Jury. Directeur de Thèse :

Dimension: px
Commencer à balayer dès la page:

Download "Jury. Directeur de Thèse :"

Transcription

1 UNIVERSITE PARIS IX DAUPHINE UFR SCIENCES DES ORGANISATIONS C.E.R.I.A Interopérabilité d'un Serveur de Structures de Données Distribuées et Scalables et d'un SGBD relationnel-objet THÈSE Pour l obtention du titre de DOCTEUR EN INFORMATIQUE Yakham Ben Abdel Kader NDIAYE 13 Novembre 2001 Jury Directeur de Thèse : Rapporteurs : Suffragants : Witold LITWIN Professeur à l Université Paris IX Dauphine Tore RISCH Professeur à l Université de Uppsala, Suède Patrick VALDURIEZ Professeur à l Université Pierre et Marie Curie Gérard LEVY Professeur à l Université Paris IX Dauphine Charles BERTHET Professeur à l Université Paris IX Dauphine Ronald FAGIN Directeur Centre du Département D Informatique Fondamentale - Centre de recherche d IBM Almaden. Samba NDIAYE Sous-Directeur de la Planification et du Développement - Centre d Enseignement Supérieur Africain en Gestion. Pierre-Yves SAINTOYANT Directeur des relations Universitaires - Centre de recherche de Microsoft à Cambridge.

2 Remerciements Je tiens à exprimer tout particulièrement ma gratitude au professeur Witold Litwin, pour m avoir proposé le sujet de cette thèse, conseillé et dirigé tout au long de ce travail. Je le remercie pour le temps qu il m a consacré, et pour la relecture minutieuse des publications qui sont nées de ce travail. Je remercie également Monsieur Gérard Levy, professeur à l Université Paris Dauphine et responsable du DEA Informatique de l Université Cheikh Anta Diop de Dakar, de l honneur qu il me fait de présider cette thèse. J exprime ma plus profonde reconnaissance au professeur Tore Risch de l Université d Uppsala en Suède pour l intérêt constant qu il a manifesté pour mes travaux, pour sa collaboration enthousiaste et les informations techniques sur AMOS-II. Je remercie vivement le professeur Patrick Valduriez de l Université Pierre et Marie Curie pour l'intérêt qu'il a manifesté envers ce travail, en acceptant d'en être rapporteur et membre du jury. J adresse mes vifs remerciements au professeur Charles Berthet de l Université Paris Dauphine et à M. Ronald Fagin, Directeur du Département d Informatique Fondamentale au Centre de Recherche d IBM Almaden en Californie, pour avoir accepté de participer à mon jury de thèse. Je suis très honoré de leur présence. Je remercie tout particulièrement Monsieur Pierre-Yves Saintoyant, Directeur des Relations avec les Universités à Microsoft Research Europe, pour avoir accepté de participer à mon jury de thèse et pour le soutien financier, matériel de Microsoft à ce travail. Je remercie chaleureusement Monsieur Samba Ndiaye et Monsieur Tidiane Seck de l'ecole Supérieure Polytechnique de Dakar, pour l'encadrement local de ce travail, leurs conseils judicieux, leur disponibilité et leurs encouragements. Qu ils trouvent ici le témoignage de ma profonde reconnaissance. J exprime mes sincères remerciements à toute l équipe du C.E.R.I.A et à l équipe Bases de Données de l Université de Dakar, pour les fructueuses discussions qui ont beaucoup contribué à l aboutissement de mes travaux. Cette thèse a été financée par une bourse d alternance du Ministère Français de la Coopération. Je remercie la Mission Culturelle à Dakar et tout particulièrement le Conseiller Scientifique Monsieur Yves Gauffriau, pour la création de cette opportunité et le soutien constant et bienveillant de mes activités.

3 Résumé L évolution de l informatique lors de la dernière décennie a été caractérisée par la prolifération massive des ordinateurs interconnectés par des réseaux locaux à haute vitesse. Cette évolution a amené de nouveaux concepts d architecture matérielle. On parle souvent de multi-ordinateur, ou de Réseau de Stations de Travail ( «Network of Workstations» ) ou, plus récemment, de «Peer-to-Peer Computing» ou de «Grid Computing». Tous ces concepts ont pour but la construction d un système capable d offrir aux applications des capacités cumulées de calcul, de mémoire vive et de stockage des ordinateurs interconnectés de cette manière. Les multi-ordinateurs exigent de nouvelles organisations de données. Celles-ci doivent répondre à de nombreux impératifs. Il s agit notamment de stockage de grands volumes, d adressage décentralisé, de scalabilité, de haute-disponibilité et de sécurité accrue. Les Structures de Données Distribuées et Scalables (SDDS) sont une classe d organisation de données proposée dans ce but. Des prototypes de gestion d une SDDS ont été construits. L un d entre eux est le prototype appelé SDDS-2000 développé au CERIA. Les SDDS ont potentiellement des applications variées. Leur utilisation par les SGBDs apparaît parmi les plus prometteuses. Notre Thèse est une contribution aux techniques d application des SDDS dans un tel but. Nous étudions d abord l interopérabilité entre un SGBD et un fichier SDDS. Un tel couplage répond à un besoin connu d une application qui devrait d une part disposer d accès direct aux données, pour des manipulations de type non supporté par un SGBD. A travers le SGBD, l application devrait disposer néanmoins aussi d accès par le langage de requêtes, pour les manipulations de type SGBD. Nous examinons diverses architectures multi-ordinateur envisageables pour un tel couplage. Notre approche se base sur des techniques à la croisée des technologies des SDDS, des SGBDs en mémoire centrale, du relationnel-objet offrant la technologie de fonctions externes, et, enfin, des SGBD distribués/parallèles. Nous validons nos choix techniques par des prototypes et l étude expérimentale de performances. Cette étude amène celle d un autre volet d interopérabilité SGBD-SDDS, où un serveur SDDS utilise un SGBD en interne comme gestionnaire de mémoire. Nous montrons que ce type de système peut être vu comme une généralisation scalable d un SGBD parallèle où la partition de données devient automatique. Nous proposons des techniques correspondantes. Nous les validons également par le prototypage et les mesures de performance. Pour le prototypage et l étude expérimentale, nous utilisons le système SDDS-2000, et comme SGBD en mémoire centrale hautes performances et relationnel-objet, nous employons le prototype AMOS-II. Nous étudierons également le couplage avec DB2, comme représentant typique d un SGBD relationnel-objet commercial. L ensemble de nos résultats prouve que la technologie des SDDS ouvre effectivement de nouvelles perspectives pour celle des SGBDs. Mots clés : Multi-ordinateur, distribution de données, scalabilité, base de données en mémoire, traitement parallèle

4 Abstract The evolution of data processing in the last decade brought massive proliferation of computers inter-connected by high-speed local area networks. New architectural concepts have appeared such as the multi-computers, the Networks of Workstations and, more recently, Peer-to-Peer Computing or Grid Computing. The common goal of all these concepts is to offer to applications the cumulated CPU and storage capabilities of a large number of inter-connected computers. The multi-computers require new data organizations. Those should respond to new requirement of very large distributed data volumes, of decentralized addressing, of scalability, of highavailability and of increased security. The Scalable and Distributed Data Structures (SDDS) are a class of data structures proposed for this goal. Prototypes of SDDS management systems were built. Most recent and extensive is the SDDS-2000 system developed at CERIA and freely available for any non-commercial download at CERIA Web site. SDDS-2000 is a distributed system that stores data in the dynamically range partitioned files according to the RP* family of SDDS schemes. The data resides in the distributed RAM. Access times are many times faster than to a traditional disk file. In particular, the range queries are processed using the parallel scans. The SDDSs appear potentially useful to many applications. Their use by a DBMS appears among the most promising. Our Thesis contributes to this goal. On the one hand, we develop techniques for the interoperability of a DBMS with an external SDDS file. Many applications need such a coupling of a DBMS with an external data repository. Those require the direct fast data access for the manipulations not supported well, or at all, by a DBMS. On the other hand, they need the DBMS for the manipulations best handled through by the query language, e.g., involving joins or the aggregate functions. Those may concern the repository and other data stored internally by the DBMS. We examine various architectural issues, making such a coupling the most efficient. We base our approach on the techniques at the crossing of the SDDSs, of, the main memory DBMS, of the object-relational-dbms with the foreign functions, and, finally, of the distributed/parallel DBMS. We validate our technical choices by the prototyping and the experimental performances analysis. The latter focuses on the efficiency of complex DBMS queries to the SDDS data. We also study the coupling of DBMS and SDDS technologies where the client DBMS uses an SDDS, with the DBMS as the memory manager at each SDDS storage site. We show that such system appears as a scalable generalization of a parallel DBMS where the data partitioning becomes dynamic. We propose techniques for the efficient splits of the overloaded DBMS storage sites. We validate our proposals by the prototyping and the performances measurements. For prototyping and experimental performances analysis, we use on the one hand extensively the SDDS-2000 system. As the high-performances and object-relational- main memory DBMS, we have chosen the AMOS-II prototype developed by the University of Uppsala. We also study also the coupling with DB2, as the representative of a commercial relational- technology. Our overall results prove that the SDDS technology effectively opens new perspectives for those modern DBMSs. Key Words: Multicomputer, distributed data, scalability, main memory database, parallel processing

