Les deux points les plus proches

Dimension: px
Commencer à balayer dès la page:

Download "Les deux points les plus proches"

Transcription

1 MPSI Option Informatique Année 2001, Deuxième TP Caml Vcent Simonet (http://cristal.ria.fr/~simonet/) Les eux pots les plus proches Lors e cette séance, nous allons nous téresser au problème suivant : étant onné un ensemble e pots u plan, entifier le couple e pots les plus proches au sens e la istance eucliienne. Ce type algorithme voit son utilité ans les transports aériens ou maritimes par exemple. Nous représenterons un pot en Caml par un couple e flottants (x, y) représentant ses cooronnées ans un repère orthonormé. L ensemble es pots consiérés sera quant à lui stocké ans un tableau t. Nous supposerons toujours que tous les couples stockés ans t sont istcts. 1 Une première solution Consiérons eux pots p et p e cooronnées respectives (x, y) et (x, y ). Leur istance eucliienne est onnée par la formule p p = (x x ) 2 + (y y ) 2. Question 1 Écrivez une fonction ist qui calcule la istance eucliienne séparant eux pots. Une méthoe «naïve» permettant e étermer les eux pots les plus proches ans un tableau t consiste à consiérer successivement tous les couples e pots possibles, ce qui peut se faire facilement à l aie e eux boucles for. Question 2 Écrivez une fonction plus proches qui pr pour argument un tableau e pots t et retourne un couple e pots ((x, y), (x, y )) situés à une istance mimale l un e l autre. Vous pourrez Commencer par créer une référence (itialisée par exemple avec ist t.(0) t.(1)) qui contira tout au long u éroulement e l algorithme la plus petite istance trouvée ; asi que eux références s i et s j contenant les ices es pots qui permettent attere cette istance. Utiliser eux boucles imbriquées pour consiérer tous les couples e pots communs. Mettre à jour les trois références à chaque fois qu un couple (i, j) tel que t.(i) t.(j) <! est trouvé. Question 3 Évaluez le coût un appel à la fonction plus proches en fonction e la taille u tableau t. Nous allons matenant nous téresser à la mise au pot un algorithme permettant e résoure ce même problème en temps O(n log n). Cet algorithme nécessite e isposer e eux copies u tableau t, l une triée par abscisses croissantes et l autre par oronnées croissantes. Nous allons onc écrire ans un premier temps quelques fonctions permettant e trier un tableau. 2 Tri un tableau Soit t = [ ; x 1 ;... ; x n 1 ] un tableau. Trier t consiste à permuter le contenu es cases u tableau t e façon à obtenir le tableau [ x σ(0) ; x σ(1) ;... ; x σ(n 1) ] avec x σ(0) x σ(1)... x σ(n 1). L algorithme e tri par sélection aopte le prcipe suivant : pour i variant e 0 à n 2, chercher l ice k i e la case e la partie u tableau située à roite e la case i contenant le plus petit élément ; puis permuter le contenu es cases k et i. c Vcent Simonet 2001 Ce ocument est istribué selon les termes e la GNU Free Documentation License.

