SLAM Visuel 3D pour robot mobile autonome

Dimension: px
Commencer à balayer dès la page:

Download "SLAM Visuel 3D pour robot mobile autonome"

Transcription

1 Master de Sciences Mention «Imagerie, Robotique et Ingénierie pour le Vivant» - Projet de Fin D étude - SLAM Visuel 3D pour robot mobile autonome Romain Drouilly Encadrants ECA Benoit Morisset Pierrick Daniel Encadrant ENSPS Bernard Bayle Septembre 2011

2 Résumé Un robot mobile est une machine capable de se mouvoir de manière autonome quelque soit l endroit où elle se trouve et sans la supervision de l homme. Pour cela le robot doit pouvoir cartographier son environnement à mesure qu il l explore. Ce problème de la navigation autonome d un robot dans un environnement inconnu est nommé SLAM (SLAM signifie Localisation et Cartographie Simultanées). C est un domaine de recherche très actif depuis plus de vingt ans et il est maintenant possible de faire du SLAM en 2D. Le nouveau challenge est de faire du SLAM en 3D. C est le but de cette étude. Comme il sera montré il est désormais possible de résoudre le problème du SLAM3D grâce à des capteurs innovants et des algorithmes performants. Nous montrerons qu il est possible de construire en temps réel des cartes en 3D très précises pour modéliser des environnements intérieurs. En ajoutant des textures il est alors possible de créer des vues très réalistes de la zone explorée. Par ailleurs on peut extraire en temps réel des données à partir de la carte fournie par le SLAM, dans le but de fournir au robot des informations sur les objets présents dans la scène. Ceci permet d améliorer significativement la connaissance que le robot a de l environnement et permet de le faire agir intelligemment. Abstract A mobile robot is an intelligent machine able to navigate by itself in any places without human s supervision. To do this robot has to map its environment while it is exploring it. The problem of a robot navigating an unknown environment is called the SLAM problem (SLAM stands for Simultaneous Localization And Mapping). It has been a very active field of research for more than twenty years and we now have solutions to address the 2D SLAM problem. The new challenge is to tackle the 3D SLAM question. This is the goal of this study. As it will be shown in this report it is now possible to address the 3D SLAM problem thanks to cutting edge sensors and very effective algorithms. We will demonstrate that it is possible to build in real-time very precise 3D maps to model indoor environments. Adding texture it is possible to create very realistic views of the explored area. Moreover we can extract data in real-time from the model built by the SLAM to provide the robot with information about objects in the scene. This significantly improves the knowledge the robot has of its environment and allows to make it act in an intelligent way. 1

3 Remerciements En tout premier lieu je tiens à remercier Benoit Morisset qui a suivit mon travail tout au long de ces six mois. Nos échanges réguliers ont été pour moi une très forte source de motivations et sont pour beaucoup dans la réussite de ce stage. Ses conseils avisés m ont toujours permis d avancer efficacement dans mon travail. Ensuite je tiens à remercier Pierrick Daniel, mon maitre de stage, qui m a permis de travailler sur le sujet passionnant et plus que jamais d actualité qu est le SLAM et grâce à qui j ai découvert ce merveilleux outil qu est la Kinect. Je tiens aussi à remercier Gwenaël Dunand pour m avoir fait découvrir les Design Pattern et m avoir fait partager son expérience de la recherche et son expertise en programmation. Mes sincères remerciements vont à toute l équipe d ECA Saclay pour l accueil chaleureux dont j ai bénéficié et à toutes les personnes avec qui j ai pu partager ma passion pour la robotique. Enfin je tiens à remercier tous ceux qui, à Willow Garage ou ailleurs, au travers d initiatives collectives ou personnelles, mettent à disposition leur travail pour les progrès de tous. 2

4 Sommaire A. Introduction... 6 B. Objectifs du projet... 7 C. Introduction au problème du SLAM... 8 I. Autonomie des robots Robotique: de la Fiction à la Réalité Qu'est ce qu'un robot autonome? Percevoir son environnement... 9 II. Odométrie Visuelle Points d intérêt RANSAC ICP III. SLAM Définition du problème Principaux paradigmes Recherches actuelles IV. TORO : SLAM 3D Principe Graph-SLAM TORO : formalisme V. Segmentation des nuages de points et reconstruction 3D Principe de la segmentation Mise en œuvre: cas des objets plans D. Contribution au SLAM I. Contexte général de l étude ROS Kinect II. Analyse de l existant

5 III. Solutions retenues IV. RGBD Mapping L algorithme Estimation de mouvement Optimisation globale du graphe et fermeture de boucle Implémentation Schéma de fonctionnement du SLAM V. Descripteur NARFs Tests du détecteur Conclusion générale sur les NARFs VI. Segmentation et Reconstruction 3D Introduction Détection de plans dans un nuage de points Détection des contours d un plan Appariement de plans Problème lié à la reconstruction 3D temps réel Recollage des textures Organisation du code pour la reconstruction 3D E. Résultats I. Matériel de tests II. Test du SLAM Fidélité de la reconstruction 3D Amélioration due à ICP performances avec et sans supervision Robustesse aux variations de luminosité III. Test de la reconstruction 3D Test de la détection du sol en temps réel Test de la reconstruction 3D IV. Discussion sur le SLAM et la reconstruction 3D F. Conclusion de l étude G. Bibliographie

6 H. Annexes I. ECA Présentation du groupe ECA Les Activités du Pôle de Saclay II. Kd-tree III. SIFT Détection des points d'intérêt Calcul des descripteurs IV. SURF (Speeded Up Robust Feature) Détection de points d'intérêts Calcul des descripteurs V. Précision subpixellique

7 A. Introduction ECA conçoit des robots pour l intervention en situations extrêmes : incendie, tremblement de terre, accident nucléaire, déminage, intervention policière, renseignements etc. Dans toutes ces situations le robot vient en aide à l Homme en explorant des zones inaccessibles ou trop dangereuses pour envoyer, au moins dans un premier temps, des êtres vivants. Les robots doivent donc d une part être suffisamment autonomes pour remplir leur mission sans la supervision de l Homme et d autre part être capable de fournir à l utilisateur des informations sur la topographie du lieu, le plus souvent sous la forme d une carte. L objectif du projet est donc de développer un module permettant de rendre le robot autonome dans la tâche d exploration. Plus précisément, le module doit permettre au robot de dresser la carte d un environnement inconnu au fur et à mesure qu il l explore. Cette carte servira à la fois au robot à se localiser pour évoluer de manière autonome et à l utilisateur humain pour récupérer des informations sur les lieux explorés. Le problème de l autonomie d un robot dans la tâche d exploration d un lieu inconnu est appelé SLAM 1. C est un domaine de recherche très actif depuis plusieurs décennies et beaucoup de solutions existent pour la cartographie 2D. Le défi est ici de réaliser la modélisation en 3D de l environnement et ce uniquement à partir d informations visuelles. Après une présentation des objectifs du projet, les fondements du problème du SLAM seront présentés en détails en les replaçant dans leur contexte originel. Une présentation formelle du problème sera introduite en insistant plus particulièrement sur le paradigme qui sera utilisé dans l étude. C est ensuite le travail de stage luimême qui sera abordé avec la présentation successive des études sur lesquels il est fondé, des solutions proposées et des résultats obtenus. Chaque fois que nécessaire les choix effectués seront justifiés. Finalement les résultats seront discutés et un certain nombre d observations seront faite sur la robotique moderne. 1 Simultaneous Localization and Mapping 6