5 Sommaire Résumé... 1 Abstract... 2 Table des figures... 6 Chapitre Introduction... 7 Chapitre Les Structures de Données Distribuées et Scalables Les multi-ordinateurs Architecture à mémoire partagée Architecture à disques partagés Architecture sans mémoire partagée Scalabilité des systèmes parallèles Structures de Données Distribuées Scalables Structure et évolution du fichier SDDS RP* Manipulations d un fichier SDDS RP* Conclusion Chapitre Les systèmes de bases de données parallèles Historique des bases de données Les systèmes de bases de données parallèles Principes de base des SGBDs parallèles Schéma de fragmentation des données Optimisation dynamique des requêtes Les mécanismes de traitement parallèle Parallélisme indépendant Parallélisme en tuyau Parallélisme par fragmentation Les principaux systèmes parallèles commerciaux Approche disque partagé Approche sans mémoire partagée Etude de cas Le système IBM DB

6 5.2 Le système TERADATA NCR Le système ORACLE9i Conclusion Chapitre Couplage du SGBD AMOS-II avec les SDDS Hiérarchie des unités de stockage Les bases de données en mémoire centrale Le SGBD AMOS-II Interface CALLIN Interface CALLOUT Fonction externe simple Implantation d une fonction externe Objectifs du couplage des SDDS avec AMOS-II Le système AMOS-SDDS Architecture de couplage AMOS-SDDS Traitement des requêtes dans AMOS-SDDS Conception du système AMOS-SDDS Le système SD-AMOS Architecture de couplage SD-AMOS Traitement des requêtes dans SD-AMOS Structure et évolution du fichier SD-AMOS Conception du système SD-AMOS Conclusion Chapitre Couplage du SGBD DB2 avec les SDDS Les entrepôts de données externes Le SGBD IBM BD Types de données définis par l utilisateur (UDT) Fonctions définies par l utilisateur(udf) Déclaration d une fonction externe Objectifs du couplage des SDDS avec DB Architecture de couplage de DB2 avec les SDDS Traitement des requêtes dans DB2-SDDS Conception de l interface DB2-SDDS

7 4 Conclusion Chapitre Implantation des prototypes Interface de communication entre processus distants Interface de communication entre processus distants Programmation multitâche Implantation du système AMOS-SDDS Client Serveur Implantation du système DB2-SDDS Interfaçage du client SDDS avec DB Les fonctions externes Exemples de requêtes Conclusion Chapitre Expérimentations Environnement expérimental Etude de performances du système AMOS-SDDS Expérimentations de AMOS-II seul La Stratégie Externe La Stratégie d Importation Les Fonctions Agrégats Etude de performances du système SD-AMOS Temps de création du fichier Temps de recherche simple Temps de recherche par intervalle Etude de performances du système DB2-SDDS Conclusion Chapitre Conclusion Bibliographie Annexe 1 Extended Abstract Annexe 2 Description des codes souces des prototypes

8 Table des figures Figure 1. Multi-ordinateur avec mémoire partagée Figure 2. Multi-ordinateur à disques partagés Figure 3. Multi-ordinateur sans mémoire partagée Figure 4. Les Structures de Données Distribuées et Scalables (SDDS) Figure 5. Evolution du fichier à la suite d insertions d enregistrements Figure 6. Etat actuel du fichier Figure 7. Evolution de l image du client à la suite de la recherche d enregistrements Figure 8. Parallélisme indépendant Figure 9. Parallélisme en tuyau Figure 10. Parallélisme par fragmentation Figure 11. Parallélisme Intra-nœud de TERADATA Figure 12. Hiérarchie des mémoires Figure 13. Architecture globale de AMOS-SDDS Figure 14. Architecture globale de SD-AMOS...36 Figure 15. Architecture globale de AMOS-SDDS Figure 16. Traitement des requêtes sous AMOS-SDDS Figure 17. Architecture SD-AMOS Figure 18. Traitement des requêtes sous SD-AMOS Figure 19. Architecture de couplage DB2-SDDS Figure 20. Traitement des requêtes sous DB2-SDDS Figure 21. Correspondance entre le modèle OSI et TCP/IP Figure 22. Architecture du client Figure 23. structure du tampon avec des séparateurs Figure 24. structure du tampon avec des champs de longueur fixe Figure 25. Fichier sur quatre serveurs Figure 26. Evolution de la liste des réponses si tous les serveurs ont répondu Figure 27. Déroulement d'une fonction externe sur le client Figure 28. Architecture globale de couplage de AMOS-II avec les SDDS Figure 29. Protocole d'éclatement Figure 30. Déroulement d'une fonction externe sur le serveur AMOS-SDDS Figure 31. Déroulement d'une fonction externe sur le serveur SD-AMOS Figure 32. Temps d exécution de la requête 2 en fonction de la stratégie Figure 33. Temps d exécution de la requête 2 avec la Stratégie I et la fonction count Figure 34. Performance de AMOS-II, et de AMOS-SDDS sur un grand fichier Figure 35. Durée d exécution de la requête Figure 36. Extrapolation du temps de traitement de la requête Figure 37 Extrapolation du temps par tuple pour la requête 2 sur plusieurs serveurs Figure 38 Durée d exécution de la fonction Count Figure 39 Durée d exécution de la fonction Max...92 Figure 41. Temps moyen d insertion d un enregistrement (tuple de 100 octets) Figure 42. Temps moyen de recherche d un enregistrement Figure 43. Temps de traitement d'une requête à intervalle Figure 44. Temps par enregistrement

9 Chapitre 1 Introduction L évolution de l informatique lors de la dernière décennie a été caractérisée par la prolifération massive des ordinateurs interconnectés par des réseaux. Il s agit surtout des ordinateurs personnels, de stations de travail et de serveurs, de moins en moins chers et sans cesse plus puissants, reliés par des réseaux locaux à haute vitesse, Mb/s en général. Les organisations possèdent aujourd hui massivement de telles configurations. Elles comportent en général au moins un PC par employé, donc au moins plusieurs dizaines de machines interconnectées, voir plusieurs dizaines de milliers. De plus, quasiment toute machine est aujourd hui connectée à Internet. Ce dernier offre aussi la possibilité d interconnecter les ordinateurs sur des sites géographiquement distants d une organisation, ou de plusieurs organisations coopérantes. Cette évolution a amené de nouveaux concepts d architecture matérielle. On parle souvent de multi-ordinateur, ou de Réseau de Stations de Travail ( «Network of Workstations» ) ou, plus récemment, de «Peer-to-Peer Computing» ou de «Grid Computing». Ces concepts ont pour but la construction d un système capable d offrir aux applications des capacités cumulées de calcul, de mémoire vive et de stockage des ordinateurs interconnectés de cette manière[tan94]. Ces capacités apparaissent d une part potentiellement quasi illimitées. D autre part, elles semblent de facto à peine utilisées à l heure actuelle. Les multi-ordinateurs exigent de nouvelles organisations de données. Celles-ci doivent répondre à de nombreux impératifs. Il s agit notamment de stockage de grands volumes, d adressage décentralisé, de scalabilité, de haute-disponibilité et de sécurité accrue. Les Structures de Données Distribuées et Scalables (SDDS) sont une classe d organisation de données proposée dans ce but. Une SDDS répartit les données sur les nœuds de stockage interconnectés. Il peut s agir de stations de travail du multi-ordinateur. Plus généralement, il peut s agir aussi de processeurs d un super-ordinateur parallèle, ou de super-ordinateurs interconnectés ou de mémoires autonomes de type SAN («Storage Area Networks») ou NAS (Network Attached Storage) imbriqués dans un multi-ordinateur. La répartition est dynamique et transparente pour l application. Une SDDS peut notamment stocker de grands volumes de données en mémoire centrale du multi-ordinateur. L accès à ces données est bien plus rapide qu aux données stockées sur les disques. Des - 7 -

10 prototypes de gestion d une SDDS ont été construits, notamment celui appelé SDDS-2000 développé au CERIA. Les SDDS ont potentiellement des applications variées. Leur utilisation par les SGBDs apparaît parmi les plus prometteuses. Notre Thèse est une contribution aux techniques d application des SDDS dans un tel but. Nous étudions l interopérabilité entre un SGBD et un fichier SDDS. Un tel couplage répond à un besoin connu d une application qui devrait d une part disposer d accès direct aux données, pour des manipulations de type non supporté par un SGBD. D autre part à travers le SGBD, l application devrait également disposer d accès par le langage de requêtes, pour les manipulations de type SGBD. Un tel couplage permet enfin à un SGBD de gérer des volumes de données plus grands que la capacité de ses mémoires internes. Tout particulièrement, quand il s agit d un SGBD en mémoire centrale pour des applications à hautes performances. Nous examinons diverses architectures multi-ordinateur envisageables pour un tel couplage. Notre approche se base sur les techniques à la croisée des technologies des SDDS, des SGBDs en mémoire centrale, du relationnel-objet offrant la technologie de fonctions externes, et, enfin, des SGBD distribués/parallèles. Nous validons nos choix techniques par des prototypes et l étude expérimentale de performances. Cette étude amène celle d un autre volet d interopérabilité SGBD-SDDS, où un serveur SDDS utilise un SGBD en interne comme gestionnaire de mémoire. Nous montrons que ce type de système peut être vu comme une généralisation scalable d un SGBD parallèle où la partition de données devient automatique. Nous proposons des techniques correspondantes. Nous les validons également par l implantation de prototypes et les mesures de performance. Pour le prototypage et l étude expérimentale, nous utilisons le système SDDS Dans le cadre de cette Thèse nous avons contribué à la conception et l implantation de certaines fonctions de ce prototype. Comme SGBD en mémoire centrale hautes performances et relationnel-objet, nous employons le prototype AMOS-II. Nous étudierons aussi le couplage avec DB2, comme représentant typique d un SGBD relationnel-objet commercial. L ensemble des nos résultats montre que la technologie des SDDS ouvre effectivement de nouvelles perspectives pour celle des SGBDs. La suite du document est organisée comme suit : Le chapitre 2 présente les concepts de base des Structures de Données Distribuées et Scalables(SDDS). Nous passons en revue les multi-ordinateurs - un nouveau concept - 8 -

