Chap. II : La machine asynchrone triphasée

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chap. II : La machine asynchrone triphasée"

Transcription

1 Chap. II : La machine asynchrone triphasée I. Domaines d'utilisation du moteur asynchrone Le moteur asynchrone est le moteur électrique le plus utilisé dans l industrie. Il est peu coûteux, robuste, et son entretien est très limité. Ce type de moteur équipe la quasi totalité des machines outils classiques et la plupart des postes de travail des usines (scies, raboteuses, bobineuses, tapis roulants, pompes, compresseurs, perceuses, tours, fraiseuses, ). Grâce aux progrès de l électronique de puissance, les moteurs asynchrones associés à des onduleurs sont de plus en plus utilisés en traction (TGV, tramway). II. Constitution et principe de fonctionnement 1. Le stator Le stator est composé de 3p bobines alimentées par un système de tensions triphasées de fréquence f. Le stator constitue l'inducteur : les 3p bobines créent, dans l'entrefer, un champ magnétique tournant à la vitesse de synchronisme ΩS (en rad/s) ou ns (en tr/s). ω OMEGAs = p ou : ns= f p ΩS : vitesse de synchronisme en rad/s ω : pulsation des tensions du réseau en rad/s p : paire de pôles ns : vitesse de synchronisme en tr/s f : fréquence des tensions du réseau en Hz p : paire de pôles (car ω=2πf et ΩS=2πnS) On accède aux enroulements statoriques grâce à six bornes de la plaque à bornes du moteur : Le couplage (étoile ou triangle) des enroulements du stator sur le réseau doit tenir compte : des indications sur la plaque signalétique du moteur asynchrone, sachant que la tension la plus faible représente la tension nominale aux bornes d'un enroulement du stator. du réseau triphasé dont on dispose : Sur le réseau triphasé V / U (V: tension simple; U: tension composée), le moteur sera couplé : en étoile (Y) si la tension aux bornes d'un enroulement correspond à la tension V. 1

2 en triangle ( ) si la tension aux bornes d'un enroulement correspond à la tension U. Exemple : sur la plaque signalétique, on peut lire les indications : 220V/380V. sur le réseau 130V / 230V : le stator sera couplé en triangle sur le réseau 230V / 400V : le stator sera couplé en étoile Le rotor a. Il existe deux types de rotor : rotor à "cage d'écureuil" rotor à cage d'écureuil Rotor à cage d'écureuil et son ventilateur Des barres en cuivre ou en aluminium logées dans les encoches d'un cylindre ferromagnétique sont mises en court circuit. rotor bobiné Il est constitué de 3 enroulements de structure semblable à ceux du stator. L'accès aux enroulements se fait par 3 bornes, la connexion électrique entre les bornes fixes et les enroulements en rotation se fait par un système de bagues et balais. Grâce à ces balais, le rotor bobiné est fermé sur lui même directement (mis en court circuit) ou par l'intermédiaire de résistances. 2

3 b. Justification de la rotation Les conducteurs du rotor (barreaux du rotor à cage d'écureuil ou bobines du rotor bobiné) en court circuit sont soumis au champ tournant créé par le stator alimenté par le réseau. Etant soumis à un flux variable, les conducteurs sont parcourus par des courants induits (courants de Foucault). L'intéraction du champ produit par ces courants induits et du champ tournant du stator se traduit par un couple. D'après la loi de Lenz, l'effet des courants induits s'opposent à la cause qui lui a donné naissance. C'est pourquoi la vitesse de rotation du rotor est inférieure à la vitesse de synchronisme (vitesse du champ tournant créé par le stator). c. Le glissement Le glissement exprime l'écart relatif entre la vitesse de synchronisme et la vitesse de rotation de l'arbre du moteur. Il est défini par : g= ou g= ou g= OMEGAs OMEGA OMEGAs n s n avec Ωs et Ω en rad/s avec ns et n en tr/s ns n ' s n ' avec n's et n' en tr/min n' s Le glissement n'a pas d'unité et s'exprime généralement sous la forme d'un pourcentage. Exemples : au démarrage: g = 1 (car Ω=0) à vide : g 0 (car n ns) dans les conditions nominales, le glissement est de l'ordre de 2 à 5 % 3. Symboles du moteur asynchrone Moteur à rotor en cage d'écureuil Moteur à rotor bobiné M 3 M 3 3

4 III. Bilan des puissances d'un moteur asynchrone Stator Rotor pfs Pa pfr Ptr pjs pm Pu PM pjr Pa : Puissance électrique absorbée : Pa = 3UI cos ϕ pjs : Pertes par effet Joule dans le stator : Si r est la résistance d'un enroulement : pjs = 3rI² dans le cas d'un couplage étoile pjs = 3rJ²= 3r I ² = ri² dans le cas d'un couplage triangle 3 Si R est la résistance mesurée entre deux bornes, quelque soit le couplage : (Montage étoile : R=2r, donc r =R/2 3 pjs = RI ² Montage triangle : R=2r//r=2r²/3r=2r/3, donc r=3r/2) 2 pfs : Pertes dans le fer au stator : elles dépendent de U et f Ptr : Puissance transmise au rotor par le couple électromagnétique développé grâce au champ tournant Ptr = Pa pjs pfs Ptr = Tem OMEGAs avec Tem : moment du couple électromagnétique (Nm) La puissance transmise au rotor est convertie d'une part en puissance mécanique PM et 4

5 d'autre part en pertes fer au rotor et pertes par effet Joule pjr dans les conducteurs du rotor. PM : Puissance mécanique totale : PM = TemΩ P tr PM OMEGAs 1 g OMEGA T em= = P M =Ptr =P tr OMEGAs OMEGA OMEGA s OMEGAs PM = Ptr(1 g) pfs : pertes fer rotoriques : elles sont négligeables, car la fréquence des courants rotoriques est très faible (fr = g.fs) pjr : pertes par effet Joule dans le rotor : pjr = Ptr PM = Ptr Ptr(1 g) pjr = gptr pm : Pertes mécaniques : elles sont dues aux différents frottements pm = Tp. Ω avec Tp : moment du couple de pertes (Nm) Pu : Puissance mécanique utile : Pu = TuΩ avec Tu : moment du couple utile (Nm) et Tu = Tem Tp Pu = PM pm = Ptr(1 g) pm = Pa pjs pfs pjr pm Expression du rendement η= Pu Pa = T u OMEGA 3UI cos ϕ Expression approchée du rendement : au voisinage de sa puissance nominale, on peut négliger les pertes du moteur sauf celles perdues par effet joule dans le rotor. η= Pu PM P tr 1 g 1 g Pa Pa Ptr (C'est la valeur limite supérieure du rendement. Ce résultat montre qu'il faut que le glissement reste faible.) 5