2 Par exemple, pour trier le tableau [ 4; 3; 1; 2 ], on passe par les étapes suivantes : [ 4; 3; 1; 2 ] i = 0 k = 2 [ 1; 3; 4; 2 ] i = 1 k = 3 [ 1; 2; 4; 3 ] i = 2 k = 3 [ 1; 2; 3; 4 ] Question 4 Écrivez une fonction swap qui pr pour argument un tableau t, eux entiers a et b et permute le contenu es cases ices a et b. Votre fonction ne créera pas un nouveau tableau, elle se contentera e moifier sur place le tableau t. Elle sera onc e type a vect t t unit. Question 5 Écrivez une fonction sel qui pr pour argument un tableau t ; eux entiers a et b et retourne l ice e la case u sous-tableau t.(a)... t.(b) qui contient le plus petit élément pour l orre <. Question 6 Déuisez-en une fonction tri qui effectue le tri un tableau. La fonction que vous venez écrire vous permet e trier un tableau pour la relation orre <. Sur les couples, cet orre est en Caml l orre lexicographique. On peut cepant imager autres relations orre sur es couples, comme par exemple : l e t orre x ( x, y ) ( x, y ) = x < x l e t orre y ( x, y ) ( x, y ) = y < y Question 7 Aaptez les fonctions sel et tri e sorte qu elle prennent également en argument une fonction implantant une relation orre (comme orre x ou orre y). 3 Diviser pour régner Nous revenons matenant à notre premier problème, étermer parmi un ensemble e pots un couple e pots situés à une istance mimale. Nous supposons que nous isposons e eux copies e l ensemble es n pots : un tableau t x, trié par abscisses croissantes, un tableau t y, trié par oronnées croissantes. On pose k = n/2 et on consière les eux sous-tableaux t 1 = [ t.(0);... ; t.(k) ] et t 2 = [ t.(k + 1);... ; t.(k + 2) ]. Soit un flottant plus gran que les abscisses es pots e t 1 et plus petit que les abscisses es pots e t 2. Le plan est ivisé en eux parties : Notons p 1 = (x 1, y 1 ) et p 1 = (x 1, y 1) les eux pots les plus proches ans le tableau t 1 (avec x 1 x 1) asi que p 2 = (x 2, y 2 ) et p 2 = (x 2, y 2) eux pots les plus proches ans t 2. On note = m( p 1 p 1, p 2 p 2 ). Si eux pots u tableau t sont à une istance strictement férieure à alors nécessairement l un fait partie e t 1 et l autre e t 2 et ils sont ans la bane abscisses [ ; + ]. p 1 p 1 p 2 p 2 Question 8 Écrivez une fonction qui pr pour argument un tableau t y asi que eux flottants x m, x max et qui sélectionne ans ce tableau les pots ont l abscisse est comprise entre x m et x max. Le résultat sera ru ans un tableau t z. Notons t z le tableau es pots situé ans la bane, obtenu grâce à un appel à la fonction précéente. Dans chaque tranche e hauteur e cette bane, il ne peut y avoir plus e 7 pots. On en éuit que si eux pots e t z sont à une istance férieure ou égale à alors ils sont situés à au plus sept cases l un e l autre ans le tableau t z. Question 9 Écrivez une fonction plus proches centre qui pr pour argument le tableau t z et retourne le couple e pots les plus proches, tels que ces eux pots soient situés à au plus 7 cases l un e l autre ans le tableau t z. Vous pourrez vous spirer e la fonction plus proches précéente. On éuit e ce qui précèe un algorithme récursif permettant e trouver les eux pots les plus proches à partir es eux tableaux t x et t y : 1. Découper le tableau t x en eux tableaux t x,1 et t x,2 e longueur moitié. 2. Détermer p 1 = (x 1, y 1 ), p 1 = (x 1, y 1), p 2 = (x 2, y 2 ) et p 2 = (x 2, y 2) asi que la istance. 3. Calculer t z. S il contient au mos eux pots, appliquer la fonction plus proches centre à t z pour obtenir p = (x, y) et p = (x, y ). 2

3 4. Retourner le résultat, c est à ire la paire e pots à istance mimale parmi p 1, p 1 ; p 2, p 2 et p, p. Question 10 Écrivez en appliquant ce procéé une nouvelle fonction plus proches. Évaluez sa complexité en fonction u nombre e pots. 3

4 MPSI Option Informatique Année 2001, Deuxième TP Caml Vcent Simonet (http://cristal.ria.fr/~simonet/) Les eux pots les plus proches Un corrigé Question 1 On utilise la fonction sqrt e Caml qui permet e «calculer» la race carrée un flottant et l opérateur. exponentiation. l e t i s t ( x, y ) ( x, y ) = s q r t ( ( x. x ) ( y. y ) ) l e t s e l t a b = l e t r = r e f a for i = a + 1 to b o i f t. ( i ) < t. (! r ) then r := i! r Question 2 Notre fonction se contente envisager tous les couples entiers (i, j) avec 0 i < j n 1 à l aie e eux boucles for imbriquées. La référence contient à chaque stant la plus petite istance trouvée et les références s i et s j les ices es eux pots la réalisant. Question 4 l e t plus proches t = l e t n = vect length t an = r e f ( i s t t. ( 0 ) t. ( 1 ) ) an s i = r e f 0 an s j = r e f 1 for j = i + 1 to ( n 1) o i f i s t t. ( i ) t. ( j ) <! then := i s t t. ( i ) t. ( j ) ; s i := i ; s j := j ( t. (! s i ), t. (! s j )) l e t swap t a b = l e t x = t. ( a ) t. ( a) < t. ( b ) ; t. ( b) < x ; Question 5 La référence r contient à chaque itération l ice e la case contenant le plus petit élément parmi t.(a)... t.(i). Question 6 Question 7 Question 8 l e t t r i t = l e t n = vect length t l e t k = s e l t i ( n 1) swap t i k l e t s e l comp t a b = l e t r = r e f a for i = a + 1 to b o i f comp t. ( i ) t. (! r ) then r := i! r l e t t r i comp t = l e t n = vect length t l e t k = s e l comp t i ( n 1) swap t i k l e t selectionne ty x m x max = l e t n = vect length ty l e t r e s u l t a t = r e f [ ] for i = n 1 ownto 0 o i f x m <= f s t ty. ( i ) && f s t ty. ( i ) <= x max then r e s u l t a t := ty. ( i ) : : (! r e s u l t a t ) v e c t o f l i s t (! r e s u l t a t )