11 d architecture matérielle. Nous présentons ensuite les SDDS - une nouvelle classe d organisation de données, définie spécifiquement pour les multi-ordinateurs. Le chapitre 3 présente les concepts de base des systèmes parallèles. Nous passons en revue les mécanismes de traitement parallèle et les problèmes soulevés par leur mise en œuvre. Une attention est portée sur les solutions actuellement retenues par les systèmes commercialisés. Le chapitre 4 présente le système AMOS-II et ses possibilités d interopérabilité avec d autres systèmes, plus particulièrement les fonctions de manipulation de données externes. Les objectifs du couplage des SDDS avec les systèmes AMOS-II et les problèmes techniques relatifs à la conception d un système de base de données dynamique en mémoire principale sont soulevés à ce niveau. Le chapitre 5 présente les objectifs du couplage des SDDS avec le SGBD DB2 et donne une description détaillée du prototype qui a été implanté. Nous présentons d abord les possibilités de manipulation de données externes proposées par DB2. Nous étudions ensuite l utilisation d un fichier SDDS par un SGBD comme un entrepôt de données externes. Le chapitre 6 présente les architectures fonctionnelles retenues pour le couplage du gestionnaire SDDS avec les systèmes AMOS-II et DB2 ainsi que les mécanismes de traitement parallèle des requêtes. Les outils techniques pour la mise en œuvre des prototypes sont décrits en premier. Il s agit notamment des interfaces de communication entre processus distants et de la mise en œuvre du multitâche sous Windows. Le chapitre 7 présente l'environnement expérimental et les mesures de performance. L accent est mis sur l analyse de la scalabilité des prototypes qui ont été implantés. Le chapitre 8 conclut ce document et présente les perspectives de recherche. Un résumé étendu en anglais de la thèse est présenté en annexe

12 Chapitre 2 Les Structures de Données Distribuées et Scalables Dans ce chapitre, nous passons en revue les multi-ordinateurs - un nouveau concept d architecture matérielle qui est le résultat des progrès réalisés dans la vitesse des réseaux. Nous présentons ensuite une nouvelle classe d organisation de données définie spécifiquement pour les multi-ordinateurs. Les Structures de Données Distribuées et Scalables (SDDS) sont conçues pour contourner les insuffisances des structures de données distribuées classiques, notamment le point d accès unique ou les schémas de fragmentation statiques. Nous présentons les concepts de base des SDDS en insistant sur les algorithmes RP* qui ont été retenus dans l implantation des prototypes. 1 Les multi-ordinateurs Des recherches avancées sont menées pour mieux exploiter la puissance de calcul d un ensemble d ordinateurs interconnectés à travers des réseaux à haut débit (>10MBits) [MC99], [CACM97], [Gra96], [GW97]. De telles configurations existent déjà dans plusieurs organisations. Des termes sont apparus pour désigner les machines organisées de la sorte : multi-ordinateurs, Réseau de Stations de Travail ( «Network of Workstations» ) ou, plus récemment, de «Peer-to-Peer Computing» ou de «Grid Computing». Les capacités cumulées de traitement parallèle et de stockage d un multi-ordinateur sont impressionnantes et même supérieures aux performances des gros systèmes. De telles configurations sont évolutives et exploitent au mieux les progrès constants au niveau du matériel. Les multi-ordinateurs se caractérisent par la manière dont leurs composants de base (la mémoire principale, le processeur (CPU) et les mémoires secondaires) sont interconnectés. Ainsi les trois architectures, décrites par la suite, ont été proposées et implantées ces dernières années. 1.1 Architecture à mémoire partagée Dans un multi-ordinateur à mémoire partagée ou en grappe (ang. Shared-memory), tous les processeurs accèdent à une grande mémoire commune [Vra95]. L accès aux disques est également partagé. Ainsi, chaque processeur a un accès direct à toutes les portions de la mémoire ou des disques. Tout le système est en général regroupé dans une même machine. L équilibrage de charge ou la synchronisation des processeurs se réalise facilement à travers la mémoire partagée. L accès concurrent à la mémoire peut devenir un goulot d étranglement quand le nombre de

13 processeurs devient important. Egalement, les accès fréquents aux disques entraînent un flux de données trop important sur le réseau. Cette surcharge du réseau ralentit tout le système. La Figure 1 schématise un multi-ordinateur à mémoire partagée avec les lettres P qui symbolisent les processeurs, M la mémoire centrale et D les disques. P P P Réseau Mémoire globale partagée D D D Figure 1. Multi-ordinateur avec mémoire partagée 1.2 Architecture à disques partagés Dans un multi-ordinateur à disques partagés (ang. Shared-disk), chaque processeur dispose d un accès direct à une mémoire privée. Seul l accès aux disques est partagé. Cette architecture élimine les interférences des processeurs sur la mémoire principale et réduit la congestion du réseau. La Figure 2 représente un multi-ordinateur à disques partagés. M M M P P P Réseau D D D Figure 2. Multi-ordinateur à disques partagés 1.3 Architecture sans mémoire partagée Dans un multi-ordinateur sans mémoire partagée (ang. Shared-nothing), chaque processeur dispose d un accès exclusif à la mémoire et aux disques qui lui sont reliés. L ensemble (processeur, mémoire et disque) est appelé nœud. Aucun processeur ne peut accéder directement à une mémoire ou un disque sur un poste distant. L échange d informations entre deux nœuds se fait à travers une connexion réseau. La Figure 3 présente un multi-ordinateur sans mémoire partagée

14 Réseau P P P M M M D D D Figure 3. Multi-ordinateur sans mémoire partagée En réduisant les ressources partagées, cette architecture élimine les interférences entre processeurs. Un multi-ordinateur sans mémoire partagée supporte la monté en charge mieux que les deux autres architectures. L équilibrage de charge entre les différents nœuds est plus difficile à mettre en œuvre dans les multi-ordinateurs sans mémoire partagée. 1.4 Scalabilité des systèmes parallèles La notion de scalabilité (anglicisme) est apparue avec les systèmes multiprocesseurs. C est une caractéristique des architectures qui sont capables de s'adapter à l'évolution des besoins tout en conservant leurs propriétés fonctionnelles. La scalabilité est aujourd'hui un critère déterminant dans la recherche d'une architecture, puisqu'elle est synonyme de souplesse et d'optimisation des choix technologiques[win99]. La mesure de la scalabilité d un système se fait principalement sur les trois paramètres suivants : la taille des données (size up), le temps de réponse (speed up), et la charge de travail (scale up). L analyse du comportement d un système en fonction de la variation de ces paramètres permet de le classer par rapport à l'idéal d une montée à l échelle linéaire. Le size up se rapporte au principe suivant: dans un système scalable en supposant une configuration matérielle constante, si la taille des données augmente d un facteur de n, alors le temps de réponse d une requête augmentera au plus d un facteur de n. Le speed up se rapporte au principe suivant: Si la capacité de traitement de la configuration matérielle augmente d un facteur de n, alors dans un système scalable, le temps de réponse d une requête doit diminuer au minimum d un facteur de n. Le scale up se rapporte au principe suivant: Si la charge de travail sur un système augmente d un facteur de n, alors dans un système scalable, il suffit d augmenter la capacité de traitement d un facteur pas plus de n pour maintenir le même temps de réponse. 2 Structures de Données Distribuées Scalables Les Structures de Données Distribuées et Scalables (SDDS) constituent une nouvelle classe d organisation de données, définie spécifiquement pour les multi-ordinateurs (voir Figure 4). Elles sont conçues pour contourner les insuffisances des structures de données distribuées

15 classiques, notamment le point d accès unique ou les schémas de fragmentation statiques. Plusieurs SDDSs ont été proposées [LNS93], [LNS94], [LMRS00], [Knu98], Des serveurs SDDS prototypes ont été implantés à Paris 9 Dauphine notamment [Sah00] et à l'université de Dakar [Die97], [SND98]. Un fichier SDDS est stocké sur des sites désignés serveurs. Sur chaque serveur, les enregistrements sont stockés sur un espace mémoire appelé case. Un paramètre important d une case est sa capacité qui détermine le nombre maximum d enregistrements qu elle peut contenir. Un enregistrement comporte un champ-clé et des champs non-clés. Le champ clé identifie l enregistrement de manière unique sur l ensemble des serveurs. Les requêtes sont formulées à partir de sites autonomes désignés clients. Il n y a pas de répertoire central d accès. Chaque client dispose de sa propre image de la structure du fichier. Dés qu un serveur atteint sa capacité maximale, il transfère la moitié de ses enregistrements vers un nouveau serveur. Les mises à jour de la structure d une SDDS ne sont pas envoyées aux clients d une manière synchrone. Un client peut faire des erreurs d adressage. Chaque serveur vérifie l adresse de la requête et l achemine vers un autre serveur si une erreur est détectée. Le serveur adéquat envoie alors un message correctif (IAM - Image Adjustment Message) au client ayant commis l erreur d adressage. Ce dernier ajuste son image pour ne plus faire la même erreur. Les IAMs font converger l image d un client vers celle réelle. La fragmentation des données sur les sites de stockage se fait par hachage ou par intervalle. Nos travaux portent sur les algorithmes RP* permettant de créer un fichier qui peut s étendre de manière dynamique sur plusieurs serveurs, tout en maintenant les enregistrements triés suivant la valeur de leur clé [Ndi98]. RP* réalise la fragmentation dynamique par intervalle (Range Partitioning) et supporte, comme les arbres-b des requêtes à intervalle ou un parcours ordonné du fichier par rapport à la clé [DL00]. SDDS Structures de données Les classiques Hachage Arbre 1-d RP* Arbre k-d k-rp* LH*, LH*LH RP* N, RP* C, RP* S k-rp* N, k-rp* C, DDH, LH*RAIS k-rp* S Figure 4. Les Structures de Données Distribuées et Scalables (SDDS)