6 IV. Caractéristique mécanique et point de fonctionnement 1. Caractéristique mécanique : Tu=f(n') (on peut aussi représenter Tu=f(Ω) ou Tu=f(n)) Tu(N.m) Tud : moment du couple utile au démarrage Tumax Tud zone utile n'(tr/min) U et f sont constants n's On constate que : la caractéristique mécanique présente un maximum pour n'=0, le moment du couple utile est non nul, le moteur asynchrone possède un couple au démarrage important pour n'=n's (g=0), le moment du couple utile est nul (point correspondant au fonctionnement à vide) pour n' proche de n's, la caractéristique est assimilable à une droite d'équation : Tu = an'+b. Cette zone est la zone utile pour laquelle on utilise le moteur. (pour trouver a et b, on choisit deux points sur la droite) Remarque : l'axe des abscisses peut représenter le glissement. n ' s n ' n' =1 En effet : g=. n's n's L'axe en n' et l'axe en g sont opposés. D'où la caractéristique avec l'axe des abscisses en g : 6

7 Tu(N.m) Tud : moment du couple utile au démarrage Tumax Tud g 1 0 Dans sa partie utile (g faible), la caractéristique Tu(g) est assimilable à une droite passant par l'origine : g=0 (moteur à vide) entraîne Tu=0. Pour des glissements faibles, on a la relation : Tu=kg 2. Point de fonctionnement Comme pour les autres moteurs, le point de fonctionnement du groupe moteur+charge est le point d'intersection de la caractéristique du moteur: Tu et de la caractéristique de la charge: Tr. Ce point de fonctionnement doit se trouver dans la partie utile de la caractéristique du moteur. P Les quatre principales caractéristiques idéalisées de charges 7

8 Machine à couple inversement proportionnel à la vitesse (enrouleuse, compresseur, essoreuse, fraisage, perçage) Machine à couple proportionnel à la vitesse (agitateurs, mélangeurs industriels) Machine à couple constant (levage, broyage, pompe) Machine à couple proportionnel au carré de la vitesse (ventilateur) V. Démarrage des moteurs asynchrones Au démarrage, le moment du couple moteur est, dans les conditions habituelles d utilisation, très supérieur au moment du couple résistant. L accélération est donc brutale et le courant appelé est susceptible d être très important. Ce phénomène, sans inconvénient pour les petits moteurs, est inacceptable dès que la puissance atteint quelques dizaines de kilowatts. Il est alors nécessaire de mettre en oeuvre des procédés particuliers de démarrage. a) Démarrage par diminution de la tension d alimentation les enroulements sont couplés en étoile pour le démarrage, après cette phase transitoire, un coupleur permet de passer au couplage en triangle (qui doit être le couplage pour le fonctionnement normal, ce procédé n'est donc possible que si le réseau le permet). Pour des moteurs de quelques kilowatts, la tension est diminuée par insertion d un rhéostat triphasé en série avec les enroulements du stator. 8

9 Le réglage de la tension appliquée au stator peut être réalisé à l'aide d'un gradateur électronique (composés de thyristors). Il permet de contrôler simultanément plusieurs grandeurs: intensité du courant de démarrage, accélération, etc. b) Pour des moteurs à rotor bobiné: démarrage avec insertion de résistances en série avec les enroulements rotoriques Au démarrage, le moteur se comporte comme un transformateur dont le rotor est le secondaire. En limitant les intensités des courants rotoriques, ce procédé permet de diminuer l intensité du courant appelé. VI. Réglage de la vitesse des moteurs asynchrones Pour faire la vitesse d'un MAS, on peut agir : a. sur la tension : la variation de tension sera obtenue par l'utilisation de systèmes électroniques appelés gradateurs de tension, constitués de thyristors. Exemple de gradateur à 6 thyristors La variation de la tension efficace, donc de la vitesse, est réalisée en modifiant le temps de conduction des thyristors. b. sur la tension et la fréquence Lorsque la fréquence statorique varie, la vitesse de synchronisme ns varie également. Il en est de même pour la vitesse n du moteur proche de ns (mais inférieure à celle ci). Si les chutes de tension dans les enroulements statoriques sont négligées, la tension aux (avec K: coefficient qui dépend de la bornes d'un enroulement peut s'écrire : V=KNf Φ machine, N: nombre de conducteurs d'un enroulement, f: fréquence de la tension : flux maximal embrassé par une spire du stator). d'alimentation et Φ Pour que le moteur puisse développer un couple maximal constant, il faut que le flux maximal soit constant. 1 V V.. Il faut donc alimenter le moteur en maintenant le rapport Or: Φ= constant. KN f f 9

10 Ceci est réalisé grâce à un variateur de vitesse comprenant un onduleur autonome qui maintient V constant. f Exemple de variateur de vitesse : Schéma fonctionnel simplifié: REDRESSEUR FILTRE ONDULEUR V soit constant, on obtient le réseau de caractéristiques f mécaniques ci dessous. La zone utile est l ensemble des segments de droites parallèles. Pour des valeurs de V et de f telles que Avantage : Le réglage de la vitesse devient possible dans un très large domaine. 10

1.1) Stator ( inducteur )

1.1) Stator ( inducteur ) 1 ) Constitution Ces moteurs sont robustes, faciles à construire et peu coûteux. Ils sont intéressants, lorsque la vitesse du dispositif à entraîner n'a pas à être rigoureusement constante. 1.1) Stator

Plus en détail

Rappels: Les machines asynchrones

Rappels: Les machines asynchrones C hapitre I Rappels: Les machines asynchrones triphasés Contenu I. INTRODUCTION... 2 II. CONSTITUTION... 2 II.1. STATOR... 2 II.2. ROTOR... 3 II.2.1. Rotor à cage d'écureuil:... 3 II.2.2. Rotor bobiné

