d initier une démarche fondée sur l initiative des élèves pour utiliser les connaissances acquises et montrer leur capacité à les utiliser dans des situations où elles ne sont

Plus en détail

SUJETS D ANNALES CORRIGÉS

SUJETS D ANNALES CORRIGÉS CRPE epreuves d'admissibilite_2015.qxp_concours 170x240 mercredi19/08/15 11:10 Page563 DEUXIÈME ÉPREUVE D ADMISSIBILITÉ, GROUPEMENT 3, SESSION 2014 Sujet 5 points au maximum pourront être retirés pour

Plus en détail

BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points) Exercice

Plus en détail

Tracer des carrés. faut connaître la mesure du côté de chaque carré. Pour chaque carré, mesure un côté ou compte les carreaux.

Tracer des carrés. faut connaître la mesure du côté de chaque carré. Pour chaque carré, mesure un côté ou compte les carreaux. Unité 20 Tracer des carrés Reconnaître, décrire, nommer et reproduire, tracer des figures géométriques : carré, rectangle, losange, triangle rectangle. Construire un carré ou un rectangle de dimensions

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

Voici une situation proposée au cours du mois de novembre à des élèves d un cours préparatoire.

Voici une situation proposée au cours du mois de novembre à des élèves d un cours préparatoire. om Ce fichier D3C, corrigé du fichier D3, présente deux activités autour des apprentissages numériques en Cycle 2, cycle des apprentissages fondamentaux. La première situation problème est une situation

Plus en détail

Exemples d exercices de nature pédagogique pouvant être proposés lors de l épreuve d admissibilité de mathématiques au CAPLP externe Maths-Sciences.

Exemples d exercices de nature pédagogique pouvant être proposés lors de l épreuve d admissibilité de mathématiques au CAPLP externe Maths-Sciences. Exemples d exercices de nature pédagogique pouvant être proposés lors de l épreuve d admissibilité de mathématiques au CAPLP externe Maths-Sciences. Exemple 1 Voici une situation pouvant être utilisée

Plus en détail

Problèmes à propos des nombres entiers naturels

Problèmes à propos des nombres entiers naturels Problèmes à propos des nombres entiers naturels 1. On dispose d une grande feuille de papier, on la découpe en 4 morceaux, puis on déchire certains morceaux (au choix) en 4 et ainsi de suite. Peut-on obtenir

Plus en détail

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1 BREVET BLANC DE MATHEMATIQUES Mai 2010 La calculatrice est autorisée. Le soin et la qualité de la rédaction seront pris en compte dans la notation. N candidat : Observations Présentation et rédaction :

Plus en détail

DNB, Métropole, correction, mathématiques

DNB, Métropole, correction, mathématiques DNB, Métropole, correction, mathématiques jeudi 28 juin 2012 Activités numériques, 12 points Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Exercice n o 1 1.

Plus en détail

Classe de sixième Partie obligatoire (2/3) Partie optionnelle (1/3)

Classe de sixième Partie obligatoire (2/3) Partie optionnelle (1/3) Classe de sixième Partie obligatoire (2/3) Partie optionnelle (1/3) 1 er trimestre Priorité pour le premier trimestre : Au cours du premier trimestre, on veillera à ce que les élèves apprennent d abord

Plus en détail

MAP-SIM2 : Planification de trajectoire

MAP-SIM2 : Planification de trajectoire MP-SIM : Planification de trajectoire sujet proposé par Nicolas Kielbasiewicz : nicolas.kielbasiewicz@ensta-paristech.fr 0 janvier 06 La planification de trajectoire consiste à déterminer une trajectoire,

Plus en détail

Pyram. Cône Cylind. Boule

Pyram. Cône Cylind. Boule Académies et années Prisme Pavé ou cube Volumes Pyram. Cône Cylind. Boule k, Thèmes annexes k 2, k. Trigo. Pythag. Thalès Fctions. Bordeaux 00 x x Grenoble 00 x x x x Grenoble 00 pb x x x x Nancy 00 pb

Plus en détail

Progressions en mathématiques au cycle 1 élaborées lors de l animation pédagogique de la circonscription d ANNONAY (situations problèmes en

Progressions en mathématiques au cycle 1 élaborées lors de l animation pédagogique de la circonscription d ANNONAY (situations problèmes en Progressions en mathématiques au cycle 1 élaborées lors de l animation pédagogique de la circonscription d ANNONAY (situations problèmes en mathématiques au cycle 1) en mars 2012 Compétence : se situer