16 2.1 Structure et évolution du fichier SDDS RP* Dans un fichier RP*, chaque case est munie d un en-tête contenant deux valeurs λ et Λ. Ces dernières sont respectivement la clé minimale et la clé maximale des enregistrements pouvant être insérés dans la case. Une case d intervalle ]λ, Λ] contient donc les enregistrements de clé c tel que λ < c Λ. A la création, un fichier RP* débute sur une case unique notée case 0. Toutes les insertions d enregistrements vont vers la case 0. Si le nombre d enregistrements atteint la capacité maximale, alors toute tentative d insertion provoque un éclatement qui se déroule en trois étapes : création d une nouvelle case, migration de la moitié des enregistrements de la case 0 vers la nouvelle case numérotée case 1, modification de l intervalle de la case 0 et détermination de celui de la case 1. Si cm est la clé de l enregistrement du milieu de la case en débordement, alors la case 0 devient : Case 0 ]λ, Λ ] => Case 0 ]λ, cm ] et Case 1 ]cm, Λ ]. Ce processus est répété pour toute case qui devient surchargée par les insertions. La Figure 5 présente l évolution d un fichier à la suite de trois éclatements. Un fichier peut ainsi s étendre sur un nombre infini de cases. Ce qui rend la capacité de stockage illimitée Figure 5. Evolution du fichier à la suite d insertions d enregistrements Une SDDS RP* est composée de trois variantes dénommées RP*N, RP*C et RP*S. Elles se distinguent par les techniques d adressage utilisées pour acheminer les requêtes d un client vers le serveur adéquat. Un client RP*N envoie les requêtes aux serveurs en utilisant uniquement des messages de diffusion. Un client RP*C est une reprise du client RP*N auquel on ajoute une image du fichier pour réduire l envoi de requêtes par une diffusion. Le client utilise des messages point à point pour envoyer les requêtes vers les serveurs connus de son image. Les serveurs utilisent toutefois des messages de diffusion pour rediriger les requêtes en cas d erreur d adressage. Finalement RP*S ajoute à RP*C un index distribué au niveau des serveurs. Les requêtes et les redirections sont envoyées par des messages point à point

17 Notre travail porte sur la variante RP*C. Les détails de la manipulation de fichier RP*C sont présentés dans les sections suivantes Structure de l'image du client L image du fichier est une collection d intervalles et d adresses de sites qui traduit la répartition des enregistrements sur les cases et les serveurs qui les hébergent. Elle est représentée par une table dynamique T[0, 1, ]. Chaque élément T[i] de cette table contient l adresse d une case et son intervalle. Logiquement, la table T est une liste ordonnée de couples T[i] = (A, C) avec : A : Adresse d une case du fichier SDDS Posons A = * (une adresse de diffusion) inconnue. si elle correspond à une adresse C : Clé maximale Λ(A) que peut contenir la case A. Initialement T =[(0, ), et évolue en fonction des messages correctifs (IAM) reçus qui entraînent l insertion ou la mise à jour des valeurs de la table Envoi d une requête par un client Une requête sur un enregistrement de clé c est exécutée de la manière suivante : Le client parcourt les couples t = (A, C) de son image et recherche le premier élément dont la clé est immédiatement supérieure à la clé c. - Si A(t) * alors envoyer la requête à la case d'adresse A par un message point à point. - Sinon, envoyer la requête par un message de diffusion Traitement d une requête par un serveur Chaque serveur qui reçoit une requête vérifie si la clé qui y est contenue appartient à son intervalle. Deux cas peuvent se présenter : 1) La clé n appartient pas à l intervalle du serveur: - Si c est par un message de diffusion, alors le serveur ne fait rien; - Si c est par un message point à point, alors le serveur insère dans le message reçu l adresse et l intervalle de la case puis l envoie par diffusion aux autres serveurs : il s agit de la redirection d une requête. 2) La clé appartient à l intervalle du serveur: - Si c est un message redirigé, alors le serveur traite la requête et envoie une réponse au client avec l adresse et l intervalle du serveur intermédiaire, l adresse et l intervalle du serveur courant

18 - Sinon envoyer la réponse avec l adresse et l intervalle du serveur courant au client Ajustement de l'image du client La réponse à une requête contient un champ IAM qui permet au client de corriger son image de la répartition du fichier sur les serveurs(cf. Figure 6). L IAM se présente sous forme d'un ou de deux triplets (λ, a, Λ) : l intervalle du serveur qui a traité la requête (]λ,λ ]) et «a» son adresse. L'ajustement de l'image du client se fait donc de manière asynchrone suivant l algorithme cidessous : (a) S'il n'existe pas un élément t appartenant à T avec C(t) = λ et λ alors insérer (*, λ) dans T. (b) S'il existe un élément t appartenant à T avec C(t) > Λ alors : si C(t) = + alors t = (a, Λ) et ajouter (*, + ) dans T. si C(t) < + alors t = (a, Λ). (c) S'il existe un élément t appartenant à T avec t = (*, Λ) alors t = (a, Λ). (d) S'il n'existe pas d élément t = (a, Λ) appartenant à T alors insérer (a, Λ) dans T C0 C1 C2 C3 Figure 6. Etat actuel du fichier La Figure 7 montre l évolution de l image du client à la suite de la recherche de quatre clés avec l état initial suivant : T0 [C 0, + ] Clé recherchée IAM évolution image du client 7 C 0 (-,8) T1 [C 0, 8] [*, + ] 19 C 2 (16,21) T2 [C 0, 8] [*, 16] [C 2, 21] [*, + ] 34 C 1 (21,+ ) T3 [C 0, 8] [*, 16] [C 2, 21] [C 1, + ] 11 C 3 (8,16) T4 [C 0, 8] [C 3, 16] [C 2, 21] [C 1, + ] Figure 7. Evolution de l image du client à la suite de la recherche d enregistrements

19 2.2 Manipulations d un fichier SDDS RP* L accès au fichier se fait à travers des requêtes émises à partir des sites clients. Une requête du type recherche, modification ou suppression d un enregistrement est dite simple. Une requête parallèle est de trois types : une recherche par intervalle, une sélection avec des critères sur des champs non-clés ou un déport de fonction. Une requête à intervalle correspond à la recherche des enregistrements dont les clés appartiennent à l intervalle de recherche. Une recherche peut aussi correspondre à une sélection des enregistrements dont un champ non-clé vérifie certains critères. Un déport de fonction consiste à lancer un traitement prédéfini sur les serveurs et à récupérer les résultats sur le client. Un client peut aussi effectuer un parcours transversal du fichier qui consiste à examiner séquentiellement tous les enregistrements suivant l ordre croissant des clés Requête simple Avant d envoyer une requête simple, le client consulte son l image. La requête est traitée par le serveur S d intervalle ]λ, Λ] telle que c ]λ, Λ]. Le serveur S exécute la requête, puis envoie la réponse au client Requête à intervalle Elle consiste en la recherche ou la mise à jour d un ensemble d enregistrements de clé c appartenant à un intervalle [a, b], avec a < b. Une requête à intervalle est envoyée à l aide d un message de diffusion. Soit [a, b] R l intervalle d une requête de recherche R, envoyée par un client à un groupe de n serveurs, S 1, S 2, S n. Soit ]λ i, Λ i ] l intervalle du serveur S i, avec 1 i n. La requête R est traitée par tous les serveurs S i tels que ]λ i, Λ i ] [a, b] R {}. Le traitement de la requête se fait en parallèle sur ce groupe de serveurs. Chaque exécution porte sur un fragment de l intervalle [a, b] R. Après le traitement, les serveurs concernés envoient les résultats partiels au client. Ce dernier reçoit les enregistrements triés suivant la valeur de leur clé en effectuant l union des intervalles de réponse ]λ i, Λ i ] pour 1 i < n de telle sorte que λ i = Λ i Terminaison des requêtes à intervalle Le résultat d une requête à intervalle provient de plusieurs serveurs du fait du stockage distribué. Le client ne connaît pas d avance le nombre de serveurs devant répondre. Il se pose ainsi le problème de la terminaison d une requête. Il s agit de déterminer à quel moment sont reçues toutes les réponses. La terminaison est dite probabiliste si le client fixe un délai d attente à