Plus en détail

Chapitre 7 : Moteur asynchrone

Chapitre 7 : Moteur asynchrone Chapitre 7 : Moteur asynchrone Introduction I / constitution du moteur asynchrone triphasé. 1. Stator ou inducteur 2. rotor ou induit a) rotor à cage d écureuil b) rotor bobiné 3. Symboles 4. plaque signalétique

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de... et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

3.2.1 Transformateurs et modulateurs d énergie associés. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz.

3.2.1 Transformateurs et modulateurs d énergie associés. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz. Exercice MAS01 : moteur asynchrone Un moteur asynchrone tourne à 965 tr/min avec un glissement de 3,5 %. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau est f = 50 Hz. Exercice

Plus en détail

10 Exercices corrigés sur le moteur asynchrone

10 Exercices corrigés sur le moteur asynchrone 10 Exercices corrigés sur le moteur asynchrone Exercice 1: Un moteur asynchrone tourne à 965 tr/min avec un glissement de 3,5 %. Déterminer le nombre de pôles du moteur sachant que la fréquence du réseau

Plus en détail

UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD. TD de Machines Asynchrones

UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD. TD de Machines Asynchrones UNIVERSITE E SIDI BEL ABBES 2010 / 2011 FACULTE DES SCIENCES DE L INGENIEUR DEPARTEMENT D ELECTROTECHNIQUE Dr. BENDAOUD TD de Machines Asynchrones Exercice N 1 : Un moteur asynchrone tourne à 965 tr/min

Plus en détail

Moteur asynchrone triphasé

Moteur asynchrone triphasé triphasé 1. Constitution et principe de fonctionnement 1.1. Stator = inducteur Il est constitué de trois enroulements (bobines) parcourus par des courants alternatifs triphasés et possède p paires de pôles.

Plus en détail

Chapitre 5 : Moteur asynchrone

Chapitre 5 : Moteur asynchrone Chapitre 5 : Moteur asynchrone Introduction I / constitution du moteur asynchrone triphasé. 1. Stator ou inducteur 2. rotor ou induit 3. Symboles 4. plaque signalétique II / Principe de fonctionnement

Plus en détail

Chapitre 2 Moteur Asynchrone triphasé

Chapitre 2 Moteur Asynchrone triphasé Chapitre 2 Moteur Asynchrone triphasé 1) création d'un champ tournant Considérons un ensemble de trois bobines coplanaires et dont les axes concourent en un même point O. Ces axes forment entre eux des

Plus en détail

MOTEUR ASYNCHRONE TRIPHASE

MOTEUR ASYNCHRONE TRIPHASE I - Principe de fonctionnement Le moteur asynchrone est une machine qui transforme de l énergie ELECTRIQUE en énergie MECANIQUE. Le fonctionnement est basé sur la production d un CHAMP TOURNANT. I.1 PRINCIPE

Plus en détail

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine

Variable Nom Unité Formule E Force électromotrice (fem) Volt (V) K Constante définie lors de la fabrication de la machine I- Généralités Le point commun des méthodes de production d électricité par éolienne, centrale hydraulique ou centrale nucléaire est la transformation (ou conversion) mécanique/électrique. Elle est présente

Plus en détail

Laboratoire génie électrique 4Stech Série d exercices N 9 Moteurs asynchrones triphasés Page 1/5

Laboratoire génie électrique 4Stech Série d exercices N 9 Moteurs asynchrones triphasés Page 1/5 Laboratoire génie électrique 4Stech Série d exercices N 9 oteurs asynchrones triphasés Page / Exercice : Un moteur asynchrone triphasé hexapolaire (6 pôles) à rotor à cage d écureuil a les caractéristiques

Plus en détail

Série d exercices N 9

Série d exercices N 9 GENIE ELECTRIQUE Série d exercices N 9 Prof : Mr Raouafi Abdallah Essentielle de cours : «résumé» Vitesse de synchronisme n S en (tr/s) : n S =... «Moteur Asynchrone Triphasé» Niveau : 4 ème Sc.Technique

Plus en détail

LA MACHINE ASYNCHRONE

LA MACHINE ASYNCHRONE Objectif terminal : A la fin de la séquence, l élève sera capable de : _ justifier le choix du convertisseur d énergie FONCTION CONVERTIR L ENERGIE LA MACHINE ASYNCHRONE Objectif intermédiaire : _ identifier

Plus en détail

LE MOTEUR ASYNCHRONE TRIPHASE

LE MOTEUR ASYNCHRONE TRIPHASE LE MOTEUR ASYNCHRONE TRIPHASE DUFOUR GRACZYK Page 1/5 I- Réseau triphasé Il s agit d un réseau de 3 tensions alternatives de même fréquence déphasées dans le temps d un angle de 120 (2. /3 rad) Trois sources

Plus en détail

LE MOTEUR ASYNCHRONE

LE MOTEUR ASYNCHRONE 1. Introduction Un système automatisé domestique ou industriel pouvant être relié au réseau électrique sera donc alimenté par l énergie électrique alternative fournie par EDF. Dans ce cas, l actionneur

Plus en détail

CH5 : Les machines alternatives

CH5 : Les machines alternatives BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH5 : Les machines alternatives Objectifs : A l issue de la leçon, l étudiant doit : 5.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

GENERALITES SUR LES MACHINES SYNCHRONES

GENERALITES SUR LES MACHINES SYNCHRONES GENERALITES SUR LES MACHINES SYNCHRONES 1. Constitution 1-1. Rotor = inducteur Il est constitué d un enroulement parcouru par un courant d excitation Ie continu créant un champ magnétique 2p polaire. Il

Plus en détail

Les moteurs asynchrones

Les moteurs asynchrones Les moteurs asynchrones I)- GENERALITES Le moteur asynchrone représente 80% des moteurs utilisés industriellement, étant donné leur simplicité de construction et leur facilité de démarrage. D'autre part

Plus en détail

Le Moteur Asynchrone

Le Moteur Asynchrone Le Moteur Asynchrone Table des matières 1. Introduction...2 2. Principe de fonctionnement...2 2.1. principe du moteur synchrone...2 2.2. Principe du moteur asynchrone...2 2.3. Énonce du principe...3 2.4.