8 B. Objectifs du projet Lorsqu un robot est employé pour explorer une zone inaccessible à l homme, il doit être capable de fournir des informations à l utilisateur sur la topologie des lieux visités. Il faut donc qu il construise une carte de son environnement. Il doit en outre faire preuve d une autonomie suffisante pour pouvoir explorer la zone et trouver son chemin même si les communications sont interrompues. Le robot doit donc être capable de se localiser en permanence dans l environnement qu il explore. L objectif du stage est donc de mettre en place un module de SLAM pour un robot d intervention en milieu hostile. Plus précisément, le projet vise à doter le robot de la capacité à cartographier en 3D un environnement inconnu. Un capteur innovant a été retenu pour cette tâche : la Kinect de Microsoft. Il s agit d une caméra RGBD, autrement dit d un système d acquisition fournissant à la fois des images et des données métriques. Il faudra donc exploiter au mieux la richesse des informations fournies pour construire un modèle 3D de l environnement visuellement réaliste. Les contraintes principales sont donc de : - réaliser un modèle précis de l environnement permettant au robot de se localiser en vue de planifier sa trajectoire - d offrir un rendu réaliste de la scène pour un observateur humain - d effectuer la reconstruction en temps réel Une contrainte secondaire est d offrir une bonne robustesse aux variations de luminosité. 7

9 C. Introduction au problème du SLAM L objectif de ce chapitre est de présenter le contexte général du stage et d expliquer ce qui a motivé la problématique en la replaçant dans son contexte originel. Plusieurs questions seront abordées concernant les développements présents et futurs de la robotique, notamment: quels sont les verrous technologiques qui empêchent aujourd hui un robot de conduire une mission de manière parfaitement autonome? Quelles sont les pistes de recherche actuelles pour résoudre ces problèmes? Quels sont les succès déjà remportés? I. Autonomie des robots 1. Robotique: de la Fiction à la Réalité Loin des images des films de science fiction, montrant hommes et robots cohabitant harmonieusement dans des environnements complexes, la robotique s est pendant longtemps limitée à ses applications industrielles, se contentant de remplacer l homme dans l exécution de tâches simples et répétitives. Cette limitation venait notamment de l impossibilité de créer des systèmes capables d évoluer dans un environnement réel. En effet gérer l extrême diversité des situations dans lesquels un robot peut se trouver est très difficile. Il est clairement impossible de prévoir tous les cas de figure pour préparer des comportements types en fonction des situations rencontrées. Il faut dès lors que le robot soit à même de percevoir son environnement intelligemment pour apprendre et comprendre cet environnement en vu de planifier ses actions. Loin d avoir résolu totalement ce problème la robotique a cependant connu ces dernières années plusieurs victoires importantes qui ont conduit à de profonds changements. Qu ils soient à pattes ou à roues, volant ou rampant, les robots sont désormais capables de se mouvoir dans des environnements aussi complexes que le sol martien ou un hall de musée avec très peu de supervision de la part de l homme. Voyons comment ces succès ont étés rendus possibles. 8

10 2. Qu'est ce qu'un robot autonome? L'autonomie des robots est un enjeu clé de la robotique moderne. Un système robotisé n'a de raison d'être que s'il est capable d'effectuer un maximum de tâches sans la supervision de l'homme. Un système téléguidé représente bien moins d'intérêt puisque l'opérateur doit prendre en charge les tâches de bas niveau comme la navigation au lieu de se concentrer sur les objectifs essentiels de sa mission. Si l'on veut définir clairement ce qu'est un robot mobile autonome on peut dire qu'il s'agit d'un système capable de: se localiser dans son environnement. Ceci répond à la question «où suis-je?». trouver des zones d'intérêt à explorer ou des objets dans son environnement et liés à sa mission. Ceci répond à la question «où dois-je aller?». de planifier ses actions, pour par exemple définir une trajectoire pour se rendre d'un point A à un point B. Ceci répond à la question «comment dois-je y aller?». d'interagir, le cas échéant, avec son environnement pour réaliser certaines tâches. Il peut s'agir par exemple de trouver et d'actionner une poignée de porte pour pouvoir passer d'une pièce à une autre. Ceci répond à la question «Quelle est la fonction de cet objet?» On distingue donc deux types principaux de contraintes pour l'autonomie des robots: la capacité d'extraire des données de l'environnement (localiser des objets, des obstacles, le robot etc.) et la capacité à traiter ces informations intelligemment (prendre des décisions, savoir comment interagir avec tel ou tel objet). A ceci il faudrait encore ajouter d'autres aspects concernant notamment la sécurité du robot ou des êtres vivants avec lesquels il cohabite. Cependant c'est surtout le premier point qui nous intéressera dans la suite. 3. Percevoir son environnement Quelque soit la mission qui lui est confiée, un robot mobile doit être capable de percevoir intelligemment son environnement. C'est à dire qu'il doit être en mesure de capter l'information et de la traiter en vue de produire des données exploitables. 9

11 Le robot doit notamment être capable de construire sa propre représentation de l'environnement. Cette tâche est nommée la cartographie. Il doit pouvoir fabriquer, sur la base des informations fournies par ses capteurs, une carte lui permettant de définir des zones d'intérêt à explorer, des zones dangereuses à éviter ou encore trouver les zones navigables. Cette carte pourra aussi servir de modèle de l'environnement à un opérateur humain qui voudrait intervenir dans une zone a priori inconnue. Or lorsque le robot explore une zone inconnue il doit aussi être capable de se localiser sur la carte à mesure qu'il la construit. La réalisation simultanée de la cartographie et de la localisation est un problème fondamental en robotique mobile connu sous le nom de SLAM (Simultaneous Localisation and Mapping). Sa résolution est un préalable indispensable à l'automatisation totale des systèmes, sans quoi les robots seraient incapables de se mouvoir dans un environnement inconnu. Dans la suite nous verrons donc quelles sont les étapes nécessaires à la réalisation du SLAM. 10

12 II. Odométrie Visuelle Pour la réalisation d une carte sur la base d informations purement visuelles, il faut pouvoir estimer le mouvement de la caméra pour mettre en correspondance les différentes vues. Dans le cas d un système monoculaire cette tâche est rendue difficile par l impossibilité d estimer les distances à partir d une seule image. Il faut donc utiliser des séquences d images pour initialiser les distances. Ici la Kinect fournit directement la mesure de distance, on peut donc connaitre la position des points observés dans chaque image. 1. Points d intérêt Pour estimer le mouvement de la caméra entre deux images il faut pouvoir déterminer comment ont bougés les objets observés. Pour cela on ne peut utiliser que des objets visibles dans les deux images et que l on est capable de retrouver facilement dans chacune d elles. Pour des raisons de simplicité, on utilise en général des points d intérêt comme objets de référence. Un point d'intérêt est un point qui caractérise de façon unique une partie de l'image. Plus précisément il s agit d un point localisé finement, augmenté de son voisinage. Pour être utile ce point doit être très bien identifié à l aide d un descripteur unique et il doit être possible de le retrouver facilement. Il existe une multitude de méthode de détection/description de points d intérêt parmi lesquelles SIFT et SURF. Il s agit de méthodes particulièrement appréciées pour leur robustesse et leur efficacité. Elles sont décrites en détails en annexe. Le principe de détection correspond à rechercher des zones d intensité lumineuse particulière et offrant une grande stabilité. Pour cela on utilise le plus souvent des méthodes basées sur le calcul du gradient de luminosité. Les extrema correspondent aux points où s annule le gradient. Il faut noter que ces points d intérêt ne sont pas nécessairement des pixels. En effet on peut obtenir la position des points avec une précision subpixellique par des méthodes d interpolation 2. Une fois les points identifiés il faut décrire l'information locale dans l'image de façon unique et aussi invariante que possible de l'échelle d observation, des rotations, des variations de luminosité etc. Pour cela on calcule un descripteur pour chaque point. On commence par déterminer une orientation privilégiée basée sur l observation de l entourage du point. Le descripteur est alors simplement une suite 2 Voir annexes 11