20 l expiration duquel il estime que toutes les réponses sont reçues. Dans ce cas, seuls les serveurs qui ont des données à envoyer répondent. Elle est dite déterministe si tous les serveurs sont tenus d envoyer pour chaque requête reçue, leur intervalle et éventuellement les données résultats. Le client arrête l attente des résultats d une requête dès qu il vérifie que l union des intervalles des serveurs qui ont répondu recouvre l intervalle de recherche. Des mécanismes de reprise peuvent être envisagés pour effectuer des relances sur les serveurs manquants. La bonne estimation du délai d attente se pose pour la terminaison probabiliste. Il doit être supérieur au temps de parcours aller et retour d un message sur le réseau, majoré du délai de prise en compte d une requête par un serveur. Une amélioration du temps de réponse peut être obtenue avec un délai qui prend deux valeurs : le temps d attente de la première réponse, puis le délai estimé entre l arrivée de deux messages. 3 Conclusion Nous avons essayé dans ce chapitre de faire ressortir les avantages des SDDS par rapport aux structures de données classiques. Nous avons exposé les principes de bases des SDDS et en particulier les algorithmes RP*. Nous pouvons retenir les caractéristiques suivantes des SDDS : les données d une SDDS résident en mémoire vive ce qui leur garantie les meilleurs temps d accès possibles. Un fichier SDDS débute sur un seul site de stockage et peut être étendu par des insertions à un nombre quelconque de sites. Ceci rend sa capacité de stockage potentiellement illimitée. Les données sont stockées sur plusieurs serveurs qui effectuent tous les traitements en parallèle, ce qui fait que l augmentation de la taille des données ne détériore pas les performances d accès. Ces caractéristiques doivent assurer aux SDDS des performances de traitement inconnues des structures de données classiques. Les SDDS ont potentiellement des applications variées et leur utilisation par les SGBDs apparaît parmi les plus prometteuses

ARCHITECTURES DES SYSTÈME DE BASE DE DONNÉES. Cours Administration des Bases de données M Salhi

ARCHITECTURES DES SYSTÈME DE BASE DE DONNÉES. Cours Administration des Bases de données M Salhi ARCHITECTURES DES SYSTÈME DE BASE DE DONNÉES Cours Administration des Bases de données M Salhi Architectures des Système de base de données Systèmes centralisés et client-serveur Server System Architectures

Plus en détail

BD réparties. Bases de Données Réparties. SGBD réparti. Paramètres à considérer

BD réparties. Bases de Données Réparties. SGBD réparti. Paramètres à considérer Bases de Données Réparties Définition Architectures Outils d interface SGBD Réplication SGBD répartis hétérogènes BD réparties Principe : BD locales, accès locaux rapides accès aux autres SGBD du réseau

Plus en détail

Plan. Cours 4 : Méthodes d accès aux données. Architecture système. Objectifs des SGBD (rappel)

Plan. Cours 4 : Méthodes d accès aux données. Architecture système. Objectifs des SGBD (rappel) UPMC - UFR 99 Licence d informatique 205/206 Module 3I009 Cours 4 : Méthodes d accès aux données Plan Fonctions et structure des SGBD Structures physiques Stockage des données Organisation de fichiers

Plus en détail

Objectifs. Maîtriser. Pratiquer

Objectifs. Maîtriser. Pratiquer 1 Bases de Données Objectifs Maîtriser les concepts d un SGBD relationnel Les modèles de représentations de données Les modèles de représentations de données La conception d une base de données Pratiquer

Plus en détail

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE Ecole Supérieure d Informatique (ESI) Ecole Doctorale Mémoire Soutenu pour l obtention

Plus en détail

Cours Bases de données

Cours Bases de données Informations sur le cours Cours Bases de données 9 (10) séances de 3h Polycopié (Cours + TD/TP) 3 année (MISI) Antoine Cornuéjols www.lri.fr/~antoine antoine.cornuejols@agroparistech.fr Transparents Disponibles

Plus en détail

Plan de cette partie. Implantation des SGBD relationnels. Définition et fonctionnalités. Index. Coûts pour retrouver des données

Plan de cette partie. Implantation des SGBD relationnels. Définition et fonctionnalités. Index. Coûts pour retrouver des données Implantation des SGBD relationnels Université de Nice Sophia-Antipolis Version 3.4 25//06 Richard Grin Plan de cette partie Nous allons étudier (très rapidement!) quelques éléments de solutions utilisés

Plus en détail

10/04/2011. Serveur de données. Serveur de données. Client. Programme d'application Logiciel intermédiaire Pilote de télécommunication.

10/04/2011. Serveur de données. Serveur de données. Client. Programme d'application Logiciel intermédiaire Pilote de télécommunication. 1 BD locale BD locale Programme d'application Logiciel intermédiaire Client SGBD réparti Logiciel intermédiaire données SGBD réparti Logiciel intermédiaire données 2 Bénéfices potentiels Performance Fiabilité

Plus en détail

Le client/serveur repose sur une communication d égal à égal entre les applications.

Le client/serveur repose sur une communication d égal à égal entre les applications. Table des matières LES PRINCIPES DE BASE... 1 Présentation distribuée-revamping...2 Présentation distante...3 Traitements distribués...3 données distantes-rd...4 données distribuées-rda distribué...4 L'ARCHITECTURE

Plus en détail

BD parallèles et réparties

BD parallèles et réparties LOG660 - Bases de données de haute performance BD parallèles et réparties Département de génie logiciel et des TI BD parallèles vs réparties BD réparties Les données se trouvent sur plusieurs sites (noeuds)

Plus en détail

Introduction aux S.G.B.D.

Introduction aux S.G.B.D. NFE113 Administration et configuration des bases de données - 2010 Introduction aux S.G.B.D. Eric Boniface Sommaire L origine La gestion de fichiers Les S.G.B.D. : définition, principes et architecture

Plus en détail

Cours Base de données relationnelles. M. Boughanem, IUP STRI

Cours Base de données relationnelles. M. Boughanem, IUP STRI Cours Base de données relationnelles 1 Plan 1. Notions de base 2. Modèle relationnel 3. SQL 2 Notions de base (1) Définition intuitive : une base de données est un ensemble d informations, (fichiers),

Plus en détail

Bases de données Cours 2 : Architecture pour les bases de données

Bases de données Cours 2 : Architecture pour les bases de données Cours 2 : Architecture pour les bases de données ESIL Université de la méditerranée Odile.Papini@esil.univ-mrs.fr http://odile.papini.perso.esil.univmed.fr Plan du cours Architecture SPARC-ANSI 1 Architecture

Plus en détail

NOTIONS DE RESEAUX INFORMATIQUES

NOTIONS DE RESEAUX INFORMATIQUES NOTIONS DE RESEAUX INFORMATIQUES GENERALITES Définition d'un réseau Un réseau informatique est un ensemble d'équipements reliés entre eux afin de partager des données, des ressources et d'échanger des

Plus en détail

Présentation du module Base de données spatio-temporelles

Présentation du module Base de données spatio-temporelles Présentation du module Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Partie 1 : Notion de bases de données (12,5h ) Enjeux et principes

Plus en détail

1.1 Remote Procedure Call (RPC)

1.1 Remote Procedure Call (RPC) 1.1 Remote Procedure Call (RPC) Le modèle Client-Serveur est un modèle simple à utiliser pour la structuration des systèmes répartis. Mais ce modèle s appuie sur des communications de type entrée/sortie

Plus en détail

Architecture des calculateurs

Architecture des calculateurs Chapitre 1 Architecture des calculateurs 1.1 Introduction Ce paragraphe n a pas la prétention de présenter un cours d informatique. D une manière générale, seuls les caractéristiques architecturales qui

Plus en détail

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation

4. Utilisation d un SGBD : le langage SQL. 5. Normalisation Base de données S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Notion de bases de données Fondements / Conception Utilisation :

Plus en détail

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales

Ecole des Hautes Etudes Commerciales HEC Alger. par Amina GACEM. Module Informatique 1ière Année Master Sciences Commerciales Ecole des Hautes Etudes Commerciales HEC Alger Évolution des SGBDs par Amina GACEM Module Informatique 1ière Année Master Sciences Commerciales Evolution des SGBDs Pour toute remarque, question, commentaire

Plus en détail

Bases de données Cours 1 : Généralités sur les bases de données

Bases de données Cours 1 : Généralités sur les bases de données Cours 1 : Généralités sur les bases de données POLYTECH Université d Aix-Marseille odile.papini@univ-amu.fr http://odile.papini.perso.esil.univmed.fr/sources/bd.html Plan du cours 1 1 Qu est ce qu une

Plus en détail

ETUDE DE CAS SESSION 2000 OPTION ARLE BAREME ET CORRIGE ETABLIS PAR LA COMMISSION NATIONALE D HARMONISATION DU 31 MAI 2000

ETUDE DE CAS SESSION 2000 OPTION ARLE BAREME ET CORRIGE ETABLIS PAR LA COMMISSION NATIONALE D HARMONISATION DU 31 MAI 2000 BTS INFORMATIQUE DE GESTION SESSION 2000 ETUDE DE CAS SESSION 2000 OPTION ARLE BAREME ET CORRIGE ETABLIS PAR LA COMMISSION NATIONALE D HARMONISATION DU 31 MAI 2000 Durée : 5 heures Coefficient : 5 CAS

Plus en détail

Module BDR Master d Informatique (SAR)

Module BDR Master d Informatique (SAR) Module BDR Master d Informatique (SAR) Cours 6- Bases de données réparties Anne Doucet Anne.Doucet@lip6.fr 1 Bases de Données Réparties Définition Conception Décomposition Fragmentation horizontale et

Plus en détail

IBM Tivoli Storage Manager

IBM Tivoli Storage Manager Maintenir la continuité des affaires grâce à une gestion efficace et performante du stockage IBM Tivoli Storage Manager POINTS FORTS Accroît la continuité des affaires en réduisant les temps de sauvegarde

Plus en détail

INTERSYSTEMS CACHÉ COMME ALTERNATIVE AUX BASES DE DONNÉES RÉSIDENTES EN MÉMOIRE

INTERSYSTEMS CACHÉ COMME ALTERNATIVE AUX BASES DE DONNÉES RÉSIDENTES EN MÉMOIRE I N T E RS Y S T E M S INTERSYSTEMS CACHÉ COMME ALTERNATIVE AUX BASES DE DONNÉES RÉSIDENTES EN MÉMOIRE David Kaaret InterSystems Corporation INTERSySTEMS CAChé CoMME ALTERNATIvE AUx BASES de données RéSIdENTES

Plus en détail

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15

MapReduce. Malo Jaffré, Pablo Rauzy. 16 avril 2010 ENS. Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 MapReduce Malo Jaffré, Pablo Rauzy ENS 16 avril 2010 Malo Jaffré, Pablo Rauzy (ENS) MapReduce 16 avril 2010 1 / 15 Qu est ce que c est? Conceptuellement Données MapReduce est un framework de calcul distribué

Plus en détail

Généralités sur les bases de données

Généralités sur les bases de données Généralités sur les bases de données Qu est-ce donc qu une base de données? Que peut-on attendre d un système de gestion de bases de données? Que peut-on faire avec une base de données? 1 Des données?