Plus en détail

Documentation sur les moteurs électriques

Documentation sur les moteurs électriques Documentation sur les moteurs électriques Projet tutoré 2012-2013 De Terris, Sabot, Bedos, Geoffroy-Giralté, Tourneur Sommaire Présentation des types de moteurs page 3 I Généralités page 4 II Constitution

Plus en détail

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V

1 Ah = 3600 C. I = Q t + _. La tension se désigne par la lettre U L unité est le volt : V RAPPEL CORS ELECTRO TELEEC. Notion de base Quantité d électricité La quantité d électricité correspond au nombre d électrons transportés par un courant électrique ou emmagasinés dans une source. La quantité

Plus en détail

LE MOTEUR ASYNCHRONE

LE MOTEUR ASYNCHRONE LE MOTEUR ASYNCHRONE I Principe de conversion de l énergie électrique en énergie mécanique : Phénomène physique : Un conducteur libre, fermant un circuit électrique, placé dans un champ magnétique, est

Plus en détail

CONVERSION D ENERGIE

CONVERSION D ENERGIE CONVERSION D ENERGIE 1- Mise en situation Les principales sources d énergie mises en oeuvre industriellement sont l énergie électrique et l énergie mécanique. Disposant, en général, de l une ou de l autre

Plus en détail

MOTEURS ASYNCHRONES TRIPHASES

MOTEURS ASYNCHRONES TRIPHASES 4 éme Sc TECHNIUE LABO G.E. OTEURS ASYNCHRONES TRIPHASES I/ Principe de fonctionnement 1) Expérience : Disque atériels utilisés: - 3 Bobines identiques avec noyau - Disque métallique 2) Constatation :

Plus en détail

CEM Conversion électromécanique d énergie cours CEM-2 moteur asynchrone. Cours CEM 2. La conversion électromécanique d énergie

CEM Conversion électromécanique d énergie cours CEM-2 moteur asynchrone. Cours CEM 2. La conversion électromécanique d énergie Cours Cours CEM 2 La conversion électromécanique d énergie TSI1 TSI2 X Période La machine asynchrone triphasée 1 2 3 4 5 Cycle 2 : Conversion électromécanique Durée : 3 semaines X 1- Introduction : Les

Plus en détail

Le Moteur Asynchrone Triphasé

Le Moteur Asynchrone Triphasé Le Moteur Asynchrone Triphasé DOSSIER RESSOURCES Première BAC PRO ELEEC - Lycée Professionnel Clément Ader Le moteur asynchrone triphasé - Dossier ressources 1/6 I- FONCTION : Les moteurs asynchrones triphasés

Plus en détail

I) Principe de fonctionnement d un moteur asynchrone triphasé

I) Principe de fonctionnement d un moteur asynchrone triphasé I) Principe de fonctionnement d un moteur asynchrone triphasé Disposition expérimentale Disposition réelle (Stator seul) Disposition expérimentale : Trois bobines, disposés à 20 l une par rapport à l autre,

Plus en détail

MACHINE A COURANT CONTINU

MACHINE A COURANT CONTINU 1) Stator ( ou inducteur ) ACHINE A COURANT CONTINU a) Fonction : il crée un champ magnétique fixe ; il est souvent bipolaire, quelquefois tétrapolaire. On l appelle aussi inducteur. A) STRUCTURE b) Types

Plus en détail

COURS : LES MACHINES A COURANT CONTINU

COURS : LES MACHINES A COURANT CONTINU BTS ATI1 CONSTRUCTION ELECTRIQUE COURS : LES MACHINES A COURANT CONTINU Durée du cours : 2 heures Objectifs du cours : Acquérir les connaissances de base sur les actionneurs électriques. Capacités : Analyser

Plus en détail

CH4 : La machine à courant continu

CH4 : La machine à courant continu BTS CRSA 2 ème année - Sciences physiques et chimiques appliquées CH4 : La machine à courant continu Objectifs : A l issue de la leçon, l étudiant doit : 3.1 Savoir décrire la conversion de puissance réalisée

Plus en détail

BTS2006: Redressement d'un courant

BTS2006: Redressement d'un courant BTS2006: Redressement d'un courant 1. L'oscillogramme ci- dessous représente une tension, e(t) délivrée par une source de tension sinusoïdale. Les sensibilités verticale et horizontale de l'oscilloscope

Plus en détail

Machine à courant continu

Machine à courant continu Machine à courant continu 1. Présentation générale 1.1. Conversion d énergie La machine à courant continu est réversible, c'est-à-dire que la constitution d'une génératrice (G) est identique à celle du

Plus en détail

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction

MACHINES à INDUCTION. Gérard-André CAPOLINO. Machines à induction MACHINES à INDUCTION Gérard-André CAPOLINO 1 Généralités La machine à induction est utilisée en moteur ou en générateur Toutefois, l utilisation en moteur est plus fréquente. C est le moteur le plus utilisé

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles

BACCALAURÉAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles BACCALAURÉAT TECHNOLOGIQUE Session 1999 PHYSIQUE APPLIQUÉE Série : Sciences et Technologies Industrielles Spécialité : Génie Électrotechnique Durée de l'épreuve : 4 heures coefficient : 7 L'usage de la

Plus en détail

Moteur à courant continu - Hacheur

Moteur à courant continu - Hacheur TGEN Chapitre 7 1 Chapitre 7 Moteur à courant continu - Hacheur 1- MOTEUR A COURANT CONTNU l existe deux grandes familles de moteurs à courant continu, les moteurs à excitation indépendante (ou séparée)

Plus en détail

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2

et calculer sa valeur, b. l'expression littérale et la valeur de l'intensité nominale I 2N = 0,90. Toujours pour une intensité de fonctionnement I 2 BTS 2004 - L'installation électrique d'un atelier de teinture de tissus est alimenté par l'intermédiaire d'un transformateur monophasé (1), de rapport de transformation m = 0, 15 et de puissance nominale

Plus en détail

Machine à courant continu

Machine à courant continu Machine à courant continu 1- Constitution 1-1- L'inducteur (ou circuit d'excitation) 1-2- L'induit (circuit de puissance) 1-3- Le collecteur et les balais 2- Principe de fonctionnement 2-1- Fonctionnement