13 de valeurs (64 ou 128 le plus souvent) qui décrivent le voisinage à partir de cette direction privilégiée. Ceci permet de rester invariant par rotation. Figure 1: Points d'intérêt détectés entre deux images. Les traits verts symbolisent les déplacements entre deux itérations. Les traits rouges signalent les déplacements non conformes par rapport aux autres points 2. RANSAC Une fois les points d intérêts calculés dans chaque image il faut pouvoir déterminer quel est le mouvement global de la caméra. Pour cela on doit trouver quelle transformation permet de recoller correctement les deux nuages de points formés par les points d intérêt. La recherche de cette transformation est une tâche complexe, d'autant plus que les nuages sont bruités. Il existe plusieurs types de méthodes qui présentent toutes des avantages et des inconvénients, la rapidité de calcul étant souvent incompatible avec la précision. L'algorithme RANSAC (RANdom SAmple Consensus) est classiquement utilisé pour extraire un modèle d'un ensemble de données bruitées. Dans le cas présent RANSAC est utilisé pour déterminer quels sont les points qui permettent d estimer la transformation entre les deux nuages le plus correctement possible. Autrement dit RANSAC permet de filtrer les points trop bruités. Concrètement trois points dans chaque nuage sont tirés au hasard pour déterminer une base. La transformation liant les deux bases est alors calculée. Les nuages sont recollés suivant cette transformation et la distance entre chaque couple de point est estimée. Un score est alors attribué à la transformation : si beaucoup de couples de points se superposent le score est élevé, sinon il est faible. Finalement la 12

14 transformation qui possède le plus haut score est conservée : c est elle qui permet de recoller le plus de points ensemble, c est donc elle qui a le plus de chance d être juste. Cette méthode permet en plus d évaluer la transformation liant les deux nuages de point de filtrer les points qui n entrent pas dans le modèle principal. L estimation de mouvement avec RANSAC est en générale assez bonne mais dans le cadre de la construction d une carte il est préférable d affiner cette estimation avec une autre méthode comme ICP. 3. ICP ICP (Iterative Closest Point) est un algorithme qui permet de minimiser la distance entre deux nuages de points A et B. Il est utilisé notamment lorsque l'on veut reconstruire des objets 3D à partir de différentes vues, pour la construction de cartes etc. L'avantage d'icp par rapport à RANSAC est qu'il permet d'estimer les mouvements avec une grande finesse. Il nécessite cependant en entrée une estimation de la transformation a trouver sans quoi l'algorithme peut rester bloqué dans une configuration non optimale (minimum local). Le principe de l'algorithme est assez simple. Il consiste à appareiller les points deux à deux en utilisant une fonction de cout quadratique (distance euclidienne). A chaque itération on estime la transformation entre les deux nuages A et B, la source et la cible, à partir de ces couples de points. On déplace le nuage cible conformément à la transformation calculée et la distance entre les deux nuages est alors réévaluée. L'algorithme stoppe lorsque la distance minimale entre les deux nuages est atteinte. Celle-ci est fixée au début de l'algorithme en fonction de la précision souhaitée. De cette manière on obtient une estimation fine de la transformation entre les deux nuages de points qui permet un recollage presque parfait. Avec ces méthodes combinées on peut donc estimer le déplacement de la caméra entre deux images successives. On reconstruit alors au fur et à mesure des déplacements la trajectoire de la caméra tout en modélisant l espace 3D. Cependant bien que la précision de ces méthodes soit bonne, on constate une dérive de la position au cours du temps due à l accumulation des erreurs de mesure. Ceci s observe notamment lorsque le robot après avoir parcouru un certain trajet revient à une position déjà visitée. La localisation courante du robot est alors souvent différente de la localisation initiale. Il est donc nécessaire de créer une boucle de supervision qui détecte lorsque le robot repasse par un endroit déjà exploré. L algorithme permet alors en constatant l erreur sur l estimation de position de corriger la trajectoire et de la rendre plus cohérente. Cette étape est nommée fermeture de boucle. Par ailleurs la carte créée par le robot peut être optimisée en fonction de la connaissance que l on a des erreurs de mesure. L optimisation de la 13

15 carte et la détection de la fermeture de boucle sont essentielle à l obtention d une carte de qualité. C est l algorithme de SLAM qui réalise ces étapes. 14

16 III. SLAM Le SLAM est considéré comme l'un des problèmes les plus fondamentaux de la robotique moderne. Comme évoqué plus haut il permet de corriger les erreurs accumulées pendant la phase d estimation de mouvement en vue d obtenir un modèle cohérent de l environnement. Cette partie présente le problème formellement ainsi que ses trois principaux paradigmes. 1. Définition du problème Un robot mobile, doté de la capacité de percevoir son environnement, explore un milieu inconnu. Il part d'un point de coordonnées connues x0. L'estimation du mouvement du robot est entachée d'incertitudes à chaque mesure, qui rendent l'estimation de position de plus en plus imprécise. Le SLAM vise à résoudre le problème de la création d'une carte non biaisée de l'environnement dans ce contexte. Formellement on utilise les probabilités pour décrire le problème. Soit x t la position du robot à l'instant t (en 2D ou en 3D), on note ={ 0, 1,..., } La trajectoire du robot jusqu'à l'instant T. Soit ut l'estimation de mouvement faite entre les instant t-1 et t par l'odométrie. On note: ={ 0, 1,..., } L ensemble du chemin parcouru jusqu'à l'instant T. Enfin soit m la carte de l'environnement réel, considéré comme statique. Les mesure faites par le robot mettent en relation les estimations de déplacement x t et la carte observée, m. Si l'on considère que le robot fait une mesure en chaque point alors on peut noter la séquence de mesures: = { 1, 2, 3,..., } Le problème est maintenant de retrouver un modèle de l'environnement m ainsi que la trajectoire XT du robot à partir de l'odométrie UT et des observations ZT. 15

17 Il existe deux formes de SLAM. Le premier nommé «online problem» consiste à calculer à chaque instant la position actuelle du robot en fonction des estimations de mouvements et des observations ce qui se note: (,, ) La seconde est nommée «full SLAM problem» et consiste cette fois à calculer à chaque instant l'ensemble de la trajectoire à partir de l'odométrie et des observations. On définit alors ce problème par: (,, ) Enfin pour résoudre le problème du SLAM, le robot a besoin de deux informations supplémentaires que sont : le modèle reliant les mesures issues de l'odométrie avec les positions du robot le modèle permettant de relier les mesures zt avec la position du robot. Ces modèles sont exprimés respectivement par les formules ( 1, ) qui traduit la probabilité d'être à un point de coordonnées xt en partant du point xt-1 et en parcourant le chemin ut ; et (, ) qui est la probabilité de faire l'observation zt en étant à la position donnée xt connaissant m. 2. Principaux paradigmes Il existe trois manières principales de traiter le problème du SLAM dont dérivent beaucoup d'algorithmes. 2.1 EKF-SLAM La première méthode apparue est basée sur le filtrage de Kalman Etendue. Elle utilise un vecteur d'état pour représenter la position du robot et des amers dans la scène, auquel est associé une matrice d'erreur représentant les incertitudes sur les positions, les observations et les corrélations entre les différentes variables du vecteur d'état. Alors que le robot se déplace le vecteur d'état et la matrice d'erreurs sont mis à jour en utilisant un filtre de Kalman étendu. A chaque nouvel amer observé de nouvelles variables d'état sont ajoutés au vecteur d'état du système; la taille de la matrice de covariance croit quadratiquement. 16