Plus en détail

3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE

3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE 3e degré professionnel MINISTÈRE DE LA COMMUNAUTE FRANÇAISE ENSEIGNEMENT DE LA COMMUNAUTE FRANCAISE Administration Générale de l Enseignement et de la Recherche Scientifique Service général des Affaires

Plus en détail

Propriété (admise) : la section d un cube par un plan parallèle à une face est un

Propriété (admise) : la section d un cube par un plan parallèle à une face est un Vérification des acquis (oral). Découverte de la section d un pavé droit par un plan (faire fiche activité 1). I- SECTION DE PARALLELEPIPEDE RECTANGLE PAR UN PLAN 1) Plan Pour avoir une représentation

Plus en détail

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( )

CHAPITRE IV. Utiliser la définition de la médiatrice d un segment ainsi que la caractérisation de ses points par la propriété d équidistance ( ) HPITRE IV TRINGLES OMPÉTENES ÉVLUÉES DNS E HPITRE : (T : compétences transversales, N : activités numériques, G : activités géométriques, F : gestion de données et fonctions) Intitulé des compétences Eval.1

Plus en détail

Construire le nombre à la maternelle IEN maternelle Créteil - Josette Denizart- Annie Talamoni- Annette Breiloux

Construire le nombre à la maternelle IEN maternelle Créteil - Josette Denizart- Annie Talamoni- Annette Breiloux Construire le nombre à la maternelle IEN maternelle Créteil - Josette Denizart- Annie Talamoni- Annette Breiloux 1 Éléments institutionnels l Historique : du calcul à des activités mathématiques complexes

Plus en détail

STAGE MATHEMATIQUES Lundi 29 et mardi 30 octobre 2013

STAGE MATHEMATIQUES Lundi 29 et mardi 30 octobre 2013 Circonscription de DZAOUDZI STAGE MATHEMATIQUES Lundi 29 et mardi 30 octobre 2013 Remerciements à tous les enseignants pour leur investissement lors de ce stage : LAB 3 LAB 3 LAB 4 LAB 4 LAB 7 LAB 5 LAB

Plus en détail

Une brique dans le cartable. Du Plan à l Ouvrage

Une brique dans le cartable. Du Plan à l Ouvrage Une brique dans le cartable Du Plan à l Ouvrage Une brique dans le cartable Du plan à l ouvrage Visites et rencontres possibles - Rencontre avec un architecte o Voir la création des plans (orientation

Plus en détail

LES OBJETS À 3 DIMENSIONS Durée suggérée: environ 1½ semaine. Date d achèvement prévue

LES OBJETS À 3 DIMENSIONS Durée suggérée: environ 1½ semaine. Date d achèvement prévue Durée suggérée: environ 1½ semaine Septembre Octobre Novembre Décembre Janvier Février Mars Avril Mai Juin Date d achèvement prévue PROGRAMME DE MATHÉMATIQUES 4 e ANNÉE VERSION PROVISOIRE 298 Aperçu du

Plus en détail

SCENARIO PEDAGOGIQUE Activité sur les combles

SCENARIO PEDAGOGIQUE Activité sur les combles SCENARIO PEDAGOGIQUE Activité sur les combles Domaine(s) concerné(s) : Statistiques et probabilités Algèbre et analyse Géométrie Niveau de la classe: CAP 3Prépa Pro Seconde Première Terminale BTS Durée

Plus en détail

Correction du brevet blanc du 12 Mai 2011. 1ère étape : 2 3 + 1 = 2 3 + 3 3 = 5 3. 2ème étape : 3ème étape : 25 9 ( 2 2

Correction du brevet blanc du 12 Mai 2011. 1ère étape : 2 3 + 1 = 2 3 + 3 3 = 5 3. 2ème étape : 3ème étape : 25 9 ( 2 2 PARTIE NUMÉRIQUE (14 points) Correction du brevet blanc du 12 Mai 2011 Exercice 1 1.a. Le nombre de départ est 1 1ère étape : 1 + 1 = 2 2ème étape : 2² = 4 3ème étape : 4 1² 4-1²= 4 1 = 3 Le résultat final

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges MÉTROPOLE - ANTILLES - GUYANE Septembre 2014 Durée : 2h00 Calculatrice autorisée Exercice 1 Cédric s entraîne pour l épreuve de vélo d un triathlon. La courbe

Plus en détail

38 Triangle. 1 - Par pliage, marque quatre droites. Combien de triangles peux-tu compter?

38 Triangle. 1 - Par pliage, marque quatre droites. Combien de triangles peux-tu compter? .M.1 38 Triangle 1 - Par pliage, marque quatre droites. ombien de triangles peux-tu compter? Trois droites qui se coupent déterminent un triangle. La quatrième droite recoupe les trois autres aux points,,.