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2015) Marc Parizeau, Département de génie électrique et de génie informatique Plan Données massives («big data») Architecture Hadoop distribution

Plus en détail

Chapitre 1 : Introduction aux Systèmes de Gestion de Bases de Données (Eléments de base)

Chapitre 1 : Introduction aux Systèmes de Gestion de Bases de Données (Eléments de base) Chapitre 1 : Introduction aux Systèmes de Gestion de Bases de Données (Eléments de base) 1. Généralités sur l'information et sur sa Représentation 1.1 Informations et données : a. Au sen de la vie : C

Plus en détail

I. Bases de données. Exemples classiques d'applications BD. Besoins de description

I. Bases de données. Exemples classiques d'applications BD. Besoins de description I. Bases de données Exemples classiques d'applications BD Les besoins Qu est ce qu un SGBD, une BD Architecture d un SGBD Cycle de vie Plan du cours Gestion des personnels, étudiants, cours, inscriptions,...

Plus en détail

2A-SI 4 - Bases de Données 4.2 - Modèle relationnel

2A-SI 4 - Bases de Données 4.2 - Modèle relationnel 2A-SI 4-4.2 - Modèle relationnel Stéphane Vialle Stephane.Vialle@supelec.fr http://www.metz.supelec.fr/~vialle Avec l aide du cours de Y. Bourda Généralités du «modèle relationnel» : Formalisé par CODD

Plus en détail

Introduction aux Bases de Données

Introduction aux Bases de Données Introduction aux Bases de Données I. Bases de données I. Bases de données Les besoins Qu est ce qu un SGBD, une BD Architecture d un SGBD Cycle de vie Plan du cours Exemples classiques d'applications BD

Plus en détail

THÈSE. présentée à TÉLÉCOM PARISTECH. pour obtenir le grade de. DOCTEUR de TÉLÉCOM PARISTECH. Mention Informatique et Réseaux. par.

THÈSE. présentée à TÉLÉCOM PARISTECH. pour obtenir le grade de. DOCTEUR de TÉLÉCOM PARISTECH. Mention Informatique et Réseaux. par. École Doctorale d Informatique, Télécommunications et Électronique de Paris THÈSE présentée à TÉLÉCOM PARISTECH pour obtenir le grade de DOCTEUR de TÉLÉCOM PARISTECH Mention Informatique et Réseaux par

Plus en détail

Virtualisation et. performances de disque. Virtualisation et performances de disque 1

Virtualisation et. performances de disque. Virtualisation et performances de disque 1 Virtualisation et performances de disque 1 Introduction : Comme les technologies de virtualisation peuvent avoir des applications spécifiques mais différentes, ce livre blanc débute par une série de définitions.

Plus en détail

Systèmes d informations nouvelles générations. Répartition, Parallèlisation, hétérogénéité dans les SGBD. Exemple d application d un futur proche

Systèmes d informations nouvelles générations. Répartition, Parallèlisation, hétérogénéité dans les SGBD. Exemple d application d un futur proche Répartition, Parallèlisation, hétérogénéité dans les SGBD AI Mouaddib Département Informatique Université de Caen Systèmes d informations nouvelles générations! Constat :! Utilisation de nouveaux support

Plus en détail

Systèmes de Fichiers

Systèmes de Fichiers Systèmes de Fichiers Hachage et Arbres B Serge Abiteboul INRIA February 28, 2008 Serge Abiteboul (INRIA) Systèmes de Fichiers February 28, 2008 1 / 26 Systèmes de fichiers et SGBD Introduction Hiérarchie

Plus en détail

Faculté des sciences de gestion et sciences économiques BASE DE DONNEES

Faculté des sciences de gestion et sciences économiques BASE DE DONNEES BASE DE DONNEES La plupart des entreprises possèdent des bases de données informatiques contenant des informations essentielles à leur fonctionnement. Ces informations concernent ses clients, ses produits,

Plus en détail

Système de base de données

Système de base de données Système de base de données 1. INTRODUCTION Un système de base de données est un système informatique dont le but est de maintenir les informations et de les rendre disponibles à la demande. Les informations

Plus en détail

Structure fonctionnelle d un SGBD

Structure fonctionnelle d un SGBD Fichiers et Disques Structure fonctionnelle d un SGBD Requetes Optimiseur de requetes Operateurs relationnels Methodes d acces Gestion de tampon Gestion de disque BD 1 Fichiers et Disques Lecture : Transfert

Plus en détail

Les bases de données Page 1 / 8

Les bases de données Page 1 / 8 Les bases de données Page 1 / 8 Sommaire 1 Définitions... 1 2 Historique... 2 2.1 L'organisation en fichier... 2 2.2 L'apparition des SGBD... 2 2.3 Les SGBD relationnels... 3 2.4 Les bases de données objet...

Plus en détail

PROJET D INFORMATISATION DE LA GESTION DES ABSENCES EN STARTER

PROJET D INFORMATISATION DE LA GESTION DES ABSENCES EN STARTER Année 2008/2009 PROJET D INFORMATISATION DE LA GESTION DES ABSENCES EN STARTER Licence Professionnelle Système informatique et logiciel Responsable du projet : Françoise GREFFIER SOMMAIRE I. PRESENTATION

Plus en détail

1. LA GESTION DES BASES DE DONNEES RELATIONNELLES

1. LA GESTION DES BASES DE DONNEES RELATIONNELLES Dossier G11 - Interroger une base de données La base de données Facturation contient tout un ensemble d'informations concernant la facturation de la SAFPB (société anonyme de fabrication de produits de

Plus en détail

Julien MATHEVET Alexandre BOISSY GSID 4. Rapport RE09. Load Balancing et migration

Julien MATHEVET Alexandre BOISSY GSID 4. Rapport RE09. Load Balancing et migration Julien MATHEVET Alexandre BOISSY GSID 4 Rapport Load Balancing et migration Printemps 2001 SOMMAIRE INTRODUCTION... 3 SYNTHESE CONCERNANT LE LOAD BALANCING ET LA MIGRATION... 4 POURQUOI FAIRE DU LOAD BALANCING?...

Plus en détail

Introduction aux SGBDR

Introduction aux SGBDR 1 Introduction aux SGBDR Pour optimiser une base Oracle, il est important d avoir une idée de la manière dont elle fonctionne. La connaissance des éléments sous-jacents à son fonctionnement permet de mieux

Plus en détail

Windows Internet Name Service (WINS)

Windows Internet Name Service (WINS) Windows Internet Name Service (WINS) WINDOWS INTERNET NAME SERVICE (WINS)...2 1.) Introduction au Service de nom Internet Windows (WINS)...2 1.1) Les Noms NetBIOS...2 1.2) Le processus de résolution WINS...2

Plus en détail

CHAPITRE 1 ARCHITECTURE BASES DE DONNÉES AVANCÉES 2014-2015 20/10/2014. Université des sciences et de la Technologie Houari Boumediene USTHB Alger

CHAPITRE 1 ARCHITECTURE BASES DE DONNÉES AVANCÉES 2014-2015 20/10/2014. Université des sciences et de la Technologie Houari Boumediene USTHB Alger Université des sciences et de la Technologie Houari Boumediene USTHB Alger Département d Informatique BASES DE DONNÉES AVANCÉES 2014-2015 RESPONSABLES M. KAMEL BOUKHALFA (SII CHAPITRE 1 ARCHITECTURE 1

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée Programmation parallèle et distribuée (GIF-4104/7104) 5a - (hiver 2014) Marc Parizeau, Département de génie électrique et de génie informatique Plan Mégadonnées («big data») Architecture Hadoop distribution

Plus en détail

AGROBASE : un système de gestion de données expérimentales

AGROBASE : un système de gestion de données expérimentales AGROBASE : un système de gestion de données expérimentales Daniel Wallach, Jean-Pierre RELLIER To cite this version: Daniel Wallach, Jean-Pierre RELLIER. AGROBASE : un système de gestion de données expérimentales.