5 Question 9 Notre fonction plus proches centre est très semblable à la fonction plus proches. La seule ifférence résie ans la borne supérieure e la boucle exée par j : il n est plus nécessaire e poursuivre jusqu à j = n 1 mais on peut se limiter à j = m(n 1, i + 7). l e t plus proches centre t = l e t n = vect length t an = r e f ( i s t t. ( 0 ) t. ( 1 ) ) an s o l u t i o n i = r e f 0 an s o l u t i o n j = r e f 1 for j = i + 1 to m ( n 1) ( i + 7) o i f i s t t. ( i ) t. ( j ) <! then := i s t t. ( i ) t. ( j ) ; s o l u t i o n i := i ; s o l u t i o n j := j ( t. (! s o l u t i o n i ), t. (! s o l u t i o n j )) Question 10 l e t rec plus proches tx ty = l e t n = vect length tx i f n <= 3 then ( plus proches tx ) e l s e l e t tx1 = sub vect t ( n/2) an tx2 = sub vect tx ( n /2) ( n n/2) an x0 = f s t tx. ( n/2 1) l e t p1, p1 = plus proches tx1 ty an p2, p2 = plus proches tx2 ty l e t p12, p12 = i f ( i s t p1 p1 ) < ( i s t p2 p2 ) then ( p1, p1 ) e l s e ( p2, p2 ) l e t = i s t p12 p12 l e t tz = s e l e c t i o n n e ty (max ( x0. ) ( f s t tx. ( 0 ) ) ) (m ( x0 +. ) ( f s t tx. ( n 1))) i f vect length tz <= 1 then ( p12, p12 ) e l s e l e t p, p = plus proches centre tz i f i s t p p < then ( p, p ) e l s e ( p12, p12 ) 2

Le jeu de Marienbad. 1 Écriture binaire d un entier

Le jeu de Marienbad. 1 Écriture binaire d un entier MPSI Option Informatique Année 2002, Quatrième TP Caml Vcent Simonet (http://cristal.ria.fr/~simonet/) Le jeu de Marienbad Dans le film d Ala Resnais «L année dernière à Marienbad» (1961), l un des personnages,

Plus en détail

Arbres binaires et codage de Huffman

Arbres binaires et codage de Huffman MP Option Informatique Premier TP Caml Jeudi 8 octobre 2009 Arbres baires et codage de Huffman 1 Arbres baires Soit E un ensemble non vide. On défit la notion d arbre baire étiqueté (aux feuilles) par

Plus en détail

Théorie des graphes et optimisation dans les graphes

Théorie des graphes et optimisation dans les graphes Théorie es graphes et optimisation ans les graphes Christine Solnon Tale es matières 1 Motivations 2 Définitions Représentation es graphes 8.1 Représentation par matrice ajacence......................

Plus en détail

Introduction à l Algorithmique

Introduction à l Algorithmique Introduction à l Algorithmique N. Jacon 1 Définition et exemples Un algorithme est une procédure de calcul qui prend en entier une valeur ou un ensemble de valeurs et qui donne en sortie une valeur ou

Plus en détail

Algorithmique avancée en Python TDs

Algorithmique avancée en Python TDs Algorithmique avancée en Python TDs Denis Robilliard sept. 2014 1 TD 1 Révisions 1. Ecrire un programme qui saisit un entier, et détermine puis affiche si l entier est pair où impair. 2. Ecrire un programme