Plus en détail

7, 5 kw cos = 0, V / 400 V I = 26 A tr/min 50 Hz. 1) On alimente ce moteur par un réseau triphasé (230 V / 400 V 50 Hz)

7, 5 kw cos = 0, V / 400 V I = 26 A tr/min 50 Hz. 1) On alimente ce moteur par un réseau triphasé (230 V / 400 V 50 Hz) EXERCICES SUR LES MOTEURS ÉLECTRIQUES ASYNCHRONES Exercice 1 On relève sur la plaque signalétique d'un moteur asynchrone triphasé les indications suivantes 7, 5 kw cos = 0,85 230 V / 400 V I = 26 A 2 940

Plus en détail

TD N 07 : Le moteur asynchrone triphasée DÉROULEMENT DE LA SÉANCE

TD N 07 : Le moteur asynchrone triphasée DÉROULEMENT DE LA SÉANCE TD N 07 : Le moteur asynchrone triphasée DÉROULEMENT DE LA SÉANCE TITRE ACTIVITÉS PROF ACTIVITÉS ÉLÈVES MOYENS DURÉE Fin du TD { 2 heures} TD N 07 Electo PAGE N 1 / 17 Tableau de comité de lecture DATE

Plus en détail

Le moteur asynchrone triphasé. Principe de fonctionnement Liaison au réseau électrique Protection du moteur Variation de vitesse

Le moteur asynchrone triphasé. Principe de fonctionnement Liaison au réseau électrique Protection du moteur Variation de vitesse 1 ) Généralités Le moteur asynchrone triphasé Le moteur asynchrone triphasé. Principe de fonctionnement Liaison au réseau électrique Protection du moteur Variation de vitesse Le moteur asynchrone triphasé

Plus en détail

Principe de fonctionnement. Donc :

Principe de fonctionnement. Donc : Principe de fonctionnement La variation de l induction magnétique sur le barreau entraine l apparition des courants induits dans celui-ci (courants de Foucault). D après la loi de Lenz, le barreau se met

Plus en détail

C.1. ETUDE DU GENERATEUR ASYNCHRONE.

C.1. ETUDE DU GENERATEUR ASYNCHRONE. C.1. ETUDE DU GENERATEUR ASYNCHRONE. C.1.1 Etude de Ω s T Ωs = 2π n s / 60 = 157,1 rad.s -1 Elle correspond à la pulsation du réseau. MOTEUR Ωs Ω On doit entraîner la machine pour qu elle arrive à cette

Plus en détail

LE MOTEUR ASYNCHRONE TRIPHASE

LE MOTEUR ASYNCHRONE TRIPHASE LE MOTEUR ASYNCHRONE TRIPHASE Les moteurs asynchrones triphasés représentent plus de 80 % du parc moteur électrique. Ils sont utilisés pour transformer l énergie électrique en énergie mécanique grâce à

Plus en détail

02 Moteur asynchrone

02 Moteur asynchrone À retenir 1) Principe et constitution : 3) Plaque signalétique : 12 Les moteurs asynchrones transforment l énergie électrique en énergie mécanique. Ils sont constitués : - D'un stator, comportant trois

Plus en détail

CH3 : La machine à courant continu à aimant permanent

CH3 : La machine à courant continu à aimant permanent Enjeu : motorisation des systèmes BTS électrotechnique 2 ème année - Sciences physiques appliquées CH3 : La machine à courant continu à aimant permanent Problématique : Le principal intérêt des moteurs

Plus en détail

- ACTIONNEURS - MACHINE A COURANT ALTERNATIF

- ACTIONNEURS - MACHINE A COURANT ALTERNATIF LIAISON REFERENTIEL B.11 Les actionneurs Machine à courant alternatif. Thèmes : E1 - C122 Conversion électromécanique d énergie E4 C12 Comportement énergétique des systèmes Centre d intérêt : CI3 Systèmes

Plus en détail

Table de fonctionnement : CLR /LOAD UP DOWN MODE 0 0 X X Chargement parallèle Bloqué (=inchangé) Décomptage Comptage 1 1 X X Raz

Table de fonctionnement : CLR /LOAD UP DOWN MODE 0 0 X X Chargement parallèle Bloqué (=inchangé) Décomptage Comptage 1 1 X X Raz وزارة التربية المندوبية الجهوية للتربية لقصر ن حصة مراجعة 4 الماد ة : الهندسة الكهر ي ية القسم : كالور لوم تقنية Exercice n 1: compteur décompteur en C.I A- Circuit asynchrone : Le circuit intégré 7493

Plus en détail

Sciences Appliquées, chap 7.2 DANS LES MACHINES ÉLECTRIQUES

Sciences Appliquées, chap 7.2 DANS LES MACHINES ÉLECTRIQUES Sciences Appliquées, chap 7.2 MAGNÉTISME DANS LES MACHINES ÉLECTRIQUES 1 -Inducteur et induit...2 2 -Les pertes dans une machine électrique...2 3 -Le transformateur...3 4 -MCC et MCS...3 4.1 -Couple dans

Plus en détail

M 3 COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE 1 PRÉSENTATION 3 SYMBOLE 4 RAPPELS SUR LE RÉSEAU TRIPHASÉ

M 3 COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE 1 PRÉSENTATION 3 SYMBOLE 4 RAPPELS SUR LE RÉSEAU TRIPHASÉ COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE 1 PRÉSENTATION 3 SYMBOLE Le Moteur ASynchrone (MAS) est l'un des principaux actionneurs électriques utilisés dans l'industrie. D'une puissance

Plus en détail

Moteur à courant continu MACHINE A COURANT CONTINU. L'énergie mécanique se présente sous la forme d'un... tournant à la vitesse... Energie

Moteur à courant continu MACHINE A COURANT CONTINU. L'énergie mécanique se présente sous la forme d'un... tournant à la vitesse... Energie I. PRESENTATION MACHINE A COURANT CONTINU Une machine à courant continu est un... d'énergie. Lorsque l'énergie... est transformée en énergie..., la machine fonctionne en... Lorsque l'énergie mécanique

Plus en détail

Laboratoire génie électrique 4Stech Résumé du cours : moteur asynchrone triphasé Page 1/5. f p