18 Cette approche a été la première développée. Elle est de moins en moins utilisée aujourd'hui notamment du fait des temps de calcul qui la rendent moins intéressante que les autres. 2.2 SLAM basé sur les filtres particulaires Une seconde approche pour traiter le problème du slam est basée sur l'utilisation de filtres particulaires. Le principe est de suivre un grand nombre d'hypothèses en parallèle qui sont autant de trajectoires possibles. Ces différentes hypothèses correspondent à un échantillonnage de la distribution de probabilité des trajectoires. Pour chacune d'elles on construit la carte en fonction des perceptions du robot à l'aide d'un filtre de Kalman. Cependant dans ce cas le traitement est simplifié puisque la trajectoire est connue: les perceptions successives des différents amers ne sont plus corrélées et la matrice de covariance se simplifie puisqu'on ne mémorise plus que les variances individuelles des amers. La complexité des calculs passe ainsi de 0(N²) à O(N). Le problème principal de cette technique est que la représentation de la carte et de la trajectoire du robot devient vite très lourde. En effet il faut que le nombre de particules soit suffisant pour échantillonner correctement la distribution de probabilité des trajectoires. Par ailleurs lors de fermeture de boucle, seules les trajectoires correctes sont retenues ce qui entraine un ré-échantillonnage du filtre particulaire, conduisant à une forte perte d'information. Ce problème est d'autant plus important que l'environnement contient plusieurs cycles (plusieurs ré échantillonnages successifs). 2.3 Graph-SLAM La troisième méthode est basée sur la théorie des graphes. Elle consiste à considérer les positions successives du robot et des différents amers comme les nœuds d'un graphe. Les arrêtes sont alors constituées des contraintes fournies par l'odométrie ou par l'observation des amers. Pour illustrer ce propos voyons comment procède le robot pour construire la carte Construction d'un graphe A l'instant de départ le robot observe le amer 1. Le graphe est donc constitué de deux nœuds, la position du robot et celle du amer, ainsi que d'une arrête : la contrainte observationnelle entre le robot et le amer 1. 17

19 A l'instant t2 le robot a avancé d'une distance u2 fournie par l'odométrie et observe les amers 1 et 2. Le graphe est maintenant constitué de quatre nœuds: les positions du robot à t1 et t2, reliées par l'estimation de déplacement (odométrie); les positions des amers, reliées aux positions du robot par les contraintes observationnelles. Figure 2 : exemple de création d un graphe Optimisation du graphe Une fois le graphe construit on cherche à l'optimiser en minimisant l'erreur sur les contraintes du graphe. Du fait des incertitudes sur les mesures il existe en effet des erreurs dans l'estimation de position du robot et des amers. Le «full SLAM problem» a été défini plus haut comme la probabilité d'avoir une trajectoire et un modèle de l'environnement pour un ensemble de mesures données (odométrie plus observations), ce qui s écrit (,, ). En prenant le log on obtient: log (,, ) = + log ( 1, ) + (, ) Chacun des éléments de cette somme correspond à un mouvement du robot et forme une arrête du graphe. L'optimisation du graphe consiste donc finalement à calculer :, =, (,, ) Où * est le symbole pour la solution optimale. Le gros avantage du Graph-SLAM est qu'il permet de gérer les cartes composées d'un très grand nombre de nœuds (>10⁸ à ce jour) ce qui est impossible avec les autres techniques. Cependant l'optimisation du graphe peut être très lourde. 18

20 3. Recherches actuelles Le SLAM a fait l'objet de nombreux développements ces dernières années qui ont permis d'arriver à des solutions variées plus ou moins performantes. Il existe aujourd'hui plusieurs algorithmes ayant fait leurs preuves pour la cartographie 2D avec des caméras ou des Lasers et plusieurs logiciels proposent leur propre module de SLAM 2D. L'objectif est aujourd'hui de passer à la 3D. Reconstruire l'environnement intégralement permettrait de surpasser les performances des robots actuels en leur permettant d'accéder à des données beaucoup plus riches. La cartographie 3D autorise en effet de rapprocher considérablement la perception des robots de la vision animale et donc d'améliorer sensiblement leur potentielle compréhension de leur environnement. Pour évoluer dans un environnement complexe il faut en effet être capable d'en percevoir la complexité. La cartographie 3D permettrait en outre de surmonter des problèmes classiques rencontrés en 2D comme la détection d'une table ou d'obstacles situés à différentes hauteurs, d'envisager l'exploration de milieux en plusieurs dimensions (plusieurs étages d'un bâtiment, milieu naturel etc) d'ajouter d'autres types d'informations aux cartes que les informations métriques, comme par exemple la couleur. Le passage à la 3D présente bien sur des défis supplémentaires notamment en termes de volume de données à traiter. Cependant comme nous le verrons dans la suite ceci est aujourd'hui possible. 19

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies

Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Projet de traitement d'image - SI 381 reconstitution 3D d'intérieur à partir de photographies Régis Boulet Charlie Demené Alexis Guyot Balthazar Neveu Guillaume Tartavel Sommaire Sommaire... 1 Structure

Plus en détail

PROJET DE FIN D ÉTUDES Asservissement visuel d un robot parallèle à câbles pour la réalisation d une fresque verticale de grande taille

PROJET DE FIN D ÉTUDES Asservissement visuel d un robot parallèle à câbles pour la réalisation d une fresque verticale de grande taille Résumé de PFE PROJET DE FIN D ÉTUDES Asservissement visuel d un robot parallèle à câbles pour la réalisation d une fresque verticale de grande taille Introduction Dans le domaine de la robotique, la robotique

Plus en détail

SLAM Visuel Embarqué sur un Robot Quadrupède

SLAM Visuel Embarqué sur un Robot Quadrupède Résumé du mémoire de soutenance pour le Diplôme d Ingénieur INSA de Strasbourg - Spécialité Mécatronique - Et le Master des sciences de l université de Strasbourg - Mention Imagerie, Robotique et Ingénierie

Plus en détail

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57

Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57 Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation

Plus en détail

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :

L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories : La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.

Plus en détail

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce Année 2007-2008 Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce B. Monsuez Projet informatique «Voyageur de commerce» Résolution

Plus en détail

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION

LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION LA PROGRAMMATION LINEAIRE : UN OUTIL DE MODELISATION Dans les leçons précédentes, nous avons modélisé des problèmes en utilisant des graphes. Nous abordons dans cette leçon un autre type de modélisation.

Plus en détail

Profil du candidat et connaissances techniques à connaître/maîtriser

Profil du candidat et connaissances techniques à connaître/maîtriser Utilisation d algorithmes de deep learning pour la reconnaissance d iris. jonathan.milgram@morpho.com Dans ce cadre, l'unité de recherche et technologie a pour but de maintenir le leadership Au sein de

Plus en détail

Restauration d images

Restauration d images Restauration d images Plan Présentation du problème. Premières solutions naïves (moindre carrés, inverse généralisée). Méthodes de régularisation. Panorama des méthodes récentes. Problème général Un système

Plus en détail

Vision par Ordinateur

Vision par Ordinateur Vision par Ordinateur James L. Crowley DEA IVR Premier Bimestre 2005/2006 Séance 6 23 novembre 2005 Détection et Description de Contraste Plan de la Séance : Description de Contraste...2 Le Détecteur de

Plus en détail

Analyse d images numériques en microscopie

Analyse d images numériques en microscopie Analyse d images numériques en microscopie Yves Usson Reconnaissance et Microscopie Quantitative, Laboratoire TIMC UMR5525 CNRS Institut d Ingénierie et d Information de Santé (IN3S), La Tronche Traitement