Plus en détail

Programmation en Caml pour Débutants

Programmation en Caml pour Débutants Programmation en Caml pour Débutants Arthur Charguéraud 6 Ju 2005 Ceci est une version léaire imprimable du cours, mais il est fortement conseillé d utiliser la version teractive, sur laquelle la plupart

Plus en détail

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel Simulation Matlab/Simulink une machine à inuction triphasée Constitution un référentiel Capocchi Laurent Laboratoire UMR CNRS 6134 Université e Corse 3 Octobre 7 1 Table es matières 1 Introuction 3 Moélisation

Plus en détail

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles 1 Chapitre Chapitre 1. Fonctions e plusieurs variables La TI-Nspire CAS permet e manipuler très simplement les onctions e plusieurs variables. Nous allons voir ans ce chapitre comment procéer, et éinir

Plus en détail

Arbres binaires. Chapitre 1. 1. Introduction. option informatique. 1.1 Définition formelle d un arbre binaire

Arbres binaires. Chapitre 1. 1. Introduction. option informatique. 1.1 Définition formelle d un arbre binaire Chapitre option informatique Arbres binaires. Introduction Dans son acceptation la plus générale, un arbre est un graphe acyclique orienté enraciné : tous les sommets, à l exception de la racine, ont un

Plus en détail

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert

1 de 46. Algorithmique. Trouver et Trier. Florent Hivert. Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 1 de 46 Algorithmique Trouver et Trier Florent Hivert Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 2 de 46 Algorithmes et structures de données La plupart des bons algorithmes

Plus en détail

Travaux dirigés n o 6

Travaux dirigés n o 6 Travaux dirigés n o 6 Lycée Kléber MPSI, Option Info 2014/2015 Exercice 1 (Indexation d un arbre binaire) Ecrire une fonction Caml indexation : ( f, n) arbre_binaire -> (string,string) arbre_binaire qui

Plus en détail

Algorithmique Travaux Dirigés

Algorithmique Travaux Dirigés Algorithmique Travaux Dirigés Master Technologie et Handicap : Intensifs 1 Corrigé Exercice 1 Affectations 1. Considérons les algorithmes ci-dessous. (a) Quel sera le contenu des variables a, b et éventuellement

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

Marches, permutations et arbres binaires aléatoires

Marches, permutations et arbres binaires aléatoires Marches, permutations et arbres binaires aléatoires Épreuve pratique d algorithmique et de programmation Concours commun des Écoles Normales Supérieures Durée de l épreuve: 4 heures Cœfficient: 4 Juillet

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

Recherche dans un tableau

Recherche dans un tableau Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6

Plus en détail

introduction Chapitre 5 Récursivité Exemples mathématiques Fonction factorielle ø est un arbre (vide) Images récursives

introduction Chapitre 5 Récursivité Exemples mathématiques Fonction factorielle ø est un arbre (vide) Images récursives introduction Chapitre 5 Images récursives http ://univ-tln.fr/~papini/sources/flocon.htm Récursivité http://www.poulain.org/fractales/index.html Image qui se contient elle-même 1 Exemples mathématiques

Plus en détail

INF601 : Algorithme et Structure de données

INF601 : Algorithme et Structure de données Cours 2 : TDA Arbre Binaire B. Jacob IC2/LIUM 27 février 2010 Plan 1 Introuction 2 Primitives u TDA Arbin 3 Réalisations u TDA Arbin par cellules chaînées par cellules contiguës par curseurs (faux pointeurs)

Plus en détail

Dérivées et intégrales non entières

Dérivées et intégrales non entières que "non entière". Dérivées et intégrales non entières. Notations. Outils Robert Janin La terminologie est plutôt "fractionnaire" On notera f (k) ou k x k f la érivée orre k e la fonction f et nous pourrons

Plus en détail

Architecture des Systèmes d Information Architecture des Systèmes d Information

Architecture des Systèmes d Information Architecture des Systèmes d Information Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau

Plus en détail

Exercice 2 : Comment déterminer le relief du fond marin avec un sondeur? (5,5 pts) Les trois parties de l exercice sont indépendantes

Exercice 2 : Comment déterminer le relief du fond marin avec un sondeur? (5,5 pts) Les trois parties de l exercice sont indépendantes Exercice 2 : Comment éterminer le relief u fon marin avec un soneur? (5,5 pts) Amérique u nor 2007 http://labolycee.org Les trois parties e l exercice sont inépenantes 1. Étue e l one ultrasonore ans l