Plus en détail

FAMILLE EMC VPLEX. Disponibilité continue et mobilité des données dans et entre les datacenters AVANTAGES

FAMILLE EMC VPLEX. Disponibilité continue et mobilité des données dans et entre les datacenters AVANTAGES FAMILLE EMC VPLEX Disponibilité continue et mobilité des données dans et entre les datacenters DISPONIBLITÉ CONTINUE ET MOBILITÉ DES DONNÉES DES APPLICATIONS CRITIQUES L infrastructure de stockage évolue

Plus en détail

FAMILLE EMC VPLEX. Disponibilité continue et mobilité des données dans et entre les datacenters

FAMILLE EMC VPLEX. Disponibilité continue et mobilité des données dans et entre les datacenters FAMILLE EMC VPLEX Disponibilité continue et mobilité des données dans et entre les datacenters DISPONIBILITE CONTINUE ET MOBILITE DES DONNEES DES APPLICATIONS CRITIQUES L infrastructure de stockage évolue

Plus en détail

Figure 1. Structure répartie

Figure 1. Structure répartie Chapitre I: Applications Réparties et Middleware 1. Définition d une application répartie Une application répartie est constituée d un ensemble de processus (d objets, d agents, d acteurs) s exécutant

Plus en détail

Conception d Applications Réparties

Conception d Applications Réparties Jean-François Roos LIFL - équipe GOAL- bâtiment M3 Extension - bureau 206 -Jean-Francois.Roos@lifl.fr 1 Objectifs du Cours Appréhender la conception d applications réparties motivations et concepts architectures

Plus en détail

Sauvegarde collaborative entre pairs Ludovic Courtès LAAS-CNRS

Sauvegarde collaborative entre pairs Ludovic Courtès LAAS-CNRS Sauvegarde collaborative entre pairs 1 Sauvegarde collaborative entre pairs Ludovic Courtès LAAS-CNRS Sauvegarde collaborative entre pairs 2 Introduction Pourquoi pair à pair? Utilisation de ressources

Plus en détail

PRESENTATION DE LA VIRTUALISATION DE SERVEURS

PRESENTATION DE LA VIRTUALISATION DE SERVEURS PRESENTATION DE LA VIRTUALISATION DE SERVEURS SOMMAIRE QU EST-CE QUE LA VIRTUALISATION? POURQUOI VIRTUALISER? LES AVANTAGES DE LA VIRTUALISATION NOTION DE CONSOLIDATION, RATIONALISATION ET CONCENTRATION

Plus en détail

Pour les entreprises de taille moyenne. Descriptif Produit Oracle Real Application Clusters (RAC)

Pour les entreprises de taille moyenne. Descriptif Produit Oracle Real Application Clusters (RAC) Pour les entreprises de taille moyenne Descriptif Produit Oracle Real Application Clusters (RAC) POURQUOI VOTRE ENTREPRISE A BESOIN DE CLUSTERISER LES SERVEURS La continuité opérationnelle est cruciale

Plus en détail

Exécution des applications réparties

Exécution des applications réparties Exécution des applications réparties Programmation des Applications Réparties Olivier Flauzac URCA Master STIC-Informatique première année Olivier Flauzac (URCA) PAR : Exécution des applications réparties

Plus en détail

1 Introduction et installation

1 Introduction et installation TP d introduction aux bases de données 1 TP d introduction aux bases de données Le but de ce TP est d apprendre à manipuler des bases de données. Dans le cadre du programme d informatique pour tous, on

Plus en détail

Objectifs du cours Modèles et Approches Formels de Systèmes Distribués

Objectifs du cours Modèles et Approches Formels de Systèmes Distribués Objectifs du cours Modèles et Approches Formels de Systèmes Distribués Mohamed Mosbah LaBRI ENSEIRB - Université Bordeaux 1 mosbah@labri.fr dept-info.labri.fr/~mosbah/mafsd.html Connaître les caractéristiques

Plus en détail

Conception de BDR et requêtes. Migration vers une BDR. Conception d'une BDR par Décomposition. Objectifs de la Décomposition

Conception de BDR et requêtes. Migration vers une BDR. Conception d'une BDR par Décomposition. Objectifs de la Décomposition Conception de BDR et requêtes Migration vers une BDR Approche décomposition Fragmentation Allocation des fragments Fragmentation de requêtes Optimisation de requêtes Décomposition en BD locales BD BD1

Plus en détail

Sauvegarde et restauration en environnement VMware avec Avamar 6.0

Sauvegarde et restauration en environnement VMware avec Avamar 6.0 Livre blanc Sauvegarde et restauration en environnement VMware avec Avamar 6.0 Analyse détaillée Résumé Dans les entreprises, les environnements virtuels sont de plus en plus déployés dans le cloud. La

Plus en détail

Qu est-ce que ArcGIS?

Qu est-ce que ArcGIS? 2 Qu est-ce que ArcGIS? LE SIG ÉVOLUE Depuis de nombreuses années, la technologie SIG améliore la communication, la collaboration et la prise de décision, la gestion des ressources et des infrastructures,

Plus en détail

Chapitre 1 : Introduction aux bases de données

Chapitre 1 : Introduction aux bases de données Chapitre 1 : Introduction aux bases de données Les Bases de Données occupent aujourd'hui une place de plus en plus importante dans les systèmes informatiques. Les Systèmes de Gestion de Bases de Données

Plus en détail

dans laquelle des structures vont être créées pour une ou plusieurs applications.

dans laquelle des structures vont être créées pour une ou plusieurs applications. Création d'une nouvelle base de données A. Vue d'ensemble 1. Étapes de création d'une nouvelle base de données pour une application Le processus complet de création d'une nouvelle base de données pour

Plus en détail

SURETE DE FONCTIONNEMENT ET REPRISE APRES PANNE

SURETE DE FONCTIONNEMENT ET REPRISE APRES PANNE Université des sciences et de la Technologie Houari Boumediene USTHB Alger Département d Informatique ARCHITECTURE ET ADMINISTRATION DES BASES DE DONNÉES 2013-2014 RESPONSABLES M. KAMEL BOUKHALFA (SII)

Plus en détail

Gestion des accès aux ressources à l aide des groupes

Gestion des accès aux ressources à l aide des groupes Gestion des accès aux ressources à l aide des groupes Un groupe est un ensemble de comptes d utilisateur. Les groupes permettent de simplifier la gestion de l accès des utilisateurs et des ordinateurs

Plus en détail

Chapitre 10. Architectures des systèmes de gestion de bases de données

Chapitre 10. Architectures des systèmes de gestion de bases de données Chapitre 10 Architectures des systèmes de gestion de bases de données Introduction Les technologies des dernières années ont amené la notion d environnement distribué (dispersions des données). Pour reliér

Plus en détail

Gestion de données à large échelle. Anne Doucet LIP6 Université Paris 6

Gestion de données à large échelle. Anne Doucet LIP6 Université Paris 6 Gestion de données à large échelle Anne Doucet LIP6 Université Paris 6 1 Plan Contexte Les réseaux P2P Non structurés Structurés Hybrides Localisation efficace et Interrogation complète et exacte des données.

Plus en détail

INTRODUCTION AUX BASES de DONNEES

INTRODUCTION AUX BASES de DONNEES INTRODUCTION AUX BASES de DONNEES Équipe Bases de Données LRI-Université Paris XI, Orsay Université Paris Sud Année 2003 2004 1 SGBD : Fonctionnalités et Principes Qu est qu une base de données? Un Système

Plus en détail

Le modèle client-serveur

Le modèle client-serveur Le modèle client-serveur Olivier Aubert 1/24 Sources http://www.info.uqam.ca/~obaid/inf4481/a01/plan.htm 2/24 Historique architecture centralisée terminaux passifs (un seul OS, systèmes propriétaires)

Plus en détail

Le langage SQL Rappels

Le langage SQL Rappels Le langage SQL Rappels Description du thème : Présentation des principales notions nécessaires pour réaliser des requêtes SQL Mots-clés : Niveau : Bases de données relationnelles, Open Office, champs,

Plus en détail

CESI Bases de données

CESI Bases de données CESI Bases de données Introduction septembre 2006 Bertrand LIAUDET EPF - BASE DE DONNÉES - septembre 2005 - page 1 PRÉSENTATION GÉNÉRALE 1. Objectifs généraux L objectif de ce document est de faire comprendre

Plus en détail

Conception des systèmes répartis

Conception des systèmes répartis Conception des systèmes répartis Principes et concepts Gérard Padiou Département Informatique et Mathématiques appliquées ENSEEIHT Octobre 2012 Gérard Padiou Conception des systèmes répartis 1 / 37 plan

Plus en détail

Initiation aux bases de données (SGBD) Walter RUDAMETKIN

Initiation aux bases de données (SGBD) Walter RUDAMETKIN Initiation aux bases de données (SGBD) Walter RUDAMETKIN Bureau F011 Walter.Rudametkin@polytech-lille.fr Moi Je suis étranger J'ai un accent Je me trompe beaucoup en français (et en info, et en math, et...)

Plus en détail

Introduction aux bases de données Cours 1 : Généralités sur les bases de données

Introduction aux bases de données Cours 1 : Généralités sur les bases de données Cours 1 : Généralités sur les bases de données ESIL Université de la méditerranée Odile.Papini@esil.univmed.fr http://odile.papini.perso.esil.univmed.fr/sources/bdmat.html Plan du cours 1 1 Qu est ce qu

Plus en détail

Cluster High Availability. Holger Hennig, HA-Cluster Specialist

Cluster High Availability. Holger Hennig, HA-Cluster Specialist Cluster High Availability Holger Hennig, HA-Cluster Specialist TABLE DES MATIÈRES 1. RÉSUMÉ...3 2. INTRODUCTION...4 2.1 GÉNÉRALITÉS...4 2.2 LE CONCEPT DES CLUSTERS HA...4 2.3 AVANTAGES D UNE SOLUTION DE

Plus en détail

Le programme d examens préparé par le Bureau canadien des conditions d admission en génie d Ingénieurs Canada englobe dix-sept disciplines du génie.