Laboratoire génie électrique 4Stech Résumé du cours : moteur asynchrone triphasé Page 1/5. f p Laboratoire génie électrique 4tech ésumé du cours : moteur asynchrone triphasé age /5 Moteur asynchrone triphasé à rotor en court circuit ymbole h h h Le stator étant alimenté par un système de tension

Plus en détail

V.1 Présentation de la Machine à Courant Continu (MCC)

V.1 Présentation de la Machine à Courant Continu (MCC) Chapitre V Modélisation et Simulation de la Machine à Courant Continu 36 V.1 Présentation de la Machine à Courant Continu (MCC) V.1 Généralités Les MCC de conception usuelle sont réalisées pour différentes

Plus en détail

LES MOTEURS SPECIAUX 1-Les moteurs universels : Constitution : Principe de fonctionnement : Utilisation :

LES MOTEURS SPECIAUX 1-Les moteurs universels : Constitution : Principe de fonctionnement : Utilisation : LES MOTEURS SPECIAUX 1-Les moteurs universels : Le moteur universel est un moteur de constitution identique à celle d un moteur à courant continu à excitation série. Il tient son nom di fait qu il peut

Plus en détail

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI

N.L.Technique FONCTION CONVERTIR : MACHINE SYNCHRONE S.CHARI .L.Technique FOCTO CORTR : MACH YCHRO.CHAR. Alternateur La machine synchrone est un convertisseur réversible. lle peut fonctionner soit en génératrice soit en moteur. Lorsqu'elle fonctionne en génératrice,

Plus en détail

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS

- ACTIONNEURS - MACHINE A COURANT CONTINU AVEC BALAIS LIAISON REFERENTIEL B.11 Les actionneurs Machine à courant continu avec balais. Thèmes : E1 - C122 Conversion électromécanique d énergie E4 C12 Comportement énergétique des systèmes Centre d intérêt :

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE. Session 2011 PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles. Spécialité : Génie Électrotechnique

BACCALAURÉAT TECHNOLOGIQUE. Session 2011 PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies Industrielles. Spécialité : Génie Électrotechnique BACCALAURÉAT TECHNOLOGIQUE Session 211 PHYSIQUE APPLIQUÉE Série : Sciences et Technologies Industrielles Spécialité : Génie Électrotechnique Durée de l épreuve : 4 heures coefficient : 7 L emploi de toutes

Plus en détail

VI.1 Présentation de Machine Synchrone (MS)

VI.1 Présentation de Machine Synchrone (MS) Chapitre IV Modélisation et Simulation des Machines Synchrones 9 VI. Présentation de Machine Synchrone (MS) La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant

Plus en détail

BEP ET Leçon 22 Moteur à courant continu Page 1/10

BEP ET Leçon 22 Moteur à courant continu Page 1/10 BEP ET Leçon 22 Moteur à courant continu Page 1/10 1. FONCTIONNEMENT Stator : il est aussi appelé inducteur ou excitateur et c est lui qui crée le champ magnétique. Rotor : il est aussi appelé induit.

Plus en détail

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5

Cours de Physique appliquée. La machine synchrone triphasée. Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 Cours de Physique appliquée La machine synchrone triphasée Terminale STI Génie Electrotechnique Fabrice Sincère ; version 1.0.5 1 Sommaire 1- Constitution 1-1- Rotor 1-2- Stator 2- Types de fonctionnement

Plus en détail

MOTEURS A COURANT CONTINU

MOTEURS A COURANT CONTINU MOTEURS A COURANT CONTINU I- GENERALITES Les moteurs à courant continu à excitation séparée sont encore utilisés assez largement pour l entraînement à vitesse variable des machines. Leur vitesse de rotation

Plus en détail

Étude de la MACHINE A COURANT CONTINU

Étude de la MACHINE A COURANT CONTINU Étude de la MACHINE A COURANT CONTINU Plan de la présentation Introduction Constitution d une MCC Le Stator Le Collecteur Le Rotor Modèles et caractéristiques d une MCC Caractéristique Couple / Vitesse

Plus en détail

Travaux Dirigés d électronique de puissance et d électrotechnique

Travaux Dirigés d électronique de puissance et d électrotechnique Travaux Dirigés d électronique de puissance et d électrotechnique Exercice 1: redresseur triphasé non commandé On étudie les montages suivants, alimentés par un système de tensions triphasé équilibré.

Plus en détail

BACCALAUREAT TECHNOLOGIQUE. S e s s i o n PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies industrielles

BACCALAUREAT TECHNOLOGIQUE. S e s s i o n PHYSIQUE APPLIQUÉE. Série : Sciences et Technologies industrielles BACCALAUREAT TECHNOLOGIQUE S e s s i o n 2 0 0 7 PHYSIQUE APPLIQUÉE Série : Sciences et Technologies industrielles Spécialité : Génie Électrotechnique Durée de l'épreuve : 4 heures coefficient : 7 L'emploi

Plus en détail

La machine à courant continu

La machine à courant continu Travaux dirigés BTS Maintenance Industrielle Exercice n 1 : Un moteur à courant continu porte sur sa plaque, les indications suivantes Excitation séparée 160 V 2 A Induit : 160 V 22 A 1170 tr.min -1 3,2

Plus en détail

Travaux Dirigés Machines Electriques

Travaux Dirigés Machines Electriques TRAVAUX DIRIGES N 2 : MACHINE SYNCHRONE Exercice 1 Un alternateur triphasé, 1000 kva, 4600 V, connection étoile, possède une résistance par phase égale à 2 et une résistance synchrone égale à 20. En pleine

Plus en détail

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7

BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION Durée: 4 heures Coefficient : 7 BACCALAUREAT TECHNOLOGIQUE PHYSIQUE APPLIQUÉE SESSION 2001 Série : Sciences et technologies industrielles Spécialité : Génie Électrotechnique Durée: 4 heures Coefficient : 7 L'emploi de toutes les calculatrices

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SESSION 2009 PHYSIQUE APPLIQUÉE

BACCALAURÉAT TECHNOLOGIQUE SESSION 2009 PHYSIQUE APPLIQUÉE BACCALAURÉAT TECHNOLOGIQUE SESSION 2009 PHYSIQUE APPLIQUÉE Série: Sciences et technologies industrielles Spécialité : Génie Électrotechnique Durée : 4 heures coefficient :7 L'emploi de toutes les calculatrices

Plus en détail

F > I. + Alimentation 2 FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU 1 PRÉSENTATION 2.1 PRINCIPE DE FONCTIONNEMENT 1.1 FONCTION 1.