Plus en détail

Brevet blanc à rendre début mars. 1/7

Brevet blanc à rendre début mars. 1/7 Brevet blanc à rendre à la rentrée de mars 20 Partie Numérique Exercice 1. Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question une seule réponse est exacte. Aucune justification

Plus en détail

Mathématiques. Contrôle en classe n 9

Mathématiques. Contrôle en classe n 9 Mathématiques. Contrôle en classe n 9 NOM : PRENOM : CLASSE : 6 ème DATE :. Durée : 1 heure. Enseignante : Marie-Tatiana FORCONI. Consignes : la calculatrice est autorisée ; une feuille de brouillons et

Plus en détail

Prise en mains de geogebra 5 - module 3D

Prise en mains de geogebra 5 - module 3D Prise en mains de geogebra 5 - module 3D Ce document vous est proposé par l équipe Planète Maths. Il présente une explication des principales fonctionnalités du logiciel, pour son module 3D, afin de permettre

Plus en détail

LES MATHEMATIQUES DE LA 4 EME A LA 3 EME AU COLLEGE LA SOURCE (MEUDON 92)

LES MATHEMATIQUES DE LA 4 EME A LA 3 EME AU COLLEGE LA SOURCE (MEUDON 92) Passage Mathématique 4 ème - 3 ème v 1.0 Classe de Quatrième Page 1 sur 8 LES MATHEMATIQUES DE LA 4 EME A LA 3 EME AU COLLEGE LA SOURCE (MEUDON 92) «Les mathématiciens ont autant besoin d'être philosophes

Plus en détail

Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception?

Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception? Concevoir et analyser des tâches mathématiques dans un environnement logiciel : Quels objectifs d apprentissage? Quels choix de conception? Semaine 2, auteurs Maha Abboud-Blanchard (ESPE de Versailles,

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges AMÉRIQUE DU SUD Décembre 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour. Indication portant

Plus en détail

IREM- 13 juin 2009. Dominique GILLET IEN 1er degré Pilote du groupe départemental mathématiques et sciences

IREM- 13 juin 2009. Dominique GILLET IEN 1er degré Pilote du groupe départemental mathématiques et sciences FORMATION CONTINUE DES ENSEIGNANTS EN MATHEMATIQUES IREM- 13 juin 2009 Dominique GILLET IEN 1er degré Pilote du groupe départemental mathématiques et sciences Des types de formation continue Des stages

Plus en détail

Le jeu de l interactivité conduit souvent à introduire ou à approfondir un tantinet certaines notions.

Le jeu de l interactivité conduit souvent à introduire ou à approfondir un tantinet certaines notions. Comme le précédent intitulé Bonne Année, ce document entend n être qu un exemple de l emploi des œuvres artistiques pour initier les auditeurs à certains contenus de l univers des mathématiques. Le jeu

Plus en détail

MATHÉMATIQUES. I - Finalités et objectifs LES MATHÉMATIQUES AU COLLÈGE. A - Les mathématiques comme discipline de formation générale

MATHÉMATIQUES. I - Finalités et objectifs LES MATHÉMATIQUES AU COLLÈGE. A - Les mathématiques comme discipline de formation générale MATHÉMATIQUES LES MATHÉMATIQUES AU COLLÈGE I - Finalités et objectifs Au collège, on constate qu une proportion importante d élèves s intéressent à la pratique des mathématiques et y trouvent du plaisir.

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

Un collectionneur achète un tableau 5000. Il le revend 6000. Il le rachète plus tard 7000 pour le revendre finalement 8000.

Un collectionneur achète un tableau 5000. Il le revend 6000. Il le rachète plus tard 7000 pour le revendre finalement 8000. Un collectionneur achète un tableau 5000. Il le revend 6000. Il le rachète plus tard 7000 pour le revendre finalement 8000. A-t-il gagné ou perdu de l argent? Combien? Animation pédagogique Mathématiques

Plus en détail