SLAM Visuel 3D pour robot mobile autonome

Dimension: px
Commencer à balayer dès la page:

Download "SLAM Visuel 3D pour robot mobile autonome"

Transcription

1 Master de Sciences Mention «Imagerie, Robotique et Ingénierie pour le Vivant» - Projet de Fin D étude - SLAM Visuel 3D pour robot mobile autonome Romain Drouilly Encadrants ECA Benoit Morisset Pierrick Daniel Encadrant ENSPS Bernard Bayle Septembre 2011

2 Résumé Un robot mobile est une machine capable de se mouvoir de manière autonome quelque soit l endroit où elle se trouve et sans la supervision de l homme. Pour cela le robot doit pouvoir cartographier son environnement à mesure qu il l explore. Ce problème de la navigation autonome d un robot dans un environnement inconnu est nommé SLAM (SLAM signifie Localisation et Cartographie Simultanées). C est un domaine de recherche très actif depuis plus de vingt ans et il est maintenant possible de faire du SLAM en 2D. Le nouveau challenge est de faire du SLAM en 3D. C est le but de cette étude. Comme il sera montré il est désormais possible de résoudre le problème du SLAM3D grâce à des capteurs innovants et des algorithmes performants. Nous montrerons qu il est possible de construire en temps réel des cartes en 3D très précises pour modéliser des environnements intérieurs. En ajoutant des textures il est alors possible de créer des vues très réalistes de la zone explorée. Par ailleurs on peut extraire en temps réel des données à partir de la carte fournie par le SLAM, dans le but de fournir au robot des informations sur les objets présents dans la scène. Ceci permet d améliorer significativement la connaissance que le robot a de l environnement et permet de le faire agir intelligemment. Abstract A mobile robot is an intelligent machine able to navigate by itself in any places without human s supervision. To do this robot has to map its environment while it is exploring it. The problem of a robot navigating an unknown environment is called the SLAM problem (SLAM stands for Simultaneous Localization And Mapping). It has been a very active field of research for more than twenty years and we now have solutions to address the 2D SLAM problem. The new challenge is to tackle the 3D SLAM question. This is the goal of this study. As it will be shown in this report it is now possible to address the 3D SLAM problem thanks to cutting edge sensors and very effective algorithms. We will demonstrate that it is possible to build in real-time very precise 3D maps to model indoor environments. Adding texture it is possible to create very realistic views of the explored area. Moreover we can extract data in real-time from the model built by the SLAM to provide the robot with information about objects in the scene. This significantly improves the knowledge the robot has of its environment and allows to make it act in an intelligent way. 1

3 Remerciements En tout premier lieu je tiens à remercier Benoit Morisset qui a suivit mon travail tout au long de ces six mois. Nos échanges réguliers ont été pour moi une très forte source de motivations et sont pour beaucoup dans la réussite de ce stage. Ses conseils avisés m ont toujours permis d avancer efficacement dans mon travail. Ensuite je tiens à remercier Pierrick Daniel, mon maitre de stage, qui m a permis de travailler sur le sujet passionnant et plus que jamais d actualité qu est le SLAM et grâce à qui j ai découvert ce merveilleux outil qu est la Kinect. Je tiens aussi à remercier Gwenaël Dunand pour m avoir fait découvrir les Design Pattern et m avoir fait partager son expérience de la recherche et son expertise en programmation. Mes sincères remerciements vont à toute l équipe d ECA Saclay pour l accueil chaleureux dont j ai bénéficié et à toutes les personnes avec qui j ai pu partager ma passion pour la robotique. Enfin je tiens à remercier tous ceux qui, à Willow Garage ou ailleurs, au travers d initiatives collectives ou personnelles, mettent à disposition leur travail pour les progrès de tous. 2

4 Sommaire A. Introduction... 6 B. Objectifs du projet... 7 C. Introduction au problème du SLAM... 8 I. Autonomie des robots Robotique: de la Fiction à la Réalité Qu'est ce qu'un robot autonome? Percevoir son environnement... 9 II. Odométrie Visuelle Points d intérêt RANSAC ICP III. SLAM Définition du problème Principaux paradigmes Recherches actuelles IV. TORO : SLAM 3D Principe Graph-SLAM TORO : formalisme V. Segmentation des nuages de points et reconstruction 3D Principe de la segmentation Mise en œuvre: cas des objets plans D. Contribution au SLAM I. Contexte général de l étude ROS Kinect II. Analyse de l existant

5 III. Solutions retenues IV. RGBD Mapping L algorithme Estimation de mouvement Optimisation globale du graphe et fermeture de boucle Implémentation Schéma de fonctionnement du SLAM V. Descripteur NARFs Tests du détecteur Conclusion générale sur les NARFs VI. Segmentation et Reconstruction 3D Introduction Détection de plans dans un nuage de points Détection des contours d un plan Appariement de plans Problème lié à la reconstruction 3D temps réel Recollage des textures Organisation du code pour la reconstruction 3D E. Résultats I. Matériel de tests II. Test du SLAM Fidélité de la reconstruction 3D Amélioration due à ICP performances avec et sans supervision Robustesse aux variations de luminosité III. Test de la reconstruction 3D Test de la détection du sol en temps réel Test de la reconstruction 3D IV. Discussion sur le SLAM et la reconstruction 3D F. Conclusion de l étude G. Bibliographie

6 H. Annexes I. ECA Présentation du groupe ECA Les Activités du Pôle de Saclay II. Kd-tree III. SIFT Détection des points d'intérêt Calcul des descripteurs IV. SURF (Speeded Up Robust Feature) Détection de points d'intérêts Calcul des descripteurs V. Précision subpixellique

7 A. Introduction ECA conçoit des robots pour l intervention en situations extrêmes : incendie, tremblement de terre, accident nucléaire, déminage, intervention policière, renseignements etc. Dans toutes ces situations le robot vient en aide à l Homme en explorant des zones inaccessibles ou trop dangereuses pour envoyer, au moins dans un premier temps, des êtres vivants. Les robots doivent donc d une part être suffisamment autonomes pour remplir leur mission sans la supervision de l Homme et d autre part être capable de fournir à l utilisateur des informations sur la topographie du lieu, le plus souvent sous la forme d une carte. L objectif du projet est donc de développer un module permettant de rendre le robot autonome dans la tâche d exploration. Plus précisément, le module doit permettre au robot de dresser la carte d un environnement inconnu au fur et à mesure qu il l explore. Cette carte servira à la fois au robot à se localiser pour évoluer de manière autonome et à l utilisateur humain pour récupérer des informations sur les lieux explorés. Le problème de l autonomie d un robot dans la tâche d exploration d un lieu inconnu est appelé SLAM 1. C est un domaine de recherche très actif depuis plusieurs décennies et beaucoup de solutions existent pour la cartographie 2D. Le défi est ici de réaliser la modélisation en 3D de l environnement et ce uniquement à partir d informations visuelles. Après une présentation des objectifs du projet, les fondements du problème du SLAM seront présentés en détails en les replaçant dans leur contexte originel. Une présentation formelle du problème sera introduite en insistant plus particulièrement sur le paradigme qui sera utilisé dans l étude. C est ensuite le travail de stage luimême qui sera abordé avec la présentation successive des études sur lesquels il est fondé, des solutions proposées et des résultats obtenus. Chaque fois que nécessaire les choix effectués seront justifiés. Finalement les résultats seront discutés et un certain nombre d observations seront faite sur la robotique moderne. 1 Simultaneous Localization and Mapping 6