F > I. + Alimentation 2 FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU 1 PRÉSENTATION 2.1 PRINCIPE DE FONCTIONNEMENT 1.1 FONCTION 1. COURS TSI : CI-3 E1 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 1 / 6 1 PRÉSENTATION Beaucoup d'applications nécessitent un couple de démarrage élevé. Le Moteur

Plus en détail

Chapitre 7 : Machine à courant continu à excitation indépendante

Chapitre 7 : Machine à courant continu à excitation indépendante Chapitre 7 : Machine à courant continu à excitation indépendante I / présentation, constitution 1. rappels 2. définition 3. constitution II / fonctionnement en moteur 1. symbole 2. principe du moteur 3.

Plus en détail

Contrôle de vitesse d'un moteur asynchrone.

Contrôle de vitesse d'un moteur asynchrone. Contrôle de vitesse d'un moteur asynchrone. Introduction La fréquence de rotation d'un moteur asynchrone s'exprime pa la relation f falim. 1 g p On peut faire varier la vitesse en jouant sur la fréquence

Plus en détail

Um = Ueff 2 Ucomp = Usim 3

Um = Ueff 2 Ucomp = Usim 3 COURS TSI : CI-3 CORRIGÉ E2 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR ASYNCHRONE page 1 / 6 1 PRÉSENTATION 3 SYMBOLE Le Moteur ASynchrone (MAS) est l'un des principaux actionneurs électriques utilisés

Plus en détail

Le sujet comporte trois parties indépendantes présentées sur 8 pages numérotées de 1 à 8 dont les pages 7 et 8 sont à rendre avec la copie.

Le sujet comporte trois parties indépendantes présentées sur 8 pages numérotées de 1 à 8 dont les pages 7 et 8 sont à rendre avec la copie. Il est rappelé aux candidats que la qualité de la rédaction et la clarté des raisonnements, entreront pour une part importante dans l'appréciation des copies. Le sujet comporte trois parties indépendantes

Plus en détail

Au démarrage le couple utile 10 N.m est supérieur au couple résistant 6 N.m LE MAS DEMARRE. 41a ) L AO1 fonctionne en régime linéaire car on observe u

Au démarrage le couple utile 10 N.m est supérieur au couple résistant 6 N.m LE MAS DEMARRE. 41a ) L AO1 fonctionne en régime linéaire car on observe u Partie 1 étude du MAS à vitesse fixe 11) Sur la plaque signalétique du MAS ; on repère la plus petite valeur 230 V qui est la tension nominale aux bornes d un enroulement. On compare cette valeur aux tensions

Plus en détail

LA MACHINE SYNCHRONE

LA MACHINE SYNCHRONE LA MACHNE YNCHRONE. GÉNÉRALTÉ UR LA MACHNE YNCHRONE. Puissance mécanique Alternateur ou génératrice synchrone Puissance électrique Moteur synchrone La machine synchrone est une machine réversible. Elle

Plus en détail

Exercices Chapitre 12 Hiver 2003 ELE1400

Exercices Chapitre 12 Hiver 2003 ELE1400 Exercice 1 (DEV2A01) Un moteur asynchrone de 100hp est alimenté par une source triphasée à 600V. Ce moteur est construit avec 8 pôles. A son point d opération nominal, son rendement η est égal à 89% et

Plus en détail

Moteur synchrone autopiloté Moteur brushless

Moteur synchrone autopiloté Moteur brushless Moteur synchrone autopiloté Moteur brushless Moteur synchrone autopiloté Moteur brushless Moteur synchrone autopiloté OBJECTIFS Moteur brushless Identifier une machine synchrone Définir son principe de

Plus en détail

Chapitre 5 : magnétisme et champs tournants

Chapitre 5 : magnétisme et champs tournants Chapitre 5 : magnétisme et champs tournants A Rappels sur le magnétisme I mise en évidence expérimentale de l induction électromagnétique II Application : alternateur III loi de Lenz IV flux magnétique

Plus en détail

LE DEMARRAGE DES MOTEURS ASYNCHRONES

LE DEMARRAGE DES MOTEURS ASYNCHRONES LE DEMARRAGE DES MOTEURS ASYNCHRONES INDEX INDEX... 1 1-Introduction... 2 2-Choix d un démarreur... 2 3-Le démarrage direct... 3 4-Démarrage étoile triangle... 4 5-Démarrage statorique... 5 6-Tension réduite

Plus en détail

Machines asynchrones : éléments de correction

Machines asynchrones : éléments de correction Machines asynchrones : éléments de correction VII.Fonctionnement en génératrice (parfois appelé alternateur asynchrone) 1. Réversibilité Les diagrammes de Fresnel ci dessous sont associés à une machine

Plus en détail

moteur asynchrone MOTEUR ASYNCHRONE

moteur asynchrone MOTEUR ASYNCHRONE MOTEUR ASYNCHRONE Rappel: trois bobines, dont les axes font entre eux des angles de 120 et alimentées par un réseau triphasé équilibré, crée dans l'entrefer un champ magnétique radial, tournant à la fréquence

Plus en détail

Section MEI KM1 M1 M1 3 ~ Objectif : S informer sur la fonction, la constitution, la représentation et le fonctionnement du mote asynchrone triphasé.