Le programme d examens préparé par le Bureau canadien des conditions d admission en génie d Ingénieurs Canada englobe dix-sept disciplines du génie. INTRODUCTION Le programme d examens préparé par le Bureau canadien des conditions d admission en génie d Ingénieurs Canada englobe dix-sept disciplines du génie. Le programme d examens de chaque spécialité

Plus en détail

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan

Présentation du module. Base de données spatio-temporelles. Exemple. Introduction Exemple. Plan. Plan Base de données spatio-temporelles S. Lèbre slebre@unistra.fr Université de Strasbourg, département d informatique. Présentation du module Contenu général Partie 1 : Notion de bases de données (Conception

Plus en détail

Contribution à la mise en service d'une ferme de serveurs connectée à une grille de calcul pour la physique des hautes énergies

Contribution à la mise en service d'une ferme de serveurs connectée à une grille de calcul pour la physique des hautes énergies Contribution à la mise en service d'une ferme de serveurs connectée à une grille de calcul pour la physique des hautes énergies Charlier Fabrice 2è licence en informatique Année Académique 2005-2006 Plan

Plus en détail

SGBD orientés objet. Généralités Modèles de données et SGBD orientés objet 03/03/2015. Définitions. Concepts Généraux

SGBD orientés objet. Généralités Modèles de données et SGBD orientés objet 03/03/2015. Définitions. Concepts Généraux SGBD orientés objet Définitions Généralités Modèles de données et SGBD orientés objet MDOO : Un modèle de données qui capture la sémantique des objets supportée en programmation objet. Concepts Généraux

Plus en détail

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes

Optimisation de requêtes. I3009 Licence d informatique 2015/2016. Traitement des requêtes Optimisation de requêtes I3009 Licence d informatique 2015/2016 Cours 5 - Optimisation de requêtes Stéphane.Gançarski Stephane.Gancarski@lip6.fr Traitement et exécution de requêtes Implémentation des opérateurs

Plus en détail

Architectures Parallèles

Architectures Parallèles Architectures Parallèles Cours pour Ingénieur Préparé par Dr. Olfa Hamdi-Larbi ola_ola79@yahoo.fr Reçoit les signaux du contrôleur, cherche les données et les traite Instructions, Données à traiter et

Plus en détail

NSY107 - Intégration des systèmes client-serveur

NSY107 - Intégration des systèmes client-serveur NSY107 - Intégration des systèmes client-serveur Cours du 13/05/2006 (4 heures) Emmanuel DESVIGNE Document sous licence libre (FDL) Plan du cours Introduction Historique Les différentes

Plus en détail

3A-IIC - Parallélisme & Grid GRID : Définitions. GRID : Définitions. Stéphane Vialle. Stephane.Vialle@supelec.fr http://www.metz.supelec.

3A-IIC - Parallélisme & Grid GRID : Définitions. GRID : Définitions. Stéphane Vialle. Stephane.Vialle@supelec.fr http://www.metz.supelec. 3A-IIC - Parallélisme & Grid Stéphane Vialle Stephane.Vialle@supelec.fr http://www.metz.supelec.fr/~vialle Principes et Objectifs Evolution Leçons du passé Composition d une Grille Exemple d utilisation

Plus en détail

Besoin de concevoir des systèmes massivement répartis. Comment tester le système? Solution. Évaluation de systèmes répartis à large échelle

Besoin de concevoir des systèmes massivement répartis. Comment tester le système? Solution. Évaluation de systèmes répartis à large échelle Besoin de concevoir des systèmes massivement répartis. Évaluation de systèmes répartis à large échelle Sergey Legtchenko Motivation : LIP6-INRIA Tolérance aux pannes Stockage de données critiques Coût

Plus en détail

Quick Start Guide This guide is intended to get you started with Rational ClearCase or Rational ClearCase MultiSite.

Quick Start Guide This guide is intended to get you started with Rational ClearCase or Rational ClearCase MultiSite. Rational ClearCase or ClearCase MultiSite Version 7.0.1 Quick Start Guide This guide is intended to get you started with Rational ClearCase or Rational ClearCase MultiSite. Product Overview IBM Rational

Plus en détail

Architectures web/bases de données

Architectures web/bases de données Architectures web/bases de données I - Page web simple : HTML statique Le code HTML est le langage de base pour concevoir des pages destinées à être publiées sur le réseau Internet ou intranet. Ce n'est

Plus en détail

ORACLE 10g Découvrez les nouveautés. Jeudi 17 Mars Séminaire DELL/INTEL/ORACLE

ORACLE 10g Découvrez les nouveautés. Jeudi 17 Mars Séminaire DELL/INTEL/ORACLE ORACLE 10g Découvrez les nouveautés Jeudi 17 Mars Séminaire DELL/INTEL/ORACLE Le Grid Computing d Entreprise Pourquoi aujourd hui? Principes et définitions appliqués au système d information Guy Ernoul,

Plus en détail

Chapitre V : La gestion de la mémoire. Hiérarchie de mémoires Objectifs Méthodes d'allocation Simulation de mémoire virtuelle Le mapping

Chapitre V : La gestion de la mémoire. Hiérarchie de mémoires Objectifs Méthodes d'allocation Simulation de mémoire virtuelle Le mapping Chapitre V : La gestion de la mémoire Hiérarchie de mémoires Objectifs Méthodes d'allocation Simulation de mémoire virtuelle Le mapping Introduction Plusieurs dizaines de processus doivent se partager

Plus en détail

Bases de données relationnelles : Introduction

Bases de données relationnelles : Introduction Bases de données relationnelles : Introduction historique et principes V. Benzaken Département d informatique LRI UMR 8623 CNRS Université Paris Sud veronique.benzaken@u-psud.fr https://www.lri.fr/ benzaken/

Plus en détail

Vous êtes bien à la bonne présentation, c est juste que je trouvais que le titre de cette présentation étais un peu long,

Vous êtes bien à la bonne présentation, c est juste que je trouvais que le titre de cette présentation étais un peu long, Vous êtes bien à la bonne présentation, c est juste que je trouvais que le titre de cette présentation étais un peu long, en fait ça me faisait penser au nom d un certain projet gouvernemental je me suis

Plus en détail

Les systèmes RAID Architecture des ordinateurs

Les systèmes RAID Architecture des ordinateurs METAIS Cédric 2 ème année Informatique et réseaux Les systèmes RAID Architecture des ordinateurs Cédric METAIS ISMRa - 1 - LES DIFFERENTS SYSTEMES RAID SOMMAIRE INTRODUCTION I LES DIFFERENTS RAID I.1 Le

Plus en détail

LA GESTION DE FICHIERS

LA GESTION DE FICHIERS CHAPITRE 6 : LA GESTION DE FICHIERS Objectifs spécifiques Connaître la notion de fichier, ses caractéristiques Connaître la notion de répertoires et partitions Connaître les différentes stratégies d allocation

Plus en détail

La continuité de service

La continuité de service La continuité de service I INTRODUCTION Si la performance est un élément important de satisfaction de l'utilisateur de réseau, la permanence de la disponibilité des ressources l'est encore davantage. Ici

Plus en détail

Le Ro le Hyper V Troisie me Partie Haute disponibilite des machines virtuelles

Le Ro le Hyper V Troisie me Partie Haute disponibilite des machines virtuelles Le Ro le Hyper V Troisie me Partie Haute disponibilite des machines virtuelles Microsoft France Division DPE Table des matières Présentation... 2 Objectifs... 2 Pré requis... 2 Quelles sont les principales

Plus en détail

VMWare Infrastructure 3

VMWare Infrastructure 3 Ingénieurs 2000 Filière Informatique et réseaux Université de Marne-la-Vallée VMWare Infrastructure 3 Exposé système et nouvelles technologies réseau. Christophe KELLER Sommaire Sommaire... 2 Introduction...

Plus en détail

Impact du choix du SGBD et de l architecture client-serveur pour garantir le service d un SGBD mis sous forte charge concurrente

Impact du choix du SGBD et de l architecture client-serveur pour garantir le service d un SGBD mis sous forte charge concurrente Impact du choix du SGBD et de l architecture client-serveur pour garantir le service d un SGBD mis sous forte charge Travail de diplôme réalisé en vue de l obtention du diplôme HES par : Muhammad Maqbool

Plus en détail

Partie Réseaux TD 1 : Théorie des réseaux

Partie Réseaux TD 1 : Théorie des réseaux Partie Réseaux TD 1 : Théorie des réseaux 1 Les réseaux 1.1 Qu est-ce qu un réseau? Un réseau est un ensemble d ordinateurs pouvant communiquer entre eux. 1.1.1 Types de réseaux Il y a deux types de réseaux

Plus en détail

Les bases de données

Les bases de données Les bases de données Introduction aux fonctions de tableur et logiciels ou langages spécialisés (MS-Access, Base, SQL ) Yves Roggeman Boulevard du Triomphe CP 212 B-1050 Bruxelles (Belgium) Idée intuitive

Plus en détail

Optimisation WAN de classe Centre de Données

Optimisation WAN de classe Centre de Données Optimisation WAN de classe Centre de Données Que signifie «classe centre de données»? Un nouveau niveau de performance et d'évolutivité WAN Dans le milieu de l'optimisation WAN, les produits de classe

Plus en détail

HAUTE PERFORMANCE DE CALCUL

HAUTE PERFORMANCE DE CALCUL Journées d études 2010 Modélisation actif-passif & HAUTE PERFORMANCE DE CALCUL FRACTALES 0 Journées d études 2010 Sommaire Projet SIGMA 1 ère partie 1.! Le printemps des modèles Applications Haute Performance

Plus en détail