Plus en détail

# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list =

# let rec concat l1 l2 = match l1 with [] -> l2 x::l 1 -> x::(concat l 1 l2);; val concat : a list -> a list -> a list = <fun> 94 Programmation en OCaml 5.4.8. Concaténation de deux listes Définissons maintenant la fonction concat qui met bout à bout deux listes. Ainsi, si l1 et l2 sont deux listes quelconques, concat l1 l2 constitue

Plus en détail

Que faire en algorithmique en classe de seconde? ElHassan FADILI Lycée Salvador Allende

Que faire en algorithmique en classe de seconde? ElHassan FADILI Lycée Salvador Allende Que faire en algorithmique en classe de seconde? BEGIN Que dit le programme? Algorithmique (objectifs pour le lycée) La démarche algorithmique est, depuis les origines, une composante essentielle de l

Plus en détail

1 Recherche en table par balayage

1 Recherche en table par balayage 1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément

Plus en détail

Algorithmique et structures de données I

Algorithmique et structures de données I Algorithmique et structures de données I Riadh Ben Messaoud Université 7 novembre à Carthage Faculté des Sciences Économiques et de Gestion de Nabeul 1ère année Licence Fondamentale IAG 1ère année Licence

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

2.1. Les fonctions. Les fonctions se définissent de la manière suivante : NomDeLaFonction(param1, param2,...)= { \\ Code de la fonction

2.1. Les fonctions. Les fonctions se définissent de la manière suivante : NomDeLaFonction(param1, param2,...)= { \\ Code de la fonction TP1, prise en main de Pari/GP et arithmétique Le programme que nous allons utiliser pour les TP se nomme PARI/GP dont le point fort est la théorie des nombres (au sens large). Il est donc tout à fait adapter

Plus en détail

Algorithmique & Programmation (INF431) Contrôle classant CC2. 25 juin 2014

Algorithmique & Programmation (INF431) Contrôle classant CC2. 25 juin 2014 Algorithmique & Programmation (INF431) Contrôle classant CC2 25 juin 2014 Les parties I, II et III sont indépendantes les unes des autres. Elles peuvent être traitées dans l ordre de votre choix. Elles

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Feuille TD n 1 Exercices d algorithmique éléments de correction

Feuille TD n 1 Exercices d algorithmique éléments de correction Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments

Plus en détail

Architecture des ordinateurs TP 3

Architecture des ordinateurs TP 3 Architecture des ordinateurs ESIPE - IR1 TP 3 Objectif de cette séance L objectif de cette séance est d apprendre à utiliser la pile et à écrire des fonctions en assembleur En particulier, nous verrons

Plus en détail

Chapitre VI Contraintes holonomiques

Chapitre VI Contraintes holonomiques 55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce

Plus en détail

CHAPITRE. Les variables du mouvement CORRIGÉ DES EXERCICES

CHAPITRE. Les variables du mouvement CORRIGÉ DES EXERCICES CHAPITRE Les variables u mouvement CORRIGÉ DES EXERCICES 2 3 Exercices. Les variables liées à l espace et au temps. Une araignée grimpe le long une clôture. Elle parcourt abor 3 m vers le haut, puis 2

Plus en détail

Proposition d activité utilisant l application. Tripatouille. (http://www.malgouyres.fr/tripatouille/)

Proposition d activité utilisant l application. Tripatouille. (http://www.malgouyres.fr/tripatouille/) IREM Clermont-Ferrand Algorithmique au lycée Malika More malika.more@u-clermont1.fr 28 janvier 2011 Proposition d activité utilisant l application Tripatouille (http://www.malgouyres.fr/tripatouille/)

Plus en détail

Logiciel Libre Cours 3 Fondements: Génie Logiciel

Logiciel Libre Cours 3 Fondements: Génie Logiciel Logiciel Libre Cours 3 Fondements: Génie Logiciel Stefano Zacchiroli zack@pps.univ-paris-diderot.fr Laboratoire PPS, Université Paris Diderot 2013 2014 URL http://upsilon.cc/zack/teaching/1314/freesoftware/

Plus en détail

Fiche de TD-TP no. 4

Fiche de TD-TP no. 4 Master 1 Informatique Programmation Fonctionnelle, p. 1 Fiche de TD-TP no. 4 Exercice 1. Voici trois façons différentes de définir le type Image : type Image = [[ Int ]] data Image = Image [[ Int ]] newtype