8 B. Objectifs du projet Lorsqu un robot est employé pour explorer une zone inaccessible à l homme, il doit être capable de fournir des informations à l utilisateur sur la topologie des lieux visités. Il faut donc qu il construise une carte de son environnement. Il doit en outre faire preuve d une autonomie suffisante pour pouvoir explorer la zone et trouver son chemin même si les communications sont interrompues. Le robot doit donc être capable de se localiser en permanence dans l environnement qu il explore. L objectif du stage est donc de mettre en place un module de SLAM pour un robot d intervention en milieu hostile. Plus précisément, le projet vise à doter le robot de la capacité à cartographier en 3D un environnement inconnu. Un capteur innovant a été retenu pour cette tâche : la Kinect de Microsoft. Il s agit d une caméra RGBD, autrement dit d un système d acquisition fournissant à la fois des images et des données métriques. Il faudra donc exploiter au mieux la richesse des informations fournies pour construire un modèle 3D de l environnement visuellement réaliste. Les contraintes principales sont donc de : - réaliser un modèle précis de l environnement permettant au robot de se localiser en vue de planifier sa trajectoire - d offrir un rendu réaliste de la scène pour un observateur humain - d effectuer la reconstruction en temps réel Une contrainte secondaire est d offrir une bonne robustesse aux variations de luminosité. 7

9 C. Introduction au problème du SLAM L objectif de ce chapitre est de présenter le contexte général du stage et d expliquer ce qui a motivé la problématique en la replaçant dans son contexte originel. Plusieurs questions seront abordées concernant les développements présents et futurs de la robotique, notamment: quels sont les verrous technologiques qui empêchent aujourd hui un robot de conduire une mission de manière parfaitement autonome? Quelles sont les pistes de recherche actuelles pour résoudre ces problèmes? Quels sont les succès déjà remportés? I. Autonomie des robots 1. Robotique: de la Fiction à la Réalité Loin des images des films de science fiction, montrant hommes et robots cohabitant harmonieusement dans des environnements complexes, la robotique s est pendant longtemps limitée à ses applications industrielles, se contentant de remplacer l homme dans l exécution de tâches simples et répétitives. Cette limitation venait notamment de l impossibilité de créer des systèmes capables d évoluer dans un environnement réel. En effet gérer l extrême diversité des situations dans lesquels un robot peut se trouver est très difficile. Il est clairement impossible de prévoir tous les cas de figure pour préparer des comportements types en fonction des situations rencontrées. Il faut dès lors que le robot soit à même de percevoir son environnement intelligemment pour apprendre et comprendre cet environnement en vu de planifier ses actions. Loin d avoir résolu totalement ce problème la robotique a cependant connu ces dernières années plusieurs victoires importantes qui ont conduit à de profonds changements. Qu ils soient à pattes ou à roues, volant ou rampant, les robots sont désormais capables de se mouvoir dans des environnements aussi complexes que le sol martien ou un hall de musée avec très peu de supervision de la part de l homme. Voyons comment ces succès ont étés rendus possibles. 8

10 2. Qu'est ce qu'un robot autonome? L'autonomie des robots est un enjeu clé de la robotique moderne. Un système robotisé n'a de raison d'être que s'il est capable d'effectuer un maximum de tâches sans la supervision de l'homme. Un système téléguidé représente bien moins d'intérêt puisque l'opérateur doit prendre en charge les tâches de bas niveau comme la navigation au lieu de se concentrer sur les objectifs essentiels de sa mission. Si l'on veut définir clairement ce qu'est un robot mobile autonome on peut dire qu'il s'agit d'un système capable de: se localiser dans son environnement. Ceci répond à la question «où suis-je?». trouver des zones d'intérêt à explorer ou des objets dans son environnement et liés à sa mission. Ceci répond à la question «où dois-je aller?». de planifier ses actions, pour par exemple définir une trajectoire pour se rendre d'un point A à un point B. Ceci répond à la question «comment dois-je y aller?». d'interagir, le cas échéant, avec son environnement pour réaliser certaines tâches. Il peut s'agir par exemple de trouver et d'actionner une poignée de porte pour pouvoir passer d'une pièce à une autre. Ceci répond à la question «Quelle est la fonction de cet objet?» On distingue donc deux types principaux de contraintes pour l'autonomie des robots: la capacité d'extraire des données de l'environnement (localiser des objets, des obstacles, le robot etc.) et la capacité à traiter ces informations intelligemment (prendre des décisions, savoir comment interagir avec tel ou tel objet). A ceci il faudrait encore ajouter d'autres aspects concernant notamment la sécurité du robot ou des êtres vivants avec lesquels il cohabite. Cependant c'est surtout le premier point qui nous intéressera dans la suite. 3. Percevoir son environnement Quelque soit la mission qui lui est confiée, un robot mobile doit être capable de percevoir intelligemment son environnement. C'est à dire qu'il doit être en mesure de capter l'information et de la traiter en vue de produire des données exploitables. 9

11 Le robot doit notamment être capable de construire sa propre représentation de l'environnement. Cette tâche est nommée la cartographie. Il doit pouvoir fabriquer, sur la base des informations fournies par ses capteurs, une carte lui permettant de définir des zones d'intérêt à explorer, des zones dangereuses à éviter ou encore trouver les zones navigables. Cette carte pourra aussi servir de modèle de l'environnement à un opérateur humain qui voudrait intervenir dans une zone a priori inconnue. Or lorsque le robot explore une zone inconnue il doit aussi être capable de se localiser sur la carte à mesure qu'il la construit. La réalisation simultanée de la cartographie et de la localisation est un problème fondamental en robotique mobile connu sous le nom de SLAM (Simultaneous Localisation and Mapping). Sa résolution est un préalable indispensable à l'automatisation totale des systèmes, sans quoi les robots seraient incapables de se mouvoir dans un environnement inconnu. Dans la suite nous verrons donc quelles sont les étapes nécessaires à la réalisation du SLAM. 10