Plus en détail

6.1 Méthode des champs de potentiel

6.1 Méthode des champs de potentiel Chapitre 6 Évitement d obstacles L évitement d obstacles est un comportement de base présent dans quasiment tous les robots mobiles. Il est indispensable pour permettre au robot de fonctionner dans un

Plus en détail

«Vers une méthode rapide de l évaluation de la tendreté»

«Vers une méthode rapide de l évaluation de la tendreté» Matthieu ALRIC - matthieu.alric@adiv.fr Chargé d Etudes en Génie Mécanique et Robotique «Vers une méthode rapide de l évaluation de la tendreté» Développement d un système robotique équipé de capteurs

Plus en détail

Initialisation automatique du recalage 2D/3D pour la réalité virtuelle et augmentée

Initialisation automatique du recalage 2D/3D pour la réalité virtuelle et augmentée Initialisation automatique du recalage 2D/3D pour la réalité virtuelle et augmentée IRISA - Equipe TEMICS 6 Fevrier 2008 1/18 Problématique : Recalage vidéo 2D et modèle 3D Problématique Avec : Le modèle

Plus en détail

MODELE D UN RAPPORT DE STAGE DE BAC PRO ELECTROTECHNIQUE

MODELE D UN RAPPORT DE STAGE DE BAC PRO ELECTROTECHNIQUE MODELE D UN RAPPORT DE STAGE DE BAC PRO ELECTROTECHNIQUE [Prénom Nom] Rapport sur le stage effectué du [date] au [date] Dans la Société : [NOM DE LA SOCIETE : Logo de la société] à [Ville] [Intitulé du

Plus en détail

Evaluer des élèves de Seconde par compétences en Sciences Physiques

Evaluer des élèves de Seconde par compétences en Sciences Physiques Evaluer des élèves de Seconde par compétences en Sciences Physiques Introduction Depuis quelques années, le terme de «compétences» s installe peu à peu dans notre quotidien ; aussi bien dans la vie de

Plus en détail

L INFORMATION GEOGRAPHIQUE

L INFORMATION GEOGRAPHIQUE Champs sur Marne ENSG/CERSIG Le 19-nove.-02 L INFORMATION GEOGRAPHIQUE Archivage Le Système d information géographique rassemble de l information afin de permettre son utilisation dans des applications

Plus en détail

LES SOLUTIONS MES HUMAINES METTENT EN AVANT LES INDIVIDUS

LES SOLUTIONS MES HUMAINES METTENT EN AVANT LES INDIVIDUS LIVRE BLANC LES SOLUTIONS MES HUMAINES METTENT EN AVANT LES INDIVIDUS Une collaboration entre homme et machine LIVRE BLANC LES SOLUTIONS MES HUMAINES METTENT EN AVANT LES INDIVIDUS 2 A PROPOS Les hommes

Plus en détail

Animation d un robot

Animation d un robot nimation d un robot IFT3355 : Infographie - TP #1 Jérémie Dumas Baptiste De La Robertie 3 février 2010 Université de Montréal Table des matières Introduction au problème 2 1 Transformations 2 1.1 Passage

Plus en détail

Ebauche Rapport finale

Ebauche Rapport finale Ebauche Rapport finale Sommaire : 1 - Introduction au C.D.N. 2 - Définition de la problématique 3 - Etat de l'art : Présentatio de 3 Topologies streaming p2p 1) INTRODUCTION au C.D.N. La croissance rapide

Plus en détail

IA54 Compte-rendu «STATIONNEMENT AUTOMATIQUE DE VEHICULE»

IA54 Compte-rendu «STATIONNEMENT AUTOMATIQUE DE VEHICULE» IA54 Compte-rendu «STATIONNEMENT AUTOMATIQUE DE VEHICULE» Henri Payno - Cyril Bailly 1/12/2011 SOMMAIRE 1. Introduction... 3 2. Contraintes... 3 3. Architecture globale... 4 4. Interface... 5 A. Scène

Plus en détail

STAGES. VISION PAR ORDINATEUR Perception 3D Réalité Augmentée

STAGES. VISION PAR ORDINATEUR Perception 3D Réalité Augmentée STAGES VISION PAR ORDINATEUR Perception 3D Réalité Augmentée Le CEA-LIST Les activités de recherche du CEA LIST sont centrées sur les systèmes à logiciel prépondérant. Ces activités s articulent autour

Plus en détail

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés

ENSEIRB-MATMECA PG-113 2014. TP6: Optimisation au sens des moindres carrés ENSEIRB-MATMECA PG-113 014 TP6: Optimisation au sens des moindres carrés Le but de ce TP est d implémenter une technique de recalage d images qui utilise une méthode vue en cours d analyse numérique :

Plus en détail

Introduction au Dessin Vectoriel

Introduction au Dessin Vectoriel Introduction au Dessin Vectoriel Introduction Lorsque l'on affiche une image sur l'écran d'un ordinateur, ce que l'on voit n'est qu'une succession de points. Il existe pourtant deux manières différentes

Plus en détail

Aplicaciones Informâticas en Arqueologia: Teorîas y sistemas. Saint-Germain-en Laye, 1.991. Bilbao

Aplicaciones Informâticas en Arqueologia: Teorîas y sistemas. Saint-Germain-en Laye, 1.991. Bilbao Aplicaciones Informâticas en Arqueologia: Teorîas y sistemas Saint-Germain-en Laye, 1.991 Bilbao L'ARCHEOLOGIE, SYSTEME D'INFORMATION SCIENTIFIQUE Patrick DESFARGES Bruno HELLY Un examen des banques de

Plus en détail

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception?

Plus en détail

Profils. COMPÉTENCE de COMMUNICATION ÉBAUCHE. ébauche ébauche ébauche ébauche ébauche ébauche

Profils. COMPÉTENCE de COMMUNICATION ÉBAUCHE. ébauche ébauche ébauche ébauche ébauche ébauche C Profils COMPÉTENCE de COMMUNICATION ÉBAUCHE ébauche ébauche ébauche ébauche ébauche ébauche C Profils COMPÉTENCE de COMMUNICATION APERÇU La compétence de communication englobe l ensemble des aptitudes

Plus en détail

Machine de Turing. Informatique II Algorithmique 1

Machine de Turing. Informatique II Algorithmique 1 Machine de Turing Nous avons vu qu un programme peut être considéré comme la décomposition de la tâche à réaliser en une séquence d instructions élémentaires (manipulant des données élémentaires) compréhensibles

Plus en détail

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Introduction au domaine Applications Frédéric Devernay Qu'est-ce que la vision? Le monde a une structure 3D et est composé d'objets L'être humain sait parfaitement décrire et interpréter

Plus en détail

Gestion de projet - les chaînes critiques

Gestion de projet - les chaînes critiques Gestion de projet - les chaînes critiques GÉRARD CASANOVA - DENIS ABÉCASSIS Paternité - Pas d'utilisation Commerciale - Pas de Modification : http://creativecommons.org/licenses/by-nc-nd/2.0/fr/ Table

Plus en détail

Comprendre la résolution

Comprendre la résolution Comprendre la résolution L image idéale est composée d une infinité de pixels et chacun d entre eux est capable de s afficher en une infinité de couleurs. Challenge impossible que les contraintes physiques

Plus en détail

Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium. Comparatif Choco/Drools dans le cadre du projet JASMINe

Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium. Comparatif Choco/Drools dans le cadre du projet JASMINe Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium dans le cadre du projet JASMINe Avril 2008 Table des matières 1 Introduction 3 1.1 Rappel sur JASMINe.......................................

Plus en détail

PROCEDURE D ACCUEIL. 1 Introduction

PROCEDURE D ACCUEIL. 1 Introduction PROCEDURE D ACCUEIL 1 Introduction Le processus d accueil d un nouvel arrivant est un processus clé du département des ressources humaines et qui malheureusement est souvent sous-estimé par ce dernier.