Section MEI KM1 M1 M1 3 ~ Objectif : S informer sur la fonction, la constitution, la représentation et le fonctionnement du mote asynchrone triphasé. Section MEI ELECTRICITE : Le moteur asynchrone 1BAC 2 BAC 3 BAC 9 Objectif : S informer sur la fonction, la constitution, la représentation et le fonctionnement du mote asynchrone triphasé. Pré requis

Plus en détail

CH24 : L alternateur synchrone

CH24 : L alternateur synchrone BTS électrotechnique 1 ère année - Sciences physiques appliquées CH24 : L alternateur synchrone Production d énergie électrique Problématique : Des essais ont été réalisés sur un alternateur synchrone

Plus en détail

Sciences et technologie industrielles

Sciences et technologie industrielles Sciences et technologie industrielles Spécialité : Génie Electrotechnique Classe de terminale Programme d enseignement des matières spécifiques Sciences physiques et physique appliquée CE TEXTE REPREND

Plus en détail

QCM 1 de Physique (STI)

QCM 1 de Physique (STI) QCM 1 de Physique (STI) Question 1 Une bobine est parcourue par un courant de 1 A. Sans noyau ferromagnétique, l intensité de l induction magnétique est de 4 mt, avec le noyau ferromagnétique elle est

Plus en détail

LA MACHINE À COURANT CONTINU

LA MACHINE À COURANT CONTINU LA MACHINE À COURANT CONTINU Table des matières 1. Présentation... 2 1.1. Généralités... 2 1.2. Description... 3 1.2.1. Vue d'ensemble... 3 1.2.2. L'inducteur... 3 1.2.3. L'induit... 3 1.2.4. Collecteur

Plus en détail

Energie mécanique fournie

Energie mécanique fournie L étude de l électromagnétisme a mis en évidence, le principe de fonctionnement des machines à courant continu: - fonctionnement en moteur, par déplacement d un conducteur parcouru par un courant et placé

Plus en détail

LE MOTEUR ASYNCHRONE TRIPHASE

LE MOTEUR ASYNCHRONE TRIPHASE LE MOTEUR ASYNCHRONE TRIPHASE Objectifs : S informer sur la constitution d un moteur asynchrone triphasé ; Etre capable d installer un moteur asynchrone triphasé ; 1. Introduction Ce moteur à rotor en

Plus en détail

M-S Cours - 1 MACHINE SYNCHRONE

M-S Cours - 1 MACHINE SYNCHRONE M-S Cours - 1 MACHINE SYNCHRONE - 1 - PRESENTATION : La machine synchrone, appelée ALTERNATEUR si elle fonctionne en génératrice, fournit un courant alternatif. En fonctionnement MOTEUR sa fréquence de

Plus en détail

IDENTIFICATION DES PARAMETRES D UNE GENERATRICE ASYNCHRONE POUR EOLIENNE

IDENTIFICATION DES PARAMETRES D UNE GENERATRICE ASYNCHRONE POUR EOLIENNE IDENTIFICATION DES PARAMETRES D UNE GENERATRICE ASYNCHRONE POUR EOLIENNE SIDKI Mohammed Université Mohamed V-Ecole Mohammadia d Ingénieurs sidki@emi.ac.ma Mots clés Modélisation de la génératrice asynchrone,

Plus en détail

BACCALAUREAT TECHNOLOGIQUE SESSION 2000 SCIENCES ET TECHNOLOGIES INDUSTRIELLES Spécialité: GENIE MECANIQUE (toutes options)

BACCALAUREAT TECHNOLOGIQUE SESSION 2000 SCIENCES ET TECHNOLOGIES INDUSTRIELLES Spécialité: GENIE MECANIQUE (toutes options) BACCALAUREAT TECHNOLOGIQUE SESSION 2000 SCIENCES ET TECHNOLOGIES INDUSTRIELLES Spécialité: GENIE MECANIQUE (toutes options) Epreuve de Sciences Physiques Durée : 2 heures coefficient: 5 L 'utilisation

Plus en détail

COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT ETC SYMBOLE ACTION

COURS : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT ETC SYMBOLE ACTION 1 PRÉSENTATION Beaucoup d'applications nécessitent un couple de démarrage élevé. Le Moteur à Courant Continu (MCC) possède une caractéristique couple/vitesse de pente importante, ce qui permet de vaincre

Plus en détail

Série d exercices N 7

Série d exercices N 7 GENIE ELECTRIQUE Série d exercices N 7 Prof : Mr Raouafi Abdallah «Moteur à courant continu» Niveau : 4 ème Sc.Technique Exercice 1 : Un moteur à excitation indépendante porte sur la plaque signalétique

Plus en détail

premier moteur à induction

premier moteur à induction Histoire machine asynchrone 1883 Nicolas Tesla (1856-1943) premier moteur à induction Nicolas Tesla conçoit son premier moteur à induction biphasé 350 W (à Strasbourg) Histoire machine asynchrone XXe développement

Plus en détail

Commande de moteur à courant continu

Commande de moteur à courant continu U = E + R UNIVERSITE D ELOUED DEPARTEMENT D'ELECTROTECHNIQUE Commande de moteur à courant continu 1. Les modes de variation de vitesse Commande par tension d induit Commande par variation de flux magnétique

Plus en détail

VARIATEURS INDUSTRIELS POUR MOTEUR ASYNCHRONE

VARIATEURS INDUSTRIELS POUR MOTEUR ASYNCHRONE U1-S5: VARIATEURS INDUSTRIELS POUR OTEUR ASYNCHRONE 1- INTRODUCTION Grâce à l évolution de l électronique de puissance (Transistors, thyristors, GTO, IGBT) et de l électronique de commande (micro-controleurs),

Plus en détail

Electrotechnique. Il sert à créer un champ magnétique (champ "inducteur") dans le rotor.

Electrotechnique. Il sert à créer un champ magnétique (champ inducteur) dans le rotor. Electrotechnique Chapitre 1 Machine à courant continu 1- Constitution La machine à courant continu est constituée de trois parties principales : - l'inducteur - l'induit - le dispositif collecteur / balais

Plus en détail

F > I. + Alimentation 3 SYMBOLE 1 PRÉSENTATION 4 FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU 2 IDENTIFICATION DE LA FONCTION TECHNIQUE RÉALISÉE

F > I. + Alimentation 3 SYMBOLE 1 PRÉSENTATION 4 FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU 2 IDENTIFICATION DE LA FONCTION TECHNIQUE RÉALISÉE COURS TSI : CI-3 E1 : STRUCTURE ET FONCTIONNEMENT D'UN MOTEUR À COURANT CONTINU À AIMANT PERMANENT page 1 / 6 1 PRÉSENTATION Beaucoup d'applications nécessitent un couple de démarrage élevé. Le Moteur

Plus en détail