12 II. Odométrie Visuelle Pour la réalisation d une carte sur la base d informations purement visuelles, il faut pouvoir estimer le mouvement de la caméra pour mettre en correspondance les différentes vues. Dans le cas d un système monoculaire cette tâche est rendue difficile par l impossibilité d estimer les distances à partir d une seule image. Il faut donc utiliser des séquences d images pour initialiser les distances. Ici la Kinect fournit directement la mesure de distance, on peut donc connaitre la position des points observés dans chaque image. 1. Points d intérêt Pour estimer le mouvement de la caméra entre deux images il faut pouvoir déterminer comment ont bougés les objets observés. Pour cela on ne peut utiliser que des objets visibles dans les deux images et que l on est capable de retrouver facilement dans chacune d elles. Pour des raisons de simplicité, on utilise en général des points d intérêt comme objets de référence. Un point d'intérêt est un point qui caractérise de façon unique une partie de l'image. Plus précisément il s agit d un point localisé finement, augmenté de son voisinage. Pour être utile ce point doit être très bien identifié à l aide d un descripteur unique et il doit être possible de le retrouver facilement. Il existe une multitude de méthode de détection/description de points d intérêt parmi lesquelles SIFT et SURF. Il s agit de méthodes particulièrement appréciées pour leur robustesse et leur efficacité. Elles sont décrites en détails en annexe. Le principe de détection correspond à rechercher des zones d intensité lumineuse particulière et offrant une grande stabilité. Pour cela on utilise le plus souvent des méthodes basées sur le calcul du gradient de luminosité. Les extrema correspondent aux points où s annule le gradient. Il faut noter que ces points d intérêt ne sont pas nécessairement des pixels. En effet on peut obtenir la position des points avec une précision subpixellique par des méthodes d interpolation 2. Une fois les points identifiés il faut décrire l'information locale dans l'image de façon unique et aussi invariante que possible de l'échelle d observation, des rotations, des variations de luminosité etc. Pour cela on calcule un descripteur pour chaque point. On commence par déterminer une orientation privilégiée basée sur l observation de l entourage du point. Le descripteur est alors simplement une suite 2 Voir annexes 11

13 de valeurs (64 ou 128 le plus souvent) qui décrivent le voisinage à partir de cette direction privilégiée. Ceci permet de rester invariant par rotation. Figure 1: Points d'intérêt détectés entre deux images. Les traits verts symbolisent les déplacements entre deux itérations. Les traits rouges signalent les déplacements non conformes par rapport aux autres points 2. RANSAC Une fois les points d intérêts calculés dans chaque image il faut pouvoir déterminer quel est le mouvement global de la caméra. Pour cela on doit trouver quelle transformation permet de recoller correctement les deux nuages de points formés par les points d intérêt. La recherche de cette transformation est une tâche complexe, d'autant plus que les nuages sont bruités. Il existe plusieurs types de méthodes qui présentent toutes des avantages et des inconvénients, la rapidité de calcul étant souvent incompatible avec la précision. L'algorithme RANSAC (RANdom SAmple Consensus) est classiquement utilisé pour extraire un modèle d'un ensemble de données bruitées. Dans le cas présent RANSAC est utilisé pour déterminer quels sont les points qui permettent d estimer la transformation entre les deux nuages le plus correctement possible. Autrement dit RANSAC permet de filtrer les points trop bruités. Concrètement trois points dans chaque nuage sont tirés au hasard pour déterminer une base. La transformation liant les deux bases est alors calculée. Les nuages sont recollés suivant cette transformation et la distance entre chaque couple de point est estimée. Un score est alors attribué à la transformation : si beaucoup de couples de points se superposent le score est élevé, sinon il est faible. Finalement la 12

14 transformation qui possède le plus haut score est conservée : c est elle qui permet de recoller le plus de points ensemble, c est donc elle qui a le plus de chance d être juste. Cette méthode permet en plus d évaluer la transformation liant les deux nuages de point de filtrer les points qui n entrent pas dans le modèle principal. L estimation de mouvement avec RANSAC est en générale assez bonne mais dans le cadre de la construction d une carte il est préférable d affiner cette estimation avec une autre méthode comme ICP. 3. ICP ICP (Iterative Closest Point) est un algorithme qui permet de minimiser la distance entre deux nuages de points A et B. Il est utilisé notamment lorsque l'on veut reconstruire des objets 3D à partir de différentes vues, pour la construction de cartes etc. L'avantage d'icp par rapport à RANSAC est qu'il permet d'estimer les mouvements avec une grande finesse. Il nécessite cependant en entrée une estimation de la transformation a trouver sans quoi l'algorithme peut rester bloqué dans une configuration non optimale (minimum local). Le principe de l'algorithme est assez simple. Il consiste à appareiller les points deux à deux en utilisant une fonction de cout quadratique (distance euclidienne). A chaque itération on estime la transformation entre les deux nuages A et B, la source et la cible, à partir de ces couples de points. On déplace le nuage cible conformément à la transformation calculée et la distance entre les deux nuages est alors réévaluée. L'algorithme stoppe lorsque la distance minimale entre les deux nuages est atteinte. Celle-ci est fixée au début de l'algorithme en fonction de la précision souhaitée. De cette manière on obtient une estimation fine de la transformation entre les deux nuages de points qui permet un recollage presque parfait. Avec ces méthodes combinées on peut donc estimer le déplacement de la caméra entre deux images successives. On reconstruit alors au fur et à mesure des déplacements la trajectoire de la caméra tout en modélisant l espace 3D. Cependant bien que la précision de ces méthodes soit bonne, on constate une dérive de la position au cours du temps due à l accumulation des erreurs de mesure. Ceci s observe notamment lorsque le robot après avoir parcouru un certain trajet revient à une position déjà visitée. La localisation courante du robot est alors souvent différente de la localisation initiale. Il est donc nécessaire de créer une boucle de supervision qui détecte lorsque le robot repasse par un endroit déjà exploré. L algorithme permet alors en constatant l erreur sur l estimation de position de corriger la trajectoire et de la rendre plus cohérente. Cette étape est nommée fermeture de boucle. Par ailleurs la carte créée par le robot peut être optimisée en fonction de la connaissance que l on a des erreurs de mesure. L optimisation de la 13

15 carte et la détection de la fermeture de boucle sont essentielle à l obtention d une carte de qualité. C est l algorithme de SLAM qui réalise ces étapes. 14

16 III. SLAM Le SLAM est considéré comme l'un des problèmes les plus fondamentaux de la robotique moderne. Comme évoqué plus haut il permet de corriger les erreurs accumulées pendant la phase d estimation de mouvement en vue d obtenir un modèle cohérent de l environnement. Cette partie présente le problème formellement ainsi que ses trois principaux paradigmes. 1. Définition du problème Un robot mobile, doté de la capacité de percevoir son environnement, explore un milieu inconnu. Il part d'un point de coordonnées connues x0. L'estimation du mouvement du robot est entachée d'incertitudes à chaque mesure, qui rendent l'estimation de position de plus en plus imprécise. Le SLAM vise à résoudre le problème de la création d'une carte non biaisée de l'environnement dans ce contexte. Formellement on utilise les probabilités pour décrire le problème. Soit x t la position du robot à l'instant t (en 2D ou en 3D), on note ={ 0, 1,..., } La trajectoire du robot jusqu'à l'instant T. Soit ut l'estimation de mouvement faite entre les instant t-1 et t par l'odométrie. On note: ={ 0, 1,..., } L ensemble du chemin parcouru jusqu'à l'instant T. Enfin soit m la carte de l'environnement réel, considéré comme statique. Les mesure faites par le robot mettent en relation les estimations de déplacement x t et la carte observée, m. Si l'on considère que le robot fait une mesure en chaque point alors on peut noter la séquence de mesures: = { 1, 2, 3,..., } Le problème est maintenant de retrouver un modèle de l'environnement m ainsi que la trajectoire XT du robot à partir de l'odométrie UT et des observations ZT. 15