Plus en détail

Proposition d une typologie des processus et produits

Proposition d une typologie des processus et produits ACCUEIL Proposition d une typologie des processus et produits Frédéric Elie, septembre 2000 La reproduction des articles, images ou graphiques de ce site, pour usage collectif, y compris dans le cadre

Plus en détail

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07

Reconstruction et Animation de Visage. Charlotte Ghys 15/06/07 Reconstruction et Animation de Visage Charlotte Ghys 15/06/07 1 3ème année de thèse Contexte Thèse CIFRE financée par Orange/France Telecom R&D et supervisée par Nikos Paragios (Ecole Centrale Paris) et

Plus en détail

Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR

Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Mickaël Bergem 25 juin 2014 Maillages et applications 1 Table des matières Introduction 3 1 La modélisation numérique de milieux urbains

Plus en détail

Naviga&on)de)robots)mobiles)) par)vision)omnidirec&onnelle) )

Naviga&on)de)robots)mobiles)) par)vision)omnidirec&onnelle) ) Naviga&on)de)robots)mobiles)) par)vision)omnidirec&onnelle) ) El)Mustapha)Mouaddib)(mouaddib@u:picardie.fr)) O.)Labbani:Igbida,)P.)Merveilleux)et)R.)Marie) Contexte' Projet'ANR'R.Discover' Travaux'soutenus'par':'

Plus en détail

DOSSIER ORIENTATION. (Cycle 3)

DOSSIER ORIENTATION. (Cycle 3) 66 DOSSIER ORIENTATION (Cycle 3) PRESENTATION ET ANALYSE DE L ACTIVITE JEUX ET PROPOSITIONS DE TRAVAIL - la course en étoile - la course au score - la course d orientation 1 STRUCTURER L ESPACE Vivre,

Plus en détail

Projet de Fin d Etudes. Smart Picking

Projet de Fin d Etudes. Smart Picking Projet de Fin d Etudes Smart Picking Mathieu BOSSENNEC IMA5 Florian CARON 2014-2015 Sommaire Sommaire 2 Remerciements 3 Introduction 4 I - Présentation du Contexte 5 II - Travaux Réalisés 6 1) Système

Plus en détail

Analyse abstraite de missions sous PILOT

Analyse abstraite de missions sous PILOT Analyse abstraite de missions sous PILOT Damien Massé EA 3883, Université de Bretagne Occidentale, Brest damien.masse@univ-brest.fr Résumé Nous étudions la possibilité de réaliser un analyseur par interprétation

Plus en détail

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace.

Problème: si les tableaux que l'on trie sont déjà à peu près triés, l'algorithme n'est pas efficace. Traonmilin Yann traonmil@enst.fr MOD Algorithmique Probabiliste 1. Deux exemples 1.1. Quicksort randomisé. Dans l'algorithme de tri classique Quicksort, le pivot est choisi au début du tableau puis on

Plus en détail

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme

Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme Distance et classification Cours 4: Traitement du signal et reconnaissance de forme Plan Introduction Pré-traitement Segmentation d images Morphologie mathématique Extraction de caractéristiques Classification

Plus en détail

PCA appliqué à la 2D et 3D Dernière mise à jour : avril 2011

PCA appliqué à la 2D et 3D Dernière mise à jour : avril 2011 Projet 2009 2010 Biométrie 3D PCA appliqué à la 2D et 3D Dernière mise à jour : avril 2011 Département : TIC Mots clés : Biométrie, Analyse d images, Vision, Caméra thermique, Caméra temps de vol, Détection

Plus en détail

Cartographie et localisation simultanée avec un capteur de vision

Cartographie et localisation simultanée avec un capteur de vision Cartographie et localisation simultanée avec un capteur de vision Christopher Mei 1 et Patrick Rives 2 1 Active Vision Group, University of Oxford 2 INRIA Sophia Antipolis, Projet ARobAS Christopher Mei,

Plus en détail

Traitement bas-niveau

Traitement bas-niveau Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.

Plus en détail

Introduction à la Vision 3D

Introduction à la Vision 3D à la Vision 3D David Fofi Le2i UMR CNRS 6306 IUT Le Creusot Les applications présentées sont le fruit d une collaboration entre le Le2i et le laboratoire VICOROB de l Université de Gérone (Espagne). Les

Plus en détail

Cahier. des charges. T.E.R. : Modélisation architecturale basée photo/vidéo. reconstruction intérieure basée profondeur

Cahier. des charges. T.E.R. : Modélisation architecturale basée photo/vidéo. reconstruction intérieure basée profondeur Cahier T.E.R. : Modélisation architecturale basée photo/vidéo reconstruction intérieure basée profondeur des charges Renaud Jean-Christophe Naville Vincent Explicitation du contexte Dans le cadre de notre

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème.

- Mobiliser les résultats sur le second degré dans le cadre de la résolution d un problème. Mathématiques - classe de 1ère des séries STI2D et STL. 1. Analyse On dote les élèves d outils mathématiques permettant de traiter des problèmes relevant de la modélisation de phénomènes continus ou discrets.

Plus en détail

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes

Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes CNES Paris - 22/05/2003 Atelier «Très Haute Résolution Spatiale» Outils pour la reconnaissance des formes Michel DHOME LASMEA UMR 6602CNRS/UBP Clermont-Ferrand Etat de l art (communauté vision artificielle)

Plus en détail

Utilisation d informations visuelles dynamiques en asservissement visuel Armel Crétual IRISA, projet TEMIS puis VISTA L asservissement visuel géométrique Principe : Réalisation d une tâche robotique par

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

ONCE UPON A TIME IN THE HEART OF SCOTLAND

ONCE UPON A TIME IN THE HEART OF SCOTLAND ONCE UPON A TIME IN THE HEART OF SCOTLAND Table des matières Fiche professeur... 2 Fiche élève... 5 Narration de séance et productions d élèves... 6 1 Fiche professeur ONCE UPON A TIME IN THE HEART OF

Plus en détail

Présentation de l application de programmation LEGO MINDSTORMS Education EV3

Présentation de l application de programmation LEGO MINDSTORMS Education EV3 Présentation de l application de programmation LEGO MINDSTORMS Education EV3 LEGO Education a le plaisir de présenter l édition pour tablette du logiciel LEGO MINDSTORMS Education EV3, un moyen amusant

Plus en détail

3D visualization techniques to support slicing-based. program comprehension. Présentation dans le cadre du cours ift6251 Guillaume Langelier

3D visualization techniques to support slicing-based. program comprehension. Présentation dans le cadre du cours ift6251 Guillaume Langelier 3D visualization techniques to support slicing-based program comprehension Par : J. Rilling et S.P. Mudur Présentation dans le cadre du cours ift6251 Guillaume Langelier 1 Préambule Visualisation en génie

Plus en détail

Apprendre la dichotomie avec Colobot

Apprendre la dichotomie avec Colobot Apprendre la dichotomie avec Colobot CHABALIER Nicolas MONCEL Arnaud Année Universitaire 2014 2015 1 Apprendre la dichotomie avec Colobot Présenté par CHABALIER Nicolas et MONCEL Arnaud Tuteur : Jacques

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On

Plus en détail

Comment choisir les indicateurs ISO 27001

Comment choisir les indicateurs ISO 27001 Comment choisir les indicateurs ISO 27001 Alexandre Fernandez Alexandre Fernandez Introduction ISO 27001 Système de Management de la Sécurité de l'information 2 / 24 ISO 17799

Plus en détail

1 sur 5 10/06/14 13:10

1 sur 5 10/06/14 13:10 Time Machine est un outil proposé par Mac OS depuis sa version 10.5 (Leopard) et qui permet d'effectuer des sauvegardes de votre disque dur de manière régulière. Mais au-delà de la simple sauvegarde périodique,

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Types de REA produites dans le cadre de la séquence pédagogique

Types de REA produites dans le cadre de la séquence pédagogique Scénario pédagogique APPRENDRE À ENSEIGNER AUTREMENT Description générale du scénario Titre Les bases de données relationnelles Résumé Dans le cadre d'un cours à distance, la visioconférence est une REA

Plus en détail

Développement itératif, évolutif et agile

Développement itératif, évolutif et agile Document Développement itératif, évolutif et agile Auteur Nicoleta SERGI Version 1.0 Date de sortie 23/11/2007 1. Processus Unifié Développement itératif, évolutif et agile Contrairement au cycle de vie

Plus en détail

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Quebec PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Direction de la formation générale

Plus en détail

Gaydier Thomas thomas.gaydier@telecom-bretagne.eu. Hadfat Ayoub ayoub.hadfat@telecom-bretagne.eu. Moreau Adrien adrien.moreau1@telecom-bretagne.