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Algorithmes (2) Premiers programmes sur calculatrice. Programmation sur calculatrice TI. codage

Algorithmes (2) Premiers programmes sur calculatrice. Programmation sur calculatrice TI. codage Objectifs : lgorithmes () Premiers programmes sur calculatrice - passer de la notion d algorithme à la notion de programme - aborder la notion de langage de programmation - s initier à la programmation

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 1 Arbres binaires de recherche 1 Les arbre sont très utilisés en informatique, d une part parce que les informations sont souvent hiérarchisées, et peuvent être représentées naturellement sous

Plus en détail

CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2

CNAM UE MVA 210 Ph. Durand Algèbre et analyse tensorielle Cours 4: Calcul dierentiel 2 CNAM UE MVA 210 Ph. Duran Algèbre et analyse tensorielle Cours 4: Calcul ierentiel 2 Jeui 26 octobre 2006 1 Formes iérentielles e egrés 1 Dès l'introuction es bases u calcul iérentiel, nous avons mis en

Plus en détail

Ch. 1 : Bases de programmation en Visual Basic

Ch. 1 : Bases de programmation en Visual Basic Ch. 1 : Bases de programmation en Visual Basic 1 1 Variables 1.1 Définition Les variables permettent de stocker en mémoire des données. Elles sont représentées par des lettres ou des groupements de lettres

Plus en détail

GAMMES BIEN RÉPARTIES ET TRANSFORMÉE DE FOURIER DISCRÈTE. Emmanuel AMIOT 1

GAMMES BIEN RÉPARTIES ET TRANSFORMÉE DE FOURIER DISCRÈTE. Emmanuel AMIOT 1 Math. & Sci. hum. / Mathematical Social Sciences (45 e année, n 178, 2007(2), p. 95 117) GAMMES BIEN RÉPARTIES ET TRANSFORMÉE DE FOURIER DISCRÈTE Emmanuel AMIOT 1 résumé Un es concepts les plus intŕessants

Plus en détail

ARBRES BINAIRES DE RECHERCHE

ARBRES BINAIRES DE RECHERCHE ARBRES BINAIRES DE RECHERCHE Table de symboles Recherche : opération fondamentale données : éléments avec clés Type abstrait d une table de symboles (symbol table) ou dictionnaire Objets : ensembles d

Plus en détail

6 Equations du première ordre

6 Equations du première ordre 6 Equations u première orre 6.1 Equations linéaires Consiérons l équation a k (x) k u = b(x), (6.1) où a 1,...,a n,b sont es fonctions continûment ifférentiables sur R. Soit D un ouvert e R et u : D R

Plus en détail

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante :

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante : Ocaml - Exercices Exercice Définir en Ocaml les fonctions suivantes:. f : x sin x + cos x. g : x x 3x+ x x 5 3. Fonction h calculant la moyenne géométrique de deux float positifs ( xy) Exercice Ecrire

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

M Younsi Tel :0645755250 www.formation-informatiques.fr mousse.younsi@ formation-informatiques.fr

M Younsi Tel :0645755250 www.formation-informatiques.fr mousse.younsi@ formation-informatiques.fr U2 MATHÉMATIQUES POUR L INFORMATIQUE Dans ce document, on trouve toutes les notions que le référentiel du BTS SIO impose pour l epreuve U22. Les éléments en rouge sont des rappels concernant la notion

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

Cours d algorithmique pour la classe de 2nde

Cours d algorithmique pour la classe de 2nde Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage

Plus en détail

Algorithmique I. Augustin.Lux@imag.fr Roger.Mohr@imag.fr Maud.Marchal@imag.fr. Algorithmique I 20-09-06 p.1/??

Algorithmique I. Augustin.Lux@imag.fr Roger.Mohr@imag.fr Maud.Marchal@imag.fr. Algorithmique I 20-09-06 p.1/?? Algorithmique I Augustin.Lux@imag.fr Roger.Mohr@imag.fr Maud.Marchal@imag.fr Télécom 2006/07 Algorithmique I 20-09-06 p.1/?? Organisation en Algorithmique 2 séances par semaine pendant 8 semaines. Enseignement

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Algo & Prog, avec Python (L1-Sciences) TP n 1, Automne 2015

Algo & Prog, avec Python (L1-Sciences) TP n 1, Automne 2015 Algo & Prog, avec Python (L1-Sciences) TP n 1, Automne 2015 Travail sous Windows au 2 ème étage (CRIPS) Vous allez travailler sur des ordinateurs sous le système d exploitation Windows-XP. Peutêtre utilisez-vous

Plus en détail

STAGE IREM 0- Premiers pas en Python

STAGE IREM 0- Premiers pas en Python Université de Bordeaux 16-18 Février 2014/2015 STAGE IREM 0- Premiers pas en Python IREM de Bordeaux Affectation et expressions Le langage python permet tout d abord de faire des calculs. On peut évaluer

Plus en détail

Jeux à plusieurs et coalitions

Jeux à plusieurs et coalitions Jeux à plusieurs et coalitions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juillet 2005 Important. Lorsque

Plus en détail

Chapitre 11. Premières Notions sur les fonctions

Chapitre 11. Premières Notions sur les fonctions Chapitre 11 Premières Notions sur les fonctions 1. Exemples Exemple 1 La distance parcourue par une automobile en un temps donné varie en fonction de sa vitesse. Faire deux phrases utilisant les mots suivants.

Plus en détail

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures)

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures) L2 - lgorithmique et structures de données (nnée 2010/2011) Delacourt, Phan Luong, Poupet xamen (2 heures) Les documents (cours, TD, TP) sont autorisés. Les quatre exercices sont indépendants. À la fin

Plus en détail

IMAGES NUMÉRIQUES MATRICIELLES EN SCILAB

IMAGES NUMÉRIQUES MATRICIELLES EN SCILAB IMAGES NUMÉRIQUES MATRICIELLES EN SCILAB Ce document, écrit par des animateurs de l IREM de Besançon, a pour objectif de présenter quelques unes des fonctions du logiciel Scilab, celles qui sont spécifiques

Plus en détail

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits.

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits. Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits 1 La qualité de la rédaction est un facteur important dans l appréciation

Plus en détail

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux. UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Initiation à la programmation en Python

Initiation à la programmation en Python I-Conventions Initiation à la programmation en Python Nom : Prénom : Une commande Python sera écrite en caractère gras. Exemples : print 'Bonjour' max=input("nombre maximum autorisé :") Le résultat de

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL

IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL Proposé par BUMA Feinance Master en management e projets informatiques Consultant en système écisionnel I. COMPREHENSION DU CONTEXTE «L informatique

Plus en détail

PARCOURS DU CAVALIER SUR L ÉCHIQUIER

PARCOURS DU CAVALIER SUR L ÉCHIQUIER I05 ÉPREUVE COMMUNE DE TIPE 2011 - Partie D TITRE : PARCOURS DU CAVALIER SUR L ÉCHIQUIER Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec

Plus en détail

TP MESURES AUDIO - BANC DE MESURE AUDIOPRECISION ATS-2. Clément Follet et Romain Matuszak - Professeur : Dominique Santens

TP MESURES AUDIO - BANC DE MESURE AUDIOPRECISION ATS-2. Clément Follet et Romain Matuszak - Professeur : Dominique Santens TP MESURES AUDIO - ANC DE MESURE AUDIOPRECISION ATS- Clément Follet et Romain Matuszak - Professeur : Dominique Santens Mai 008 Table es matières 1 Présentation 1.1 Présentation u TP..................................

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP)

Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP) Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP) Loris Marchal, Guillaume Melquion, Frédéric Tronel 21 juin 2011 Remarques générales à propos de l épreuve Organisation

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

SSNV143 - Traction biaxiale avec la loi de comportement BETON_DOUBLE_DP

SSNV143 - Traction biaxiale avec la loi de comportement BETON_DOUBLE_DP Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 1/14 Manuel e Valiation Fascicule V6.04 : Statique non linéaire es structures volumiques Document V6.04.14 SSNV14

Plus en détail

Programmation fonctionnelle avec OCaml

Programmation fonctionnelle avec OCaml Programmation fonctionnelle avec OCaml 1ère séance, 19 février 2015 6 séances de 1h30 de cours et 3h de TP 3 projets avec soutenance D autres transparents sont disponibles avec vidéo (intranet) Samuel

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

Une calculatrice qui manipule les régions cubiques

Une calculatrice qui manipule les régions cubiques Une calculatrice qui manipule les régions cubiques Emmanuel Haucourt 1 Introduction Alors qu une calculatrice usuelle effectue des opérations numériques (addition, multiplication, soustraction, division,

Plus en détail

Informatique CM5 Synthèse :