17 Il existe deux formes de SLAM. Le premier nommé «online problem» consiste à calculer à chaque instant la position actuelle du robot en fonction des estimations de mouvements et des observations ce qui se note: (,, ) La seconde est nommée «full SLAM problem» et consiste cette fois à calculer à chaque instant l'ensemble de la trajectoire à partir de l'odométrie et des observations. On définit alors ce problème par: (,, ) Enfin pour résoudre le problème du SLAM, le robot a besoin de deux informations supplémentaires que sont : le modèle reliant les mesures issues de l'odométrie avec les positions du robot le modèle permettant de relier les mesures zt avec la position du robot. Ces modèles sont exprimés respectivement par les formules ( 1, ) qui traduit la probabilité d'être à un point de coordonnées xt en partant du point xt-1 et en parcourant le chemin ut ; et (, ) qui est la probabilité de faire l'observation zt en étant à la position donnée xt connaissant m. 2. Principaux paradigmes Il existe trois manières principales de traiter le problème du SLAM dont dérivent beaucoup d'algorithmes. 2.1 EKF-SLAM La première méthode apparue est basée sur le filtrage de Kalman Etendue. Elle utilise un vecteur d'état pour représenter la position du robot et des amers dans la scène, auquel est associé une matrice d'erreur représentant les incertitudes sur les positions, les observations et les corrélations entre les différentes variables du vecteur d'état. Alors que le robot se déplace le vecteur d'état et la matrice d'erreurs sont mis à jour en utilisant un filtre de Kalman étendu. A chaque nouvel amer observé de nouvelles variables d'état sont ajoutés au vecteur d'état du système; la taille de la matrice de covariance croit quadratiquement. 16

18 Cette approche a été la première développée. Elle est de moins en moins utilisée aujourd'hui notamment du fait des temps de calcul qui la rendent moins intéressante que les autres. 2.2 SLAM basé sur les filtres particulaires Une seconde approche pour traiter le problème du slam est basée sur l'utilisation de filtres particulaires. Le principe est de suivre un grand nombre d'hypothèses en parallèle qui sont autant de trajectoires possibles. Ces différentes hypothèses correspondent à un échantillonnage de la distribution de probabilité des trajectoires. Pour chacune d'elles on construit la carte en fonction des perceptions du robot à l'aide d'un filtre de Kalman. Cependant dans ce cas le traitement est simplifié puisque la trajectoire est connue: les perceptions successives des différents amers ne sont plus corrélées et la matrice de covariance se simplifie puisqu'on ne mémorise plus que les variances individuelles des amers. La complexité des calculs passe ainsi de 0(N²) à O(N). Le problème principal de cette technique est que la représentation de la carte et de la trajectoire du robot devient vite très lourde. En effet il faut que le nombre de particules soit suffisant pour échantillonner correctement la distribution de probabilité des trajectoires. Par ailleurs lors de fermeture de boucle, seules les trajectoires correctes sont retenues ce qui entraine un ré-échantillonnage du filtre particulaire, conduisant à une forte perte d'information. Ce problème est d'autant plus important que l'environnement contient plusieurs cycles (plusieurs ré échantillonnages successifs). 2.3 Graph-SLAM La troisième méthode est basée sur la théorie des graphes. Elle consiste à considérer les positions successives du robot et des différents amers comme les nœuds d'un graphe. Les arrêtes sont alors constituées des contraintes fournies par l'odométrie ou par l'observation des amers. Pour illustrer ce propos voyons comment procède le robot pour construire la carte Construction d'un graphe A l'instant de départ le robot observe le amer 1. Le graphe est donc constitué de deux nœuds, la position du robot et celle du amer, ainsi que d'une arrête : la contrainte observationnelle entre le robot et le amer 1. 17

19 A l'instant t2 le robot a avancé d'une distance u2 fournie par l'odométrie et observe les amers 1 et 2. Le graphe est maintenant constitué de quatre nœuds: les positions du robot à t1 et t2, reliées par l'estimation de déplacement (odométrie); les positions des amers, reliées aux positions du robot par les contraintes observationnelles. Figure 2 : exemple de création d un graphe Optimisation du graphe Une fois le graphe construit on cherche à l'optimiser en minimisant l'erreur sur les contraintes du graphe. Du fait des incertitudes sur les mesures il existe en effet des erreurs dans l'estimation de position du robot et des amers. Le «full SLAM problem» a été défini plus haut comme la probabilité d'avoir une trajectoire et un modèle de l'environnement pour un ensemble de mesures données (odométrie plus observations), ce qui s écrit (,, ). En prenant le log on obtient: log (,, ) = + log ( 1, ) + (, ) Chacun des éléments de cette somme correspond à un mouvement du robot et forme une arrête du graphe. L'optimisation du graphe consiste donc finalement à calculer :, =, (,, ) Où * est le symbole pour la solution optimale. Le gros avantage du Graph-SLAM est qu'il permet de gérer les cartes composées d'un très grand nombre de nœuds (>10⁸ à ce jour) ce qui est impossible avec les autres techniques. Cependant l'optimisation du graphe peut être très lourde. 18

20 3. Recherches actuelles Le SLAM a fait l'objet de nombreux développements ces dernières années qui ont permis d'arriver à des solutions variées plus ou moins performantes. Il existe aujourd'hui plusieurs algorithmes ayant fait leurs preuves pour la cartographie 2D avec des caméras ou des Lasers et plusieurs logiciels proposent leur propre module de SLAM 2D. L'objectif est aujourd'hui de passer à la 3D. Reconstruire l'environnement intégralement permettrait de surpasser les performances des robots actuels en leur permettant d'accéder à des données beaucoup plus riches. La cartographie 3D autorise en effet de rapprocher considérablement la perception des robots de la vision animale et donc d'améliorer sensiblement leur potentielle compréhension de leur environnement. Pour évoluer dans un environnement complexe il faut en effet être capable d'en percevoir la complexité. La cartographie 3D permettrait en outre de surmonter des problèmes classiques rencontrés en 2D comme la détection d'une table ou d'obstacles situés à différentes hauteurs, d'envisager l'exploration de milieux en plusieurs dimensions (plusieurs étages d'un bâtiment, milieu naturel etc) d'ajouter d'autres types d'informations aux cartes que les informations métriques, comme par exemple la couleur. Le passage à la 3D présente bien sur des défis supplémentaires notamment en termes de volume de données à traiter. Cependant comme nous le verrons dans la suite ceci est aujourd'hui possible. 19

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure

Plus en détail

Détection des points d intérêt et Segmentation des images RGB-D. Présentée par : Bilal Tawbe. Semaine de la recherche de l UQO

Détection des points d intérêt et Segmentation des images RGB-D. Présentée par : Bilal Tawbe. Semaine de la recherche de l UQO Détection des points d intérêt et Segmentation des images RGB-D Présentée par : Bilal Tawbe Semaine de la recherche de l UQO 25 Mars 2015 1. Introduction Les méthodes de détection de points d intérêt ont

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes.

Introduction. I Étude rapide du réseau - Apprentissage. II Application à la reconnaissance des notes. Introduction L'objectif de mon TIPE est la reconnaissance de sons ou de notes de musique à l'aide d'un réseau de neurones. Ce réseau doit être capable d'apprendre à distinguer les exemples présentés puis

Plus en détail

CALCULS PARALLÈLES ET APPLICATIONS LA VISION PAR ORDINATEUR AU CEA LIST, QUELS CHOIX ARCHITECTURAUX?

CALCULS PARALLÈLES ET APPLICATIONS LA VISION PAR ORDINATEUR AU CEA LIST, QUELS CHOIX ARCHITECTURAUX? CALCULS PARALLÈLES ET APPLICATIONS LA VISION PAR ORDINATEUR AU CEA LIST, QUELS CHOIX ARCHITECTURAUX? LABORATOIRE DE VISION ET INGÉNIERIE DES CONTENUS (LVIC) Fusion multimedia : extraction multimodale d

Plus en détail

LE PROBLEME DU PLUS COURT CHEMIN

LE PROBLEME DU PLUS COURT CHEMIN LE PROBLEME DU PLUS COURT CHEMIN Dans cette leçon nous définissons le modèle de plus court chemin, présentons des exemples d'application et proposons un algorithme de résolution dans le cas où les longueurs

Plus en détail

Approche hybride de reconstruction de facettes planes 3D

Approche hybride de reconstruction de facettes planes 3D Cari 2004 7/10/04 14:50 Page 67 Approche hybride de reconstruction de facettes planes 3D Ezzeddine ZAGROUBA F. S.T, Dept. Informatique. Lab. d Informatique, Parallélisme et Productique. Campus Universitaire.

Plus en détail

modélisation solide et dessin technique

modélisation solide et dessin technique CHAPITRE 1 modélisation solide et dessin technique Les sciences graphiques regroupent un ensemble de techniques graphiques utilisées quotidiennement par les ingénieurs pour exprimer des idées, concevoir

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR

Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Mickaël Bergem 25 juin 2014 Maillages et applications 1 Table des matières Introduction 3 1 La modélisation numérique de milieux urbains

Plus en détail

Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction

TECH. INFOTECH # 34 Solvabilité 2 : Le calcul du capital économique dans le cadre d un modèle interne. Introduction INFO # 34 dans le cadre d un modèle interne Comment les méthodes d apprentissage statistique peuvent-elles optimiser les calculs? David MARIUZZA Actuaire Qualifié IA Responsable Modélisation et Solvabilité

Plus en détail

Chapitre 1 : Introduction aux bases de données

Chapitre 1 : Introduction aux bases de données Chapitre 1 : Introduction aux bases de données Les Bases de Données occupent aujourd'hui une place de plus en plus importante dans les systèmes informatiques. Les Systèmes de Gestion de Bases de Données

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail

Depuis le lancement de

Depuis le lancement de TOPO L acquisition de données mobiles en pratique Comment sont acquises les données terrain qui alimentent les logiciels grand public ou professionnels de navigation? Depuis le lancement de Google Street

Plus en détail

COMMUNICATEUR BLISS COMMANDE PAR UN SENSEUR DE POSITION DE L'OEIL

COMMUNICATEUR BLISS COMMANDE PAR UN SENSEUR DE POSITION DE L'OEIL COMMUNICATEUR BLISS COMMANDE PAR UN SENSEUR DE POSITION DE L'OEIL J. TICHON(1) (2), J.-M. TOULOTTE(1), G. TREHOU (1), H. DE ROP (2) 1. INTRODUCTION Notre objectif est de réaliser des systèmes de communication

Plus en détail

THÉORIE DE L'INFORMATION : RAPPELS

THÉORIE DE L'INFORMATION : RAPPELS THÉORIE DE L'INFORMATION : RAPPELS 1920 : premières tentatives de définition de mesure de l'information à partir de 1948 : travaux de Shannon Théorie de l'information discipline fondamentale qui s'applique

Plus en détail

L INFORMATION GEOGRAPHIQUE

L INFORMATION GEOGRAPHIQUE Champs sur Marne ENSG/CERSIG Le 19-nove.-02 L INFORMATION GEOGRAPHIQUE Archivage Le Système d information géographique rassemble de l information afin de permettre son utilisation dans des applications

Plus en détail

Localisation de caméra par recalage 2D-3D

Localisation de caméra par recalage 2D-3D Localisation de caméra par recalage 2D-3D Perception pour le Véhicule Intelligent (PVI 2014) Lundi 30 juin 2014 Dandi Pandi Paudel Cédric Demonceaux Le2i UMR CNRS 6306 Pascal Vasseur Litis EA 4108 In So

Plus en détail

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives

Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Quels usages des données massives pour les statistiques publiques? Enjeux, méthodes et perspectives Stéphanie Combes et Pauline Givord (DMCSI) INSEE-DMSCI 02/04/2015 Plan Qu'est-ce que le Big Data? Les

Plus en détail

Utilisation de la Vidéo Pour la Mesure des Mouvements en Dynamique du Véhicule Video Movement Estimation in Vehicle Dynamics

Utilisation de la Vidéo Pour la Mesure des Mouvements en Dynamique du Véhicule Video Movement Estimation in Vehicle Dynamics Utilisation de la Vidéo Pour la Mesure des Mouvements en Dynamique du Véhicule Video Movement Estimation in Vehicle Dynamics A. Luc THOMAS 1, lthomas@rms-signal.com 07-1248 1: RMS, Le Myaris, 355 rue Albert

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

Ebauche Rapport finale

Ebauche Rapport finale Ebauche Rapport finale Sommaire : 1 - Introduction au C.D.N. 2 - Définition de la problématique 3 - Etat de l'art : Présentatio de 3 Topologies streaming p2p 1) INTRODUCTION au C.D.N. La croissance rapide

Plus en détail

Bilan de thèse à mi-parcours

Bilan de thèse à mi-parcours Bilan de thèse à mi-parcours Benjamin Lévy 26 mars 2012 Introduction La thèse de doctorat d informatique (école doctorale 130, EDITE) dont le titre officiel est le suivant : Avatars capables d écoute,

Plus en détail

Pourquoi l apprentissage?

Pourquoi l apprentissage? Pourquoi l apprentissage? Les SE sont basés sur la possibilité d extraire la connaissance d un expert sous forme de règles. Dépend fortement de la capacité à extraire et formaliser ces connaissances. Apprentissage

Plus en détail

N. Paparoditis, Laboratoire MATIS

N. Paparoditis, Laboratoire MATIS N. Paparoditis, Laboratoire MATIS Contexte: Diffusion de données et services locaux STEREOPOLIS II Un véhicule de numérisation mobile terrestre Lasers Caméras Système de navigation/positionnement STEREOPOLIS

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées :

a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées : a) La technique de l analyse discriminante linéaire : une brève présentation. Nous nous limiterons ici à l'analyse discriminante linéaire et à deux groupes : - linéaire, la variante utilisée par ALTMAN

Plus en détail

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007

Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007 Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................

Plus en détail

Techniques de DM pour la GRC dans les banques Page 11

Techniques de DM pour la GRC dans les banques Page 11 Techniques de DM pour la GRC dans les banques Page 11 II.1 Introduction Les techniques de data mining sont utilisé de façon augmentaté dans le domaine économique. Tels que la prédiction de certains indicateurs

Plus en détail

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources

RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils

Plus en détail

Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation

Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation Laboratoire Vision & Robotique Comparaison de Relevés 3D issus de plusieurs Systèmes de Numérisation Emilie KOENIG, Benjamin ALBOUY, Sylvie TREUILLET, Yves Lucas Contact : Sylvie Treuillet Polytech'Orléans

Plus en détail

basée sur le cours de Bertrand Legal, maître de conférences à l ENSEIRB www.enseirb.fr/~legal Olivier Augereau Formation UML

basée sur le cours de Bertrand Legal, maître de conférences à l ENSEIRB www.enseirb.fr/~legal Olivier Augereau Formation UML basée sur le cours de Bertrand Legal, maître de conférences à l ENSEIRB www.enseirb.fr/~legal Olivier Augereau Formation UML http://olivier-augereau.com Sommaire Introduction I) Les bases II) Les diagrammes

Plus en détail

LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION

LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION DES NOMBRES par Jean-Luc BREGEON professeur formateur à l IUFM d Auvergne LE PROBLÈME DE LA REPRÉSENTATION DES NOMBRES On ne conçoit pas un premier enseignement

Plus en détail

Les traitements de texte : open office writer

Les traitements de texte : open office writer Les traitements de texte : open office writer Qu'est ce qu'un traitement de texte? Peut être le paragraphe qui passionnera le moins, il apparaît néanmoins nécessaire de savoir ce qu'est (de manière grossière)

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

Projet Télédétection. Vidéo Surveillance. Deovan Thipphavanh Mokrani Abdeslam Naoui Saïd. Master 2 Pro SIS - 2005 / 2006

Projet Télédétection. Vidéo Surveillance. Deovan Thipphavanh Mokrani Abdeslam Naoui Saïd. Master 2 Pro SIS - 2005 / 2006 Projet Télédétection Vidéo Surveillance Deovan Thipphavanh Mokrani Abdeslam Naoui Saïd Master 2 Pro SIS - 2005 / 2006 Plan Introduction Lecture des images Détection des objets mouvants Détection des anomalies

Plus en détail

Préparé au Laboratoire d Analyse et d Architecture des Systèmes du CNRS

Préparé au Laboratoire d Analyse et d Architecture des Systèmes du CNRS Année 2004 THESE Préparé au Laboratoire d Analyse et d Architecture des Systèmes du CNRS En vue de l obtention du titre de Docteur de l Institut National Polytechnique de Toulouse Spécialité : Informatique

Plus en détail

Calage robuste et accéléré de nuages de points en environnements naturels via l apprentissage automatique

Calage robuste et accéléré de nuages de points en environnements naturels via l apprentissage automatique Calage robuste et accéléré de nuages de points en environnements naturels via l apprentissage automatique Mémoire Maxime Latulippe Maîtrise en informatique Maître ès sciences (M.Sc.) Québec, Canada Maxime

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Structure défendue par H. Fayol, qui met en avant l'unité de commandement : chaque individu n'a qu'un seul supérieur.

Structure défendue par H. Fayol, qui met en avant l'unité de commandement : chaque individu n'a qu'un seul supérieur. Structure défendue par H. Fayol, qui met en avant l'unité de commandement : chaque individu n'a qu'un seul supérieur. Découpage des activités (et donc des responsabilités) par fonctions, par unités de

Plus en détail

De l automatisme à la domotique...

De l automatisme à la domotique... Domotique La Et si le futur était déja là D De l automatisme à la domotique... Simples ou complexes, les systèmes automatisés sont partout dans notre environnement quotidien. Les produits automatisés sont

Plus en détail

GRAPHISME SUR ORDINATEUR

GRAPHISME SUR ORDINATEUR LE GRAPHISME SUR ORDINATEUR UNE HISTOIRE DE POINTS... 1 ) L'information : Sa «dimension» : le pixel Sa profondeur 2 ) La représentation de l'information : Sur écran, sur papier Le dpi 3 ) L'acquisition

Plus en détail

Visibilité polygone à polygone :

Visibilité polygone à polygone : Introduction Visibilité polygone à polygone : calcul, représentation, applications Frédéric Mora Université de Poitiers - Laboratoire SIC 10 juillet 2006 1 La visibilité Introduction Contexte L espace

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 7 - Data

BI = Business Intelligence Master Data-ScienceCours 7 - Data BI = Business Intelligence Master Data-Science Cours 7 - Data Mining Ludovic DENOYER - UPMC 30 mars 2015 Ludovic DENOYER - Typologie des méthodes de Data Mining Différents types de méthodes : Méthodes

Plus en détail

Chapitre V : La gestion de la mémoire. Hiérarchie de mémoires Objectifs Méthodes d'allocation Simulation de mémoire virtuelle Le mapping

Chapitre V : La gestion de la mémoire. Hiérarchie de mémoires Objectifs Méthodes d'allocation Simulation de mémoire virtuelle Le mapping Chapitre V : La gestion de la mémoire Hiérarchie de mémoires Objectifs Méthodes d'allocation Simulation de mémoire virtuelle Le mapping Introduction Plusieurs dizaines de processus doivent se partager

Plus en détail

Administration Réseau

Administration Réseau M1 Réseaux Informatique et Applications Administration Réseau Date: 02/04/07 Auteurs: Alexis Demeaulte, Gaël Cuenot Professeurs: Patrick Guterl Table des matières 1Introduction...3 2HP OPENVIEW...3 3Les

Plus en détail

Cours de Tables / Ordinateur - 1

Cours de Tables / Ordinateur - 1 Cours de Tables / Ordinateur - 1 Cours de Tables / Ordinateur - 2 Cours de Tables / Ordinateur - 3 Ordinateurs de Plongée Introduction Principe de Fonctionnement Avantages et inconvénients Les différents

Plus en détail

Série TD 3. Exercice 4.1. Exercice 4.2 Cet algorithme est destiné à prédire l'avenir, et il doit être infaillible! Exercice 4.3. Exercice 4.

Série TD 3. Exercice 4.1. Exercice 4.2 Cet algorithme est destiné à prédire l'avenir, et il doit être infaillible! Exercice 4.3. Exercice 4. Série TD 3 Exercice 4.1 Formulez un algorithme équivalent à l algorithme suivant : Si Tutu > Toto + 4 OU Tata = OK Alors Tutu Tutu + 1 Tutu Tutu 1 ; Exercice 4.2 Cet algorithme est destiné à prédire l'avenir,

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

Visualisation des lignes de crêtes apparentes de modèles 3D

Visualisation des lignes de crêtes apparentes de modèles 3D Visualisation des lignes de crêtes apparentes de modèles 3D HAEHNEL Jonathan Université de Strasbourg 17 mai 2013 Haehnel Jonathan Visualisation des lignes de crêtes apparentes de modèles 3D 17 mai 2013

Plus en détail

Cybernet : Utilisation de métaphores et des techniques de réalité virtuelle pour la représentation de données. Application à la gestion de réseau.

Cybernet : Utilisation de métaphores et des techniques de réalité virtuelle pour la représentation de données. Application à la gestion de réseau. Cybernet : Utilisation de métaphores et des techniques de réalité virtuelle pour la représentation de données. Application à la gestion de réseau. P. Abel*, P. Gros*, D. Loisel* & J.P. Paris** Institut

Plus en détail

Les clients puissance cube

Les clients puissance cube LETTRE CONVERGENCE Les clients puissance cube L intelligence artificielle au service du marketing des services N 28 To get there. Together. A PROPOS DE BEARINGPOINT BearingPoint est un cabinet de conseil

Plus en détail

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes).

2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D, E, F (voir pages suivantes). SUJET DE CONCOURS Sujet Exploitation d une documentation scientifique sur le thème de l énergie 2 e partie de la composante majeure (8 points) Les questions prennent appui sur six documents A, B, C, D,

Plus en détail

Business Intelligence avec SQL Server 2012

Business Intelligence avec SQL Server 2012 Editions ENI Business Intelligence avec SQL Server 2012 Maîtrisez les concepts et réalisez un système décisionnel Collection Solutions Informatiques Extrait Alimenter l'entrepôt de données avec SSIS Business

Plus en détail

ALGORITHMES POUR LA VISUALISATION SCIENTIFIQUE

ALGORITHMES POUR LA VISUALISATION SCIENTIFIQUE BAZEILLE Stéphane MOUGEL Baptiste IUP3 ALGORITHMES POUR LA VISUALISATION SCIENTIFIQUE EN Année 2003/2004 1 TABLE DES MATIERES Home... 3 Introduction.... 3 Marching Square... 4 Algorithme....4 Programmation...4

Plus en détail

Les bases théoriques du numérique

Les bases théoriques du numérique Les bases théoriques du numérique 1. Différences entre signaux analogiques et signaux numériques L analogique et le numérique sont deux procédés pour transporter et stocker des données. (de type audio,

Plus en détail

Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP)

Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP) Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP) Loris Marchal, Guillaume Melquion, Frédéric Tronel 21 juin 2011 Remarques générales à propos de l épreuve Organisation

Plus en détail

Comment Utiliser les Versions, les Modification, les Comparaisons, Dans les Documents

Comment Utiliser les Versions, les Modification, les Comparaisons, Dans les Documents Comment Utiliser les Versions, les Modification, les Comparaisons, Dans les Documents Diffusé par Le Projet Documentation OpenOffice.org Table des Matières 1. Les Versions...3 2. Les Modifications...5

Plus en détail

Information quantique

Information quantique Information quantique J.M. Raimond LKB, Juin 2009 1 Le XX ème siècle fut celui de la mécanique quantique L exploration du monde microscopique a été la grande aventure scientifique du siècle dernier. La

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Utilisation de l AFM pour l étude d échantillons Acquisition des données et traitement d image Stage de master 1

Utilisation de l AFM pour l étude d échantillons Acquisition des données et traitement d image Stage de master 1 Utilisation de l AFM pour l étude d échantillons Acquisition des données et traitement d image Stage de master 1 Farida Bendriaa, Virginie Hoel, Henri Happy Institut d'electronique et de Microélectronique

Plus en détail

VISUALISATION EN TEMPS RÉEL PERSPECTIVES À POINT DE VUE MOBILE

VISUALISATION EN TEMPS RÉEL PERSPECTIVES À POINT DE VUE MOBILE 167 VISUALISATION EN TEMPS RÉEL DE J. SAPALY On sait que l'exploration visuelle consiste en une succession de fixations du regard, séparées par des mouvements oculaires saccadés, chaque fixation amenant

Plus en détail

MS PROJECT 2000. Prise en main. Date: Mars 2003. Anère MSI. 12, rue Chabanais 75 002 PARIS E mail : jcrussier@anere.com Site : www.anere.

MS PROJECT 2000. Prise en main. Date: Mars 2003. Anère MSI. 12, rue Chabanais 75 002 PARIS E mail : jcrussier@anere.com Site : www.anere. DOCUMENTATION MS PROJECT 2000 Prise en main Date: Mars 2003 Anère MSI 12, rue Chabanais 75 002 PARIS E mail : jcrussier@anere.com Site : www.anere.com Le présent document est la propriété exclusive d'anère

Plus en détail

3D visualization techniques to support slicing-based. program comprehension. Présentation dans le cadre du cours ift6251 Guillaume Langelier

3D visualization techniques to support slicing-based. program comprehension. Présentation dans le cadre du cours ift6251 Guillaume Langelier 3D visualization techniques to support slicing-based program comprehension Par : J. Rilling et S.P. Mudur Présentation dans le cadre du cours ift6251 Guillaume Langelier 1 Préambule Visualisation en génie

Plus en détail

Opérations de base sur ImageJ

Opérations de base sur ImageJ Opérations de base sur ImageJ TPs d hydrodynamique de l ESPCI, J. Bico, M. Reyssat, M. Fermigier ImageJ est un logiciel libre, qui fonctionne aussi bien sous plate-forme Windows, Mac ou Linux. Initialement

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Catalogue des Sujets de PFE 2015

Catalogue des Sujets de PFE 2015 Catalogue des Sujets de PFE 2015 P é p i n i è r e d e n t r e p r i s e S o f t T e c h T e c h n o p o l e d e S o u s s e R o u t e d e l a C e i n t u r e, B P : 2 4 S o u s s e 4 0 5 9 - T u n i s

Plus en détail

3 e Atelier des Étudiants Gradués en Actuariat et Mathématiques Financières. 3 rd Graduate Students Workshop on Actuarial and Financial Mathematics

3 e Atelier des Étudiants Gradués en Actuariat et Mathématiques Financières. 3 rd Graduate Students Workshop on Actuarial and Financial Mathematics 3 e Atelier des Étudiants Gradués en Actuariat et Mathématiques Financières 3 rd Graduate Students Workshop on Actuarial and Financial Mathematics Résumé-Abstracts Organization: Ghislain Léveillé Co-organization:

Plus en détail

CONTRÔLE QUALITE DES SURFACES VISUALISATION 3D - TOPOGRAPHIE MESURE RAPIDE & SANS CONTACT PORTABLE & SIMPLE D UTILISATION POWERED BY

CONTRÔLE QUALITE DES SURFACES VISUALISATION 3D - TOPOGRAPHIE MESURE RAPIDE & SANS CONTACT PORTABLE & SIMPLE D UTILISATION POWERED BY CONTRÔLE QUALITE DES SURFACES VISUALISATION 3D - TOPOGRAPHIE MESURE RAPIDE & SANS CONTACT PORTABLE & SIMPLE D UTILISATION POWERED BY LE NOUVEL EQUIPEMENT DE MESURE OPTIMAP TM MARQUE LE DEBUT D UNE REVOLUTION

Plus en détail

Algorithmique avec Algobox

Algorithmique avec Algobox Algorithmique avec Algobox Fiche 2 Cette fiche est la suite directe de la première. 1. Instructions conditionnelles : 1.1. Reprise de la fiche 1 : Lecture d'un algorithme : ORDINATEUR INTERDIT : Après

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Chapitre 9 : Informatique décisionnelle

Chapitre 9 : Informatique décisionnelle Chapitre 9 : Informatique décisionnelle Sommaire Introduction... 3 Définition... 3 Les domaines d application de l informatique décisionnelle... 4 Architecture d un système décisionnel... 5 L outil Oracle

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Localisation robuste d un véhicule en environnement urbain à partir d un système de stéréo-vision p.

Localisation robuste d un véhicule en environnement urbain à partir d un système de stéréo-vision p. I C A R E Localisation robuste d un véhicule en environnement urbain à partir d un système de stéréo-vision Nicolas SIMOND Projet ICARE Institut National de Recherche en Informatique et Automatique Sophia-Antipolis,

Plus en détail

Algorithmes de recherche

Algorithmes de recherche Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème

Plus en détail

Once the installation is complete, you can delete the temporary Zip files..

Once the installation is complete, you can delete the temporary Zip files.. Sommaire Installation... 2 After the download... 2 From a CD... 2 Access codes... 2 DirectX Compatibility... 2 Using the program... 2 Structure... 4 Lier une structure à une autre... 4 Personnaliser une

Plus en détail

Modélisation et optimisation participative des processus métier assistées par un jeu de rôles

Modélisation et optimisation participative des processus métier assistées par un jeu de rôles Modélisation et optimisation participative des processus métier assistées par un jeu de rôles Les organisations doivent aujourd hui s'adapter de plus en plus vite aux évolutions stratégiques, organisationnelles

Plus en détail

Algorithmes d'apprentissage

Algorithmes d'apprentissage Algorithmes d'apprentissage 1 Agents qui apprennent à partir d'exemples La problématique : prise de décision automatisée à partir d'un ensemble d'exemples Diagnostic médical Réponse à une demande de prêt

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

ORACLE TUNING PACK 11G

ORACLE TUNING PACK 11G ORACLE TUNING PACK 11G PRINCIPALES CARACTÉRISTIQUES : Conseiller d'optimisation SQL (SQL Tuning Advisor) Mode automatique du conseiller d'optimisation SQL Profils SQL Conseiller d'accès SQL (SQL Access

Plus en détail

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*)

Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Dans nos classes 645 Utilisation du logiciel Cabri 3D de géométrie dans l espace (*) Jean-Jacques Dahan(**) Historiquement, la géométrie dynamique plane trouve ses racines chez les grands géomètres de

Plus en détail

Leica Application Suite

Leica Application Suite Leica Application Suite Macro Editor et Macro Runner (Éditeur de macros et Exécuteur de macros) Personnalisées et automatisées 2 Les instructions peuvent être momentanément suspendues» de manière optionnelle

Plus en détail

Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. pierre.chauvet@uco.fr

Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. pierre.chauvet@uco.fr Atelier Transversal AT11 Activité «Fourmis» Pierre Chauvet pierre.chauvet@uco.fr Ant : un algorithme inspiré de l éthologie L éthologie Etude scientifique des comportements animaux, avec une perspective

Plus en détail

OHANA-SPE-ALAR. OHANA : Spécifications Système d'alignement Automatique de la Ligne à Retard. Version 1.0

OHANA-SPE-ALAR. OHANA : Spécifications Système d'alignement Automatique de la Ligne à Retard. Version 1.0 -SPE-ALAR : Spécifications Système d'alignement Automatique de la Ligne à Retard Version 1.0 Observatoire de Paris 61, avenue de l Observatoire 75014 Paris France tél 33 (0)1 40 51 21 58 fax 33 (0)1 43

Plus en détail

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France

Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Journée Esri «SIG BTP» La dimension géographique & le BTP. 8 février 2011

Journée Esri «SIG BTP» La dimension géographique & le BTP. 8 février 2011 Journée Esri «SIG BTP» La dimension géographique & le BTP 1 vos interlocuteurs Eric Bessone Ingénieur en Informatique (RO & IA) Expertise «Images» 2D, 3D & Vidéo depuis 1990 Metrologie, Symbolics (ateliers

Plus en détail

Étude préalable Fiche 1

Étude préalable Fiche 1 Fiche 1 L'EXPRESSION ET LA VALIDATION DU BESOIN : Avant de concevoir un objet technique, il est nécessaire de s'assurer que le besoin existe et de bien préciser ce qui est attendu par les futurs utilisateurs.

Plus en détail

Guide de l'utilisateur de l'utilitaire d'installation de caméra Avigilon

Guide de l'utilisateur de l'utilitaire d'installation de caméra Avigilon Guide de l'utilisateur de l'utilitaire d'installation de caméra Avigilon Version 4.10 PDF-CIT-D-Rev1_FR Copyright 2011 Avigilon. Tous droits réservés. Les informations présentées sont sujettes à modification

Plus en détail

Fouille de données orientée motifs, méthodes et usages.

Fouille de données orientée motifs, méthodes et usages. Fouille de données orientée motifs, méthodes et usages. François RIOULT GREYC - Équipe Données-Documents-Langues CNRS UMR 6072 Université de Caen Basse-Normandie France Résumé La fouille de données orientée

Plus en détail

Société de Geo-engineering

Société de Geo-engineering Gestion de la maintenance des réseaux le géoréférencement inertiel direct, technologie automatisée d'acquisition d'objets 2D / 3D vers les SIG Société de Geo-engineering Activité d'expertise et d'ingénierie

Plus en détail

Simulations de Monte Carlo en finance : Pricer d option

Simulations de Monte Carlo en finance : Pricer d option Emma Alfonsi, Xavier Milhaud - M2R SAF Simulations de Monte Carlo en finance : Pricer d option Sous la direction de M. Pierre Alain Patard ISFA - Mars 2008 . 1 Table des matières 1 Introduction 4 2 Un

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

Conception d un système de localisation pour un robot mobile : utilisation d un télémètre laser et placement d amers dans l environnement

Conception d un système de localisation pour un robot mobile : utilisation d un télémètre laser et placement d amers dans l environnement DIPLOME D ÉTUDES APPROFONDIES de l Institut National Polytechnique de Grenoble Spécialité : Imagerie, Vision et Robotique Conception d un système de localisation pour un robot mobile : utilisation d un

Plus en détail