Gaydier Thomas thomas.gaydier@telecom-bretagne.eu. Hadfat Ayoub ayoub.hadfat@telecom-bretagne.eu. Moreau Adrien adrien.moreau1@telecom-bretagne. Gaydier Thomas thomas.gaydier@telecom-bretagne.eu Hadfat Ayoub ayoub.hadfat@telecom-bretagne.eu Moreau Adrien adrien.moreau1@telecom-bretagne.eu Masoni Christophe christophe.masoni@telecom-bretagne.eu

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

INTRODUCTION AUX METHODES D INGENIERIE DES DONNEES DIRIGEE PAR LES MODELES

INTRODUCTION AUX METHODES D INGENIERIE DES DONNEES DIRIGEE PAR LES MODELES INTRODUCTION AUX METHODES D INGENIERIE DES DONNEES DIRIGEE PAR LES MODELES Les contenus de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et

Plus en détail

pour la Réalité Augmentée

pour la Réalité Augmentée Analyse d Image 3D pour la Réalité Augmentée Jean-Marc Vezien vezien@limsi.fr Master Recherche RV&A Janvier 2011 La 3D comment? Les capteurs et les techniques pour l acquisition de la 3D Capteurs actifs

Plus en détail

Couper en deux, encore et encore : la dichotomie

Couper en deux, encore et encore : la dichotomie Couper en deux, encore et encore : la dichotomie I : Jeu du nombre inconnu Un élève volontaire choisit un nombre entier compris entre 0 et 56. Un autre élève cherche à deviner ce nombre, en adoptant la

Plus en détail

LA GESTION D ASTREINTE White Paper

LA GESTION D ASTREINTE White Paper LA GESTION D ASTREINTE White Paper GENERALITES SUR LA GESTION D ASTREINTE :... 2 POURQUOI METTRE EN PLACE UNE GESTION D ASTREINTE AUTOMATISEE?... 2 LA TRANSMISSION DE L INFORMATION, LE NERF DE LA GESTION

Plus en détail

Cartographie et localisation par radar hyperfréquence

Cartographie et localisation par radar hyperfréquence Cartographie et localisation par radar hyperfréquence Pour mieux affirmer ses missions, le Cemagref devient Irstea www.irstea.fr IRSTEA Unité de Recherche Technologie et systèmes d information pour les

Plus en détail

Encryptions, compression et partitionnement des données

Encryptions, compression et partitionnement des données Encryptions, compression et partitionnement des données Version 1.0 Grégory CASANOVA 2 Compression, encryption et partitionnement des données Sommaire 1 Introduction... 3 2 Encryption transparente des

Plus en détail

Mutualisation des moyens héliportés sur la région Bourgogne. Etude initiale 06.06.2013 V1.2

Mutualisation des moyens héliportés sur la région Bourgogne. Etude initiale 06.06.2013 V1.2 sur la région Bourgogne Etude initiale 06.06.2013 V1.2 Contenu 1. Contexte...3 1.1. Objectifs...3 1.2. Descriptif de l existant...3 2. Etude des solutions...3 2.1. Solution n 1 : uniformisation du système

Plus en détail

Les systèmes RAID Architecture des ordinateurs

Les systèmes RAID Architecture des ordinateurs METAIS Cédric 2 ème année Informatique et réseaux Les systèmes RAID Architecture des ordinateurs Cédric METAIS ISMRa - 1 - LES DIFFERENTS SYSTEMES RAID SOMMAIRE INTRODUCTION I LES DIFFERENTS RAID I.1 Le

Plus en détail

Tri de cartes et ergonomie web

Tri de cartes et ergonomie web Tri de cartes et ergonomie web Sommaire Introduction 1. La méthode du tri de cartes 1.1. Principe et utilité 1.2. Les règles du jeu 1.3. Matériel pour le tri de cartes physique 1.4. Les données recueillies

Plus en détail

. Puissances d'un nombre relatif (notion et notations). Unités de longueurs et conversions

. Puissances d'un nombre relatif (notion et notations). Unités de longueurs et conversions Olivier PILORGET - Académie de Nice - TraAM 2013-2014 " UNE HISTOIRE DE PLIAGE " 3 ème Testée avec une classe de 3 ème sur une séances de 55 min Image extraite d'un reportage vidéo du "Centre des sciences

Plus en détail

Présentation des Images et introduction a la reconnaissance des formes

Présentation des Images et introduction a la reconnaissance des formes Master Info 1 Image et RF Présentation des Images et introduction a la reconnaissance des formes Plis fòs ba pengwen là! Objet de ce cours? Comprendre comment est acquise / stockée une image. Quelles mesures

Plus en détail

VISUBAT Votre partenaire BIM

VISUBAT Votre partenaire BIM VISUBAT Votre partenaire BIM MODÉLISATION BIM - AUDIT DE STRUCTURE - BIM MANAGER - BIM COORDINATEUR - AMO BIM - ACCOMPAGNEMENT des entreprises - MISE À NIVEAU de projets - SERVICE D ANALYSE du modele BIM

Plus en détail

CH.2 CODES CORRECTEURS

CH.2 CODES CORRECTEURS CH.2 CODES CORRECTEURS 2.1 Le canal bruité 2.2 La distance de Hamming 2.3 Les codes linéaires 2.4 Les codes de Reed-Muller 2.5 Les codes circulaires 2.6 Le câblage des codes circulaires 2.7 Les performances

Plus en détail

Les bases de la photo : 1ère partie. 1ère partie Leçon 1.2. l'exposition

Les bases de la photo : 1ère partie. 1ère partie Leçon 1.2. l'exposition 1ère partie Leçon 1.2 Les bases de la photo : 1ère partie l'exposition Les trois facteurs de base L'exposition d'une photographie résulte de la combinaison de trois facteurs : le flux lumineux qui traverse

Plus en détail

QMF-6. Questionnaire de Motivation à la réussite en Formation RÉSULTATS. Yann FORNER XV41ZUJK 15/04/2010 TATA. Féminin. Lycéens.

QMF-6. Questionnaire de Motivation à la réussite en Formation RÉSULTATS. Yann FORNER XV41ZUJK 15/04/2010 TATA. Féminin. Lycéens. Questionnaire de Motivation à la réussite en Formation Yann FORNER RÉSULTATS Nom: Sexe: 15/04/2010 Féminin Âge: 17 Étalonnage: Lycéens Introduction Le Questionnaire de Motivation en situation de Formation

Plus en détail

Guide technique de caméras. Ce que vous devez prendre en compte lors du choix de vos caméras de vidéosurveillance

Guide technique de caméras. Ce que vous devez prendre en compte lors du choix de vos caméras de vidéosurveillance Guide technique de caméras Ce que vous devez prendre en compte lors du choix de vos caméras de vidéosurveillance Introduction Investir dans un système de vidéosurveillance de qualité est une sage décision.