Informatique CM5 Synthèse : Informatique CM5 Synthèse : 1. Tuples et enregistrements : Un enregistrement a une étiquette, des champs et des noms de champs - L étiquette et les noms des champs sont des atomes ou des entiers - L opération

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

4. Les structures de données statiques

4. Les structures de données statiques 4. Les structures de données statiques 4.1 Tableaux à une dimension 4.1.1 Introduction Imaginons que dans un programme, nous ayons besoin simultanément de 25 valeurs (par exemple, des notes pour calculer

Plus en détail

Université Paris Diderot Paris 7. TD n 2. Arbres Binaire de Recherche

Université Paris Diderot Paris 7. TD n 2. Arbres Binaire de Recherche Université Paris Diderot Paris L Informatique Algorithmique Année 00-0, er semestre TD n Arbres Binaire de Recherche Le type de donné arbre" sera utilisé pour indiquer l ensemble de toutes les Arbres Binaires

Plus en détail

Visual Basic pour Applications

Visual Basic pour Applications Visual Basic pour Applications Les concepts de base de la programmation, 2ème partie Romain Tavenard Kévin Huguenin Christophe Avenel Romain.Tavenard@irisa.fr Kevin.Huguenin@gmail.com Christophe.Avenel@irisa.fr

Plus en détail

SEQUENCE : LES 5 SENS

SEQUENCE : LES 5 SENS SEQUENCE : LES 5 SENS Groupe concerné : Groupe sciences Nombre de séances prévues : 8 Compétence 3 du Palier 2 du socle commun : La culture scientifique et technologique - Pratiquer une démarche scientifique

Plus en détail

TP B43 Bio-Informatique 1. TP 1 : Les commandes LINUX et les instructions exécutables sous OCTAVE

TP B43 Bio-Informatique 1. TP 1 : Les commandes LINUX et les instructions exécutables sous OCTAVE TP B43 Bio-Informatique 1 TP 1 : Les commandes LINUX et les instructions exécutables sous OCTAVE 1) Quelques commandes LINUX - Ouvrir un terminal (menu Applications Accessoires Terminal) - Afficher la

Plus en détail

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII

ALGORITHMIQUE II NOTION DE COMPLEXITE. SMI AlgoII ALGORITHMIQUE II NOTION DE COMPLEXITE 1 2 Comment choisir entre différents algorithmes pour résoudre un même problème? Plusieurs critères de choix : Exactitude Simplicité Efficacité (but de ce chapitre)

Plus en détail

Recherche par similarité dans les bases de données multimédia : application à la recherche par le contenu d images

Recherche par similarité dans les bases de données multimédia : application à la recherche par le contenu d images UNIVERSITÉ MOHAMMED V AGDAL FACULTÉ DES SCIENCES Rabat N orre 460 THÈSE DE DOCTORAT Présentée par DAOUDI Imane Discipline : Sciences e l ingénieur Spécialité : Informatique & Télécommunications Titre :

Plus en détail

Programmation générique des arbres binaires de recherche AVL et applications

Programmation générique des arbres binaires de recherche AVL et applications Introduction Programmation générique des arbres binaires de recherche AVL et applications Ce TP porte sur l étude d une structure de données appelée arbres binaires de recherche qui sert généralement à

Plus en détail

Optimisation, traitement d image et éclipse de Soleil

Optimisation, traitement d image et éclipse de Soleil Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Algorithmique P2. La complexité Ulg, 2009-2010 R.Dumont

Algorithmique P2. La complexité Ulg, 2009-2010 R.Dumont Algorithmique P2 La complexité Ulg, 2009-2010 R.Dumont Sources supplémentaires Ouvrages Data Structures in Java, T. Standish, 1998 Data Structures and Algorithms in Java (4th ed), Michael T. Goodrich &

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce

Plus en détail

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices Lycée Pierre de Fermat 2012/2013 MPSI 1 Feuille d exercices Manipulation des relations d ordre. Relation d ordre Exercice 1. Soit E un ensemble fixé contenant au moins deux éléments. On considère la relation

Plus en détail

Utilisation d objets : String et ArrayList

Utilisation d objets : String et ArrayList Chapitre 6 Utilisation d objets : String et ArrayList Dans ce chapitre, nous allons aborder l utilisation d objets de deux classes prédéfinies de Java d usage très courant. La première, nous l utilisons

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail