SSNV143 - Traction biaxiale avec la loi de comportement BETON_DOUBLE_DP

Dimension: px
Commencer à balayer dès la page:

Download "SSNV143 - Traction biaxiale avec la loi de comportement BETON_DOUBLE_DP"

Transcription

1 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 1/14 Manuel e Valiation Fascicule V6.04 : Statique non linéaire es structures volumiques Document V SSNV14 - Traction biaxiale avec la loi e comportement BETON_DOUBLE_DP Résumé : Ce cas e valiation est estiné à vérifier le moèle e comportement D BETON_DOUBLE_DP formulé ans le care e la thermo-plasticité, pour la escription u comportement non linéaire u béton, en traction, et en compression, avec la prise en compte es variations irréversibles es caractéristiques thermiques et mécaniques u béton, particulièrement sensibles à haute température. La escription e la fissuration est traitée ans le care e la plasticité, à l'aie 'une équivalence énergétique, en ientifiant la ensité 'énergie e fissuration en moe I, avec le travail plastique 'un milieu homogène équivalent, où la éformation plastique est uniformément répartie, ans une zone "élémentaire". Cette approche préserve la continuité e la formulation u moèle, sur l'ensemble e son comportement, et contribue à éviter les ifficultés numériques possibles lors u changement 'état u matériau. La sensibilité pathologique e la solution numérique à la iscrétisation spatiale (maillage), engenrée par l'introuction 'un comportement aoucissant u béton en traction et en compression, est partiellement résolue en introuisant une énergie e fissuration ou e rupture, épenant 'une longueur caractéristique l c, liée à la taille es éléments. Le cas test compren eux moélisations D, le chargement consiste en une charge suivie une écharge.

2 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 2/14 1 Problème e référence 1.1 Géométrie Il s'agit 'un cube à 8 nœus, ont eux faces ont un éplacement normal nul, et les eux faces opposées ont un éplacement normal imposé, ifférent l'un e l'autre 'un coefficient 2. Le cube fait 1 mm e côté. Les cas tests sont composés 'une charge, suivie 'une écharge. Dans la moélisation A, le cube est orienté suivant le repère Oxz. Dans la moélisation B, il est tourné e 0 par autour e l'axe O. Face1x Moélisation A Face1z Facez U x = 0 z U z = 0 Moélisation B N 1 N 2 x Facex Face1z Face1x Facez U n = 0 z U n = 0 N 2 Facex N 1 x =2.

3 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : / Propriétés e matériaux Pour tester l'évolution es caractéristiques mécaniques e façon irréversible avec la température, on applique un champ e température écroissant. Certaines variables épenent e la température, 'autres u séchage. Enfin, on applique un coefficient e retrait e essiccation non nul, égal au coefficient e ilatation thermique, pour tester le fonctionnement "informatique". Les éformations thermiques seront ainsi égales et opposées aux éformations e retrait e essiccation. Ces épenances n'interviennent que pour es vérifications purement informatique, les caractéristiques mécaniques peuvent être consiérées comme constantes. Pour les caractéristiques mécaniques linéaires usuelles : Moule 'Young : E=2000 MPa e 0 C à 20 C E= MPa à 400 C (écroissance linéaire) E=5 000 MPa à 800 C (écroissance linéaire) Coefficient e Poisson : =0.18 Coefficient e ilatation thermique : =10 5 Coefficient e retrait e essiccation : =10 5 Pour les caractéristiques mécaniques non linéaires u moèle BETON_DOUBLE_DP : Résistance en compression uniaxiale : f ' c=40 N /mm 2 e 0 C à 400 C f'c = 15 N/mm^2 à 800 C (écroissance linéaire) Résistance en traction uniaxiale : f ' t=4 N /mm 2 e 0 C à 400 C f ' t=1.5 N /mm 2 à 800 C (écroissance Rapport es résistances en compression =1.16 biaxiale/compression uniaxiale : Énergie e rupture en compression : Gc=10 Nmm /mm 2 Énergie e rupture en traction : Gt=0.1Nmm/ mm 2 Rapport e la limite 'élasticité à la résistance en compression uniaxiale : 0% linéaire) 1. Conitions aux limites et chargements mécaniques Champ e température écroissant e 20 C à 0 C. Face inférieure u cube ( facex ) : bloquée suivant oz. Face supérieure u cube ( face1x ) : éplacement 0.0 mm imposé suivi 'une écharge e 0.1mm Face gauche u cube ( facez ) : bloquée suivant ox. Face roite u cube ( face1z ) : éplacement 0.15 mm imposé suivi 'une écharge e 0.05 mm Nœus inférieurs face avant ( N 1, N 2 ) : bloqué suivant o (Suppression es mouvements e corps solie).