Plus en détail

CODES CORRECTEURS D'ERREURS

CODES CORRECTEURS D'ERREURS CODES CORRECTEURS D'ERREURS Marc URO TABLE DES MATIÈRES DÉTECTION ET CORRECTION D'ERREURS... 6 CAS D'UN CANAL SANS SYMBOLE D'EFFACEMENT...6 CAS D'UN CANAL AVEC SYMBOLE D'EFFACEMENT...7 GÉNÉRATION ET DÉTECTION

Plus en détail

UNE SOLUTION CRM CONÇUE POUR LA FORCE DE VENTE

UNE SOLUTION CRM CONÇUE POUR LA FORCE DE VENTE LIVRE BLANC UNE SOLUTION CRM CONÇUE POUR LA FORCE DE VENTE Comment choisir un CRM qui répondra à toutes les attentes de vos commerciaux www.aptean..fr LIVRE BLANC UNE SOLUTION CRM CONÇUE POUR LA FORCE

Plus en détail

Procédure pour évaluer et/ou éditer un article

Procédure pour évaluer et/ou éditer un article Procédure pour évaluer et/ou éditer un article Rôle des membres du comité de rédaction dans le processus de révision d un article : 1. Rôle de la Rédactrice en chef 2. Rôle des Rédacteurs adjoints 3. Rôle

Plus en détail

Reconnaissance des formes : Classement d ensembles d objets

Reconnaissance des formes : Classement d ensembles d objets Reconnaissance des formes : Classement d ensembles d objets Données Méthodes Extraction de connaissances Applications Expertise Apprentissage Bernard FERTIL Directeur de Recherche CNRS Équipe LXAO, UMR

Plus en détail

Elma m l a ki i Haj a a j r a Alla a Tao a uf u i f q B ur u kkad a i i Sal a ma m n a e n e Be B n e a n b a d b en e b n i b i Il I ham

Elma m l a ki i Haj a a j r a Alla a Tao a uf u i f q B ur u kkad a i i Sal a ma m n a e n e Be B n e a n b a d b en e b n i b i Il I ham Exposé: la technique de simulation MONTE-CARLO Présenté par : Elmalki Hajar Bourkkadi Salmane Alla Taoufiq Benabdenbi Ilham Encadré par : Prof. Mohamed El Merouani Le plan Introduction Définition Approche

Plus en détail

E-LECLERC LEVALUATION DU SITE WEB. A. Evaluation «subjective» du site web. 1. Choix du site web. 2. Présentation le site A P I 0 8 1 1 / 0 3 / 2 0 1 4

E-LECLERC LEVALUATION DU SITE WEB. A. Evaluation «subjective» du site web. 1. Choix du site web. 2. Présentation le site A P I 0 8 1 1 / 0 3 / 2 0 1 4 LEVALUATION DU SITE WEB E-LECLERC A P I 0 8 1 1 / 0 3 / 2 0 1 4 A. Evaluation «subjective» du site web 1. Choix du site web J ai choisi de réaliser l évaluation «subjective» sur le site web : www.e-leclerc.com,

Plus en détail

Le programme de mathématiques Classes de première STI2D STL

Le programme de mathématiques Classes de première STI2D STL Journée de l inspection 15 avril 2011 - Lycée F. BUISSON 18 avril 2011 - Lycée J. ALGOUD 21 avril 2011 - Lycée L. ARMAND Le programme de mathématiques Classes de première STI2D STL Déroulement de la journée

Plus en détail

Bibliothèque de Traitement d Images en Niveaux de Gris

Bibliothèque de Traitement d Images en Niveaux de Gris TP Bibliothèque de Traitement d Images en Niveaux de Gris Étudiants : Besnier Alexandre Taforeau Julien Version 1.2 Janvier 2008 2008 Rapport TP - Version 1.2 i Table des matières Introduction 1 1 Objectif

Plus en détail

18 Informatique graphique

18 Informatique graphique Avant-propos En 1988, les Editions Hermès publiaient un ouvrage intitulé La synthèse d'images, qui présentait un état de l'art de ce domaine de l'informatique, vingt cinq ans environ après l'introduction

Plus en détail

LE PROBLEME DU FLOT MAXIMAL

LE PROBLEME DU FLOT MAXIMAL LE PROBLEME DU FLOT MAXIMAL I Exemple d introduction Deux châteaux d'eau alimentent 3 villes à travers un réseau de canalisations au sein duquel se trouvent également des stations de pompage. Les châteaux

Plus en détail

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN

LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas

Plus en détail

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1

BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 1 Exemple de sujet n 1 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 1 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche

Plus en détail

Section 9. Établissement de rapports et communication des résultats

Section 9. Établissement de rapports et communication des résultats Section 9 Établissement de rapports et communication des résultats 135 Établissement de rapports et communication des résultats Distribuer rapidement les résultats aux parties prenantes. Choisir le moyen

Plus en détail

Optimiser la maintenance des applications informatiques nouvelles technologies. Les 11 facteurs clés de succès qui génèrent des économies

Optimiser la maintenance des applications informatiques nouvelles technologies. Les 11 facteurs clés de succès qui génèrent des économies Application Services France the way we do it Optimiser la maintenance des applications informatiques nouvelles technologies Les 11 facteurs clés de succès qui génèrent des économies Chaque direction informatique

Plus en détail

Formation d images Exemples de l œil et de l appareil photographique

Formation d images Exemples de l œil et de l appareil photographique bserver «Couleurs et images» Activité n 3 (expérimentale) ormation d images Exemples de l œil et de l appareil photographique Connaissances Compétences - Accommodation du cristallin - onctionnement comparé

Plus en détail

ARIES P O U R L I M P L É M E N TAT I O N R A P I D E D E S Y S T È M E S D E N T R E P R I S E PRÉSENTATION DE LA MÉTHODOLOGIE ARIES

ARIES P O U R L I M P L É M E N TAT I O N R A P I D E D E S Y S T È M E S D E N T R E P R I S E PRÉSENTATION DE LA MÉTHODOLOGIE ARIES ARIES ARCHITECTURE P O U R L I M P L É M E N TAT I O N R A P I D E D E S Y S T È M E S D E N T R E P R I S E PRÉSENTATION DE LA MÉTHODOLOGIE ARIES ARIES est une méthodologie permettant d implémenter rapidement

Plus en détail

Automatisation de l'exécution d'un package SSIS sur Microsoft SQL Server 2005

Automatisation de l'exécution d'un package SSIS sur Microsoft SQL Server 2005 Automatisation de l'exécution d'un package SSIS sur Microsoft SQL Server 2005 par Fleur-Anne BLAIN (fablain.developpez.com) Date de publication : 01/04/2008 Dernière mise à jour : 01/04/2008 Ce tutoriel

Plus en détail

MIROIRS SPHÉRIQUES ET LENTILLES

MIROIRS SPHÉRIQUES ET LENTILLES EXPÉRIENCE 5 MIROIRS SPHÉRIQUES ET LENTILLES I. Introduction et objectifs Les miroirs et les lentilles sont des objets utilisés quotidiennement. Le miroir le plus répandu (et le plus simple) est le miroir

Plus en détail

Le processus de déménagement et relocalisation des ménages

Le processus de déménagement et relocalisation des ménages Intervention n 7.1 Le processus de déménagement et relocalisation des ménages Jean-Pierre Nicolas - directeur adjoint du Laboratoire d Economie des Transports La présentation que je vais faire [diapositive

Plus en détail