Semaine 3 : Série d exercices sur les algorithmes [Solutions]
|
|
|
- Philippe Robillard
- il y a 8 ans
- Total affichages :
Transcription
1 Information, calcul et communication EPFL MA/PH Automne 2016 Semaine 3 : Série d exercices sur les algorithmes [Solutions] 1 Quel est le bon algorithme? le retour Le bon algorithme est le c. Le a a deux problèmes : 1) si n est pair, il ne calcule que la somme des n/2 premiers nombres pairs ; 2) si n est impair, la condition de terminaison n est jamais recontrée et l algorithme ne s arrête jamais ; le b est problématique car pour n 1, sa sortie est un nombre plus grand ou égal à 2 n, et le d est encore plus problématique, car il ne s arrête jamais pour toute valeur de n 2. 2 Que font ces algorithmes? algo1 : a) 36 ; b) pas récursif ; c) sortie : la somme des n premiers nombres impairs (qui vaut n 2 ) ; d) O(n) ;. algo2 : a) 36 ; b) pas récursif ; c) sortie : n 2 ; d) O(1). algo3 : a) 36 ; b) récursif. ; c) sortie : la somme des n premiers nombres impairs (qui vaut n 2 ) ; d) O(n). algo4 : a) 12 ; b) récursif ; c) sortie : si n est impair, la somme des (n + 1)/2 premiers nombres impairs ; si n esd pair, la somme des n/2 premiers nombres pair ; c) O(n). e) algo7 est le seul algorithme qui fonctionne correctement ; les autres ne s arrêtent jamais. f) Il recalcule plusieurs fois la même chose inutilement et prend également un temps exponentiel pour s exécuter. g) Si l entrée est n, alors la sortie sera n (tout ça pour ça...). 3 Au temps des Grecs Algorithme d Euclide - version récursive : pgcdrecursif entrée : a, b deux entiers naturels non nuls sortie : pgcd (a, b) Si b = 0 sortir : a sortir : pgcdrecursif (b, a mod b) 1
2 4 Au temps des Egyptiens, deuxième partie La version récursive de l algorithme est donnée par : multrecursif entrée : a, b deux entiers naturels non nuls sortie : a b Si b = 1 sortir : a Si b est pair sortir : multrecursif(2a, b/2) sortir : a + multrecursif(a, b 1) 5 Création d algorithmes a) La solution la plus simple consiste ici à compter les espaces et à ajouter 1 : nombre de mots entrée : chaîne de caractères A sortie : le nombre de mots de A n taille(a) s 0 Pour i allant de 2 à n 1 Si A(i) = s s + 1 sortir : s + 1 La complexité de cet algorithme est clairement O(n) (taille est toujours O(n), voire peut être moins). Pour les séquences d espaces, il suffit : soit d ajouter une boucle dès qu on a trouvé une espace ; soit de ne compter un mot que si le caractère précédent (une espace) n est pas une espace. Pour les espaces initiales et finales, la seconde solution ci-dessus convient aussi ; elle est donc la plus simple. Attention cependant à la fin : il faut maintenant aller jusqu au bout (n au lieu de n 1) et n ajouter 1 que si la dernière lettre n est pas une espace : 2
3 nombre de mots entrée : chaîne de caractères A sortie : le nombre de mots de A n taille(a) s 0 Pour i allant de 2 à n Si A(i) = et A(i 1) s s + 1 Si A(n) s s + 1 sortir : s b) Il suffit de regarder tour à tour toutes les valeurs de la liste, en mémorisant la plus grande vue jusqu ici : la plus grande valeur entrée : liste L (non vide) de nombres entiers positifs sortie : la plus grande valeur de L n taille(l) x L(1) Pour i allant de 2 à n Si L(i) > x sortir : x x L(i) A nouveau, l ordre de complexité de l algorithme est O(n). Et pour une version récursive : plus_grande_valeur_r entrée : liste L (non vide) de nombres entiers positifs sortie : la plus grande valeur de L n taille(l) Si n = 1 sortir : L(1) sortir : max (L(1), plus_grande_valeur_r ( L(2, n) )) en notant «L(2, n)» la sous-liste de L constituée des éléments L(2), L(3),, L(n). Notons C(n) la complexité de cette version récursive. Supposons de plus ici que la complexite de taille est O(1), disons a (sinon, il suffirait de changer un tout petit peu l algorithme en lui ajoutant un paramètre de plus, la taille, pour retrouver ce même résultat). Nous avons : C(n) = a C(n 1) et C(1) = a + 3. Donc : C(n) = (a + 3) n, qui est donc aussi en O(n). 3
4 c) Ici, plusieurs possibiltés s offrent à nous, qui sont plus ou moins efficaces. Une première possibilité est de parcourir toutes les paires de nombres de la liste et de garder la trace du plus grand des produits de ces paires de nombres. La complexité d un tel algorithme est O(n 2 ) et n est pas optimale. Une meilleure option est de parcourir une fois la liste et de garder la trace des deux plus grands nombres rencontrés : le plus grand produit entrée : liste L de nombres entiers positifs sortie : le plus grand produit de deux valeurs de L Si L(1) > L(2) x 1 L(1) x 2 L(2) x 1 L(2) x 2 L(1) n taille(l) Pour i allant de 3 à n Si L(i) > x 1 x 2 x 1 x 1 L(i) Si L(i) > x 2 x 2 L(i) sortir : x 1 x 2 L ordre de complexité de l algorithme est O(n) (car à chaque itération, le nombre d opérations effectuées est constant). Une troisième possibilité serait de d abord trier (dans l ordre croissant) la liste avec un algorithme de tri efficace, puis de sortir le produit des deux derniers nombres de la liste. Mais la complexité serait alors au mieux de O(n log 2 (n)) en fonction de l algorithme de tri utilisé. 6 Taille de liste a) Pour la solution linéaire : il suffit d essayer toutes les valeurs une à une : Taille entrée : Liste L sortie : n le nombre d éléments de L n 1 Tant que a_element(l, n) n n + 1 n n 1 sortir : n L algorithme met effectivement n + 1 étapes à s arrêter. C est bien un algorithme linéaire. 4
5 b) Pour une version sous-linéaire, toute la difficulté est de trouver une borne supérieure à la taille, car une fois que l on a une telle borne supérieure, on peut simplement rechercher par dichotomie entre par exemple 1 et cette borne, ce qui donnera un algorithme de complexité logarithmique. La question est donc de savoir si l on peut trouver une borne supérieure à la taille n de L en un temps logarithmique en n. La réponse est oui : prenons une constante K (par exemple K = 2) et demandons si a_element(l, K i ), pour i partant de 1 et augmentant. Nous aurons besoin de poser log K (n) +1 fois cette question. Une fois i trouvé, nous pouvons rechercher la taille par dichotomie entre K i 1 et K i. Au total, notre algorithme effectuera O(log n) opérations. Formellement, avec K = 2, on peut écrire l algorithme comme ceci : TailleLog entrée : Liste L sortie : le nombre d éléments de L t 1 Tant que a_element(l, t) t 2 t sortir : TailleDichotomique(L, t/2, t) avec TailleDichotomique entrée : L, a, b sortie : le nombre d éléments de L Si a b 1 sortir : a c a + b a 2 Si a_element(l, c) sortir : TailleDichotomique(L, c, b) sortir : TailleDichotomique(L, a, c) L idée de ce dernier algorithme est de chercher la taille entre a inclus et b exclu. Pour aller plus loin 7 Devinette Cet algorithme récursif effectue une recherche par dichotomie presque exactement comme vu en cours. La seule différence avec le cours, c est qu ici on compare aussi avec «l élément du milieu» (c dans l algorithme). 5
6 Rappel du fonctionnement de l algorithme : Étant donnés une liste L triée par ordre croissant, un objet x et des bornes a b, il cherche l emplacement dans L entre les indices a et b qui contient x. Une manière de chercher dans toute la liste est de choisir a = 1 et b = taille de L. L algorithme procède en affinant successivement l intervalle de recherche. À chaque étape, x est comparé à l élément c situé au milieu de l intervalle actuel, et un appel récursif est effectué sur un nouvel intervalle réduit de moitié. Lorsque l intervalle a été réduit à un seul élément (a = b), soit l élément est équivalent à x et l indice est retourné, soit la liste ne contient pas x et l algorithme retourne 0 (indice impossible pour un élément). Exactitude : Sans autre contraintes sur a et b, cet algorithme n est pas correct dans tous les cas. Si en entrée a > b, il peut arriver qu il ne termine pas en raison d un nombre infini d appels récursifs. Par ailleurs, si a est plus grand que le nombre d éléments dans la liste, «le a-ième» ou «le c-ième élément de L» ne sont pas définis. De plus, la contrainte a b n est même pas garantie dans tous les cas dans l algorithme lui-même! En effet, si x < L[a] et b = a + 1 alors on lancera devinette(l, x, a, a 1)! Essayez par exemple avec L = {2, 3}, x = 1, a = 1 et b = 2. Le plus simple serait donc d ajouter un test au début de l algorithme pour garantir 1 a b taille(l) et répondre 0 sinon. 8 Deviner l affichage Lorsque m = «3 :» et n = 3 : 3 :,3 3 :,2,1 3 :,1,2 3 :,1,1,1 Lorsque m = «4 :» et n = 4 : 4 :,4 4 :,3,1 4 :,2,2 4 :,2,1,1 4 :,1,3 4 :,1,2,1 4 :,1,1,2 4 :,1,1,1,1 L algorithme affiche toutes les permutations avec répétition de séquences de nombres entre 1 et n dont la somme est n. Pour le fun... P (1) est vraie, en effet. L erreur n est pas là. P (n) = P (n + 1) en effet si n 2 ; le problème n est pas là. 6
7 Le problème, c est la démonstration de P (1) = P (2) : en effet, «le crayon que l on a sorti est aussi de la même couleur que les autres restés dans la boîte, donc tous les 2 crayons sont bien tous de la même couleur,» est erroné car «les autres restés dans la boîte» est un ensemble vide... 7
Algorithmes récursifs
Licence 1 MASS - Algorithmique et Calcul Formel S. Verel, M.-E. Voge www.i3s.unice.fr/ verel 23 mars 2007 Objectifs de la séance 3 écrire des algorithmes récursifs avec un seul test rechercher un élément
ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII
ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)
1 Recherche en table par balayage
1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément
1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert
1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : [email protected] Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes
1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)
1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d
Algorithmique et structures de données I
Algorithmique et structures de données I Riadh Ben Messaoud Université 7 novembre à Carthage Faculté des Sciences Économiques et de Gestion de Nabeul 1ère année Licence Fondamentale IAG 1ère année Licence
CORRECTION EXERCICES ALGORITHME 1
CORRECTION 1 Mr KHATORY (GIM 1 A) 1 Ecrire un algorithme permettant de résoudre une équation du second degré. Afficher les solutions! 2 2 b b 4ac ax bx c 0; solution: x 2a Solution: ALGORITHME seconddegré
Quelques tests de primalité
Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest [email protected] École de printemps C2 Mars
Correction TD algorithmique
Affectation Correction TD algorithmique Exercice 1 algo affect1b b 5 a b+1 b 2 Il vaut faire passer la notion de variable et la notion de stockage mémoire. Une variable n a donc pas d historique et à un
Définitions. Numéro à préciser. (Durée : )
Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.
Architecture des Systèmes d Information Architecture des Systèmes d Information
Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau
Cours d algorithmique pour la classe de 2nde
Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage
Quelques algorithmes simples dont l analyse n est pas si simple
Quelques algorithmes simples dont l analyse n est pas si simple Michel Habib [email protected] http://www.liafa.jussieu.fr/~habib Algorithmique Avancée M1 Bioinformatique, Octobre 2008 Plan Histoire
Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation
Complexité Objectifs des calculs de complexité : - pouvoir prévoir le temps d'exécution d'un algorithme - pouvoir comparer deux algorithmes réalisant le même traitement Exemples : - si on lance le calcul
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail
La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES Suites géométriques, fonction exponentielle Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence L objectif de cet exercice
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,
Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très
4. Les structures de données statiques
4. Les structures de données statiques 4.1 Tableaux à une dimension 4.1.1 Introduction Imaginons que dans un programme, nous ayons besoin simultanément de 25 valeurs (par exemple, des notes pour calculer
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Bases de programmation. Cours 5. Structurer les données
Bases de programmation. Cours 5. Structurer les données Pierre Boudes 1 er décembre 2014 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. Types char et
Initiation à la programmation en Python
I-Conventions Initiation à la programmation en Python Nom : Prénom : Une commande Python sera écrite en caractère gras. Exemples : print 'Bonjour' max=input("nombre maximum autorisé :") Le résultat de
ARBRES BINAIRES DE RECHERCHE
ARBRES BINAIRES DE RECHERCHE Table de symboles Recherche : opération fondamentale données : éléments avec clés Type abstrait d une table de symboles (symbol table) ou dictionnaire Objets : ensembles d
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Factorisation Factoriser en utilisant un facteur commun Fiche méthode
Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en
Sub CalculAnnuite() Const TITRE As String = "Calcul d'annuité de remboursement d'un emprunt"
TD1 : traduction en Visual BASIC des exemples du cours sur les structures de contrôle de l'exécution page 1 'TRADUCTION EN VBA DES EXEMPLES ALGORITHMIQUES SUR LES STRUCTURES 'DE CONTROLE DE L'EXECUTION
Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires
Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge [email protected] Laboratoire d Informatique de Nantes Atlantique,
Mathématiques financières
Mathématiques financières Table des matières 1 Intérêt simple 1 1.1 Exercices........................................ 1 2 Intérêt composé 2 2.1 Taux nominal, taux périodique, taux réel.......................
Feuille TD n 1 Exercices d algorithmique éléments de correction
Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments
LES TYPES DE DONNÉES DU LANGAGE PASCAL
LES TYPES DE DONNÉES DU LANGAGE PASCAL 75 LES TYPES DE DONNÉES DU LANGAGE PASCAL CHAPITRE 4 OBJECTIFS PRÉSENTER LES NOTIONS D ÉTIQUETTE, DE CONS- TANTE ET DE IABLE DANS LE CONTEXTE DU LAN- GAGE PASCAL.
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Groupe symétrique. Chapitre II. 1 Définitions et généralités
Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations
Algorithme. Table des matières
1 Algorithme Table des matières 1 Codage 2 1.1 Système binaire.............................. 2 1.2 La numérotation de position en base décimale............ 2 1.3 La numérotation de position en base binaire..............
INITIATION AU LANGAGE C SUR PIC DE MICROSHIP
COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par
1 I ) Une première approche de l algorithme en seconde, saison 2010 _ 2011. Antoine ROMBALDI
1 I ) Une première approche de l algorithme en seconde, saison 2010 _ 2011. Antoine ROMBALDI L objectif est de rendre les élèves capables : De décrire certains algorithmes en langage naturel. D en réaliser
Chapitre VI - Méthodes de factorisation
Université Pierre et Marie Curie Cours de cryptographie MM067-2012/13 Alain Kraus Chapitre VI - Méthodes de factorisation Le problème de la factorisation des grands entiers est a priori très difficile.
Chapitre 7. Récurrences
Chapitre 7 Récurrences 333 Plan 1. Introduction 2. Applications 3. Classification des récurrences 4. Résolution de récurrences 5. Résumé et comparaisons Lectures conseillées : I MCS, chapitre 20. I Rosen,
Algorithmique et Programmation
École Supérieure d Ingénieurs de Poitiers Gea Algorithmique et Programmation Laurent Signac ii Algorithmique et programmation Gea Table des matières Avant Propos v Structures de données Notion de pointeur..............................................
# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list = <fun>
94 Programmation en OCaml 5.4.8. Concaténation de deux listes Définissons maintenant la fonction concat qui met bout à bout deux listes. Ainsi, si l1 et l2 sont deux listes quelconques, concat l1 l2 constitue
Représentation des Nombres
Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...
Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation
Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des
Logiciel Libre Cours 3 Fondements: Génie Logiciel
Logiciel Libre Cours 3 Fondements: Génie Logiciel Stefano Zacchiroli [email protected] Laboratoire PPS, Université Paris Diderot 2013 2014 URL http://upsilon.cc/zack/teaching/1314/freesoftware/
Recherche dans un tableau
Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6
Programmation C++ (débutant)/instructions for, while et do...while
Programmation C++ (débutant)/instructions for, while et do...while 1 Programmation C++ (débutant)/instructions for, while et do...while Le cours du chapitre 4 : le for, while et do...while La notion de
La persistance des nombres
regards logique & calcul La persistance des nombres Quand on multiplie les chiffres d un nombre entier, on trouve un autre nombre entier, et l on peut recommencer. Combien de fois? Onze fois au plus...
Les deux points les plus proches
MPSI Option Informatique Année 2001, Deuxième TP Caml Vcent Simonet (http://cristal.ria.fr/~simonet/) Les eux pots les plus proches Lors e cette séance, nous allons nous téresser au problème suivant :
Objets Combinatoires élementaires
Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.
Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.
Algorithmique avec Algobox
Algorithmique avec Algobox 1. Algorithme: Un algorithme est une suite d instructions qui, une fois exécutée correctement, conduit à un résultat donné Un algorithme doit contenir uniquement des instructions
Calcul Formel et Numérique, Partie I
Calcul Formel et Numérique N.Vandenberghe [email protected] Table des matières 1 Introduction à Matlab 2 1.1 Quelques généralités.......................... 2 2 Où trouver des informations 2 3 Opérations
Initiation à l algorithmique
Informatique S1 Initiation à l algorithmique procédures et fonctions 2. Appel d une fonction Jacques TISSEAU Ecole Nationale d Ingénieurs de Brest Technopôle Brest-Iroise CS 73862-29238 Brest cedex 3 -
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */.
Page 1 de 9 MATLAB : COMMANDES DE BASE Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Aide help, help nom_de_commande Fenêtre de travail (Command Window) Ligne
Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux
Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
0x700. Cryptologie. 2012 Pearson France Techniques de hacking, 2e éd. Jon Erickson
0x700 Cryptologie La cryptologie est une science qui englobe la cryptographie et la cryptanalyse. La cryptographie sous-tend le processus de communication secrète à l aide de codes. La cryptanalyse correspond
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Algorithmique et Programmation, IMA
Algorithmique et Programmation, IMA Cours 2 : C Premier Niveau / Algorithmique Université Lille 1 - Polytech Lille Notations, identificateurs Variables et Types de base Expressions Constantes Instructions
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
6. Hachage. Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses
6. Hachage Accès aux données d'une table avec un temps constant Utilisation d'une fonction pour le calcul d'adresses PLAN Définition Fonctions de Hachage Méthodes de résolution de collisions Estimation
Maple: premiers calculs et premières applications
TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)
Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter
STAGE IREM 0- Premiers pas en Python
Université de Bordeaux 16-18 Février 2014/2015 STAGE IREM 0- Premiers pas en Python IREM de Bordeaux Affectation et expressions Le langage python permet tout d abord de faire des calculs. On peut évaluer
LES REGLEMENTS AVEC SOCIEL.NET DERNIERE MISE A JOUR : le 14 juin 2010
LES REGLEMENTS AVEC SOCIEL.NET DERNIERE MISE A JOUR : le 14 juin 2010 Guillaume Informatique 10 rue Jean-Pierre Blachier 42150 La Ricamarie Tél. : 04 77 36 20 60 - Fax : 04 77 36 20 69 - Email : [email protected]
Qualité du logiciel: Méthodes de test
Qualité du logiciel: Méthodes de test Matthieu Amiguet 2004 2005 Analyse statique de code Analyse statique de code Étudier le programme source sans exécution Généralement réalisée avant les tests d exécution
MIS 102 Initiation à l Informatique
MIS 102 Initiation à l Informatique Responsables et cours : Cyril Gavoille Catherine Pannier Matthias Robine Marc Zeitoun Planning : 6 séances de cours 5 séances de TD (2h40) 4 séances de TP (2h40) + environ
OPTIMISATION À UNE VARIABLE
OPTIMISATION À UNE VARIABLE Sommaire 1. Optimum locaux d'une fonction... 1 1.1. Maximum local... 1 1.2. Minimum local... 1 1.3. Points stationnaires et points critiques... 2 1.4. Recherche d'un optimum
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Organigramme / Algorigramme Dossier élève 1 SI
Organigramme / Algorigramme Dossier élève 1 SI CI 10, I11 ; CI 11, I10 C24 Algorithmique 8 février 2009 (13:47) 1. Introduction Un organigramme (ou algorigramme, lorsqu il est plus particulièrement appliqué
Optimisation Discrète
Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et
Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test
Grandes lignes Analyseur Statique de logiciels Temps RÉel Embarqués École Polytechnique École Normale Supérieure Mercredi 18 juillet 2005 1 Présentation d 2 Cadre théorique de l interprétation abstraite
Les arbres binaires de recherche
Institut Galilée Année 2010-2011 Algorithmique et arbres L2 TD 6 Les arbres binaires de recherche Type en C des arbres binaires (également utilisé pour les ABR) : typedef struct noeud_s { struct noeud_s
Algorithmique et programmation : les bases (VBA) Corrigé
PAD INPT ALGORITHMIQUE ET PROGRAMMATION 1 Cours VBA, Semaine 1 mai juin 2006 Corrigé Résumé Ce document décrit l écriture dans le langage VBA des éléments vus en algorithmique. Table des matières 1 Pourquoi
Par combien de zéros se termine N!?
La recherche à l'école page 79 Par combien de zéros se termine N!? par d es co llèg es An dré Do ucet de Nanterre et Victor Hugo de Noisy le Grand en seignants : Danielle Buteau, Martine Brunstein, Marie-Christine
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Introduction à MATLAB R
Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d
Optimisation, traitement d image et éclipse de Soleil
Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
Algorithmique, Structures de données et langage C
UNIVERSITE PAUL SABATIER TOULOUSE III Algorithmique, Structures de données et langage C L3 IUP AISEM/ICM Janvier 2005 J.M. ENJALBERT Chapitre 1 Rappels et compléments de C 1.1 Structures Une structure
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2
éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Adama MBODJI MBODJ.SYSTEM
MBODJ.SYSTEM Tableaux & vecteurs Algorithmes de tris Chaînes de caractères Listes linéaires Piles & Files Arbres Fichiers Je dédie cet ouvrage à mon père Souleymane MBODJI 2 Dédicace... 2 Sommaire... 3
Licence ST Université Claude Bernard Lyon I LIF1 : Algorithmique et Programmation C Bases du langage C 1 Conclusion de la dernière fois Introduction de l algorithmique générale pour permettre de traiter
L ALGORITHMIQUE. Algorithme
L ALGORITHMIQUE Inspirée par l informatique, cette démarche permet de résoudre beaucoup de problèmes. Quelques algorithmes ont été vus en 3 ième et cette année, au cours de leçons, nous verrons quelques
introduction Chapitre 5 Récursivité Exemples mathématiques Fonction factorielle ø est un arbre (vide) Images récursives
introduction Chapitre 5 Images récursives http ://univ-tln.fr/~papini/sources/flocon.htm Récursivité http://www.poulain.org/fractales/index.html Image qui se contient elle-même 1 Exemples mathématiques
Algorithmique et Programmation Fonctionnelle
Algorithmique et Programmation Fonctionnelle RICM3 Cours 9 : Lambda-calcul Benjamin Wack Polytech 2014-2015 1 / 35 La dernière fois Typage Polymorphisme Inférence de type 2 / 35 Plan Contexte λ-termes
Programmation avec Xcas ou Python
Programmation avec Xcas ou Python G. Aldon - J. Germoni - J.-M. Mény IREM de Lyon Mars 2012 GA, JG, JMM (IREM de Lyon) programmer xcas python Mars 2012 1 / 20 Éditeur Xcas Environnement Le texte d un programme
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Découverte de Python
Découverte de Python Python est un des langages informatiques au programme des concours à partir de la session 2015. Ce tutoriel vous permettra de vous mettre à peu près à niveau de ce qui a été fait en
Reaper : utilisations avancées
Reaper : utilisations avancées Reaper dispose de ressources qui, sans être cachées, ne sont pas toujours faciles à trouver, d'autant plus que souvent on n'imagine même pas que ces choses soient possible!...
Corrigé des TD 1 à 5
Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un