4 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 4/14 2 Solution e référence 2.1 Méthoe e calcul utilisée pour la solution e référence La solution e référence est calculée e façon semi-analtique, sachant qu'en traction, seul le critère e traction est activé. Il faut onc résoure un sstème 'une équation à une inconnue, qui permet 'obtenir par ichotomie par exemple, la éformation plastique cumulée en traction. Celle-ci permet e calculer ensuite éformations et contraintes. Ceci est possible, connaissant le éplacement, et onc la éformation ans les eux irections imposées. Le éplacement ans la troisième irection est alors une inconnue u problème. La solution e référence est calculée uniquement en traction. La solution est éterminée par un programme e résolution par ichotomie en fortran inépenant. En compression, en écharge, la solution exacte n'a pas été recalculée, et constitue une solution e non régression u coe, liée à la version Pour la moélisation B, les résultats se éuisent par rotation u tenseur e contrainte e la moélisation A, u repère intrinsèque u cube au repère utilisateur, le champ e contrainte es eux configurations étant ientique ans le repère intrinsèque u cube. 2.2 Calcul e la solution e référence e référence Pour plus e étails sur les notations et la mise en équation, on se reportera au ocument e référence. Seules, les principales équations sont rappelées ici. On note a, le éplacement imposé suivant la irection x, et 2.a le éplacement imposé suivant la irection z. Le tenseur e éformation est e la forme a,,2.a,0.,0., 0. en prenant les notations usuelles e Coe_Aster (trois composantes principales, trois composantes e cisaillement). Le tenseur e contrainte est e la forme x,0., z,0.,0.,0., ans la moélisation A. Le critère e traction s'exprime sous la forme : f trac τ = oct + c. σoct 2 c f t t = + eq ( λ ) σ σ f ( λ ) t t Les équations constitutives sont écrites en istinguant la partie isotrope e la partie éviatorique es tenseurs e contraintes et e éformations. σ = 1 tr( σ ) = s + σ I 1 s = σ tr( σ ) I ε = 1 tr( ε ) ~ε = ε 1 ( ε ) tr I σ ε = ~ ε + ε I = La contrainte équivalente s'écrit alors : eq tr s 2 Dans le cas 'une formulation incrémentale, et 'une loi e comportement variable, en notant avec un exposant e les composantes élastiques e la contrainte et e la éformation, on obtient : + s e µ + = s + 2µ ~ + ε et e K + σ = σ + K ε µ K

5 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 5/14 Les critères en compression et en traction s'expriment e la manière suivante : τoct + a. σ oct 2 eq a f comp = f c ( λc ) = σ + σ f c ( λc ) b b b τoct + c. σoct 2 eq c f trac = f t ( λt ) = σ + σ f t ( λt ) Les éformations plastiques en traction et en compression s'expriment : ~ε ~ε p c p t λc s p a = 2 eq ε c = λc b σ b λt s p c = 2 eq ε t = λt σ On obtient pour la contrainte : + p ( ~ ~ e + p p t ) σ = σ K ( ε c + ε t ) s = s e 2µ ε p c + ε c t + λ λ 1 e e + a c s = 1 2µ + s b e eq σ = σ K λc + λt 2 2 σ b eq e λ λ pour la contrainte équivalente : σ σ eq + c t = 2µ + 2b 2 Les eux critères conuisent alors à un sstème e eux équations à eux inconnues λ c et λ t à résoure : 2 2 e eq a e 2µ K a 2µ K ac σ + σ λc + λ f ( ) t + c λc + λc = b b b b b b 2 2 e eq c e 2µ K ac 2µ K c σ + σ λc + λt + f ( ) t λt + λt = b b De façon analogue, ans le cas u seul critère e traction activé, configuration u cas test, on obtient un sstème 'une équation à une inconnue λ t à résoure : 2 2 e eq + + c e 2µ K c σ + σ λ f 2 2 t + t t + t ( λ λ ) = 0

6 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 6/14 On cherche onc à résoure ce sstème, en utilisant la forme particulière es tenseurs e contraintes et e éformations, uniformes sur la structure. En partant e ε = ( a, ε,2. a,0.,0.,0. ) et e σ = ( σx,0., σz,0.,0.,0. ). on obtient : ( λ + 2µ ) + ε λ + 2 a.. λ + ε ( λ + 2µ ) + 2a.. λ + ε λ + 2a. ( λ + 2µ ) σ x = a λ Le tenseur e contrainte élastique σ = a λ σ z = a 2 sx =. µ. ε 4 Le éviateur e contrainte élastique s = 2. µ. a +. µ. ε 2 sz = 2. µ. a. µ. ε e 1 La contrainte hrostatique élastique σ = ( λ + 2µ ) a + ε. e 2 2 eq La contrainte équivalente élastique σ = µ 4ε 12. a. ε a Dans le cas 'une courbe 'écrouissage post-pic linéaire en traction, l'expression u paramètre 'écrouissage est le suivant : p ε f ( p t 2. G f ( θ ) t θ, εt ) = τ ( θ, κ ) = f t ( θ ) 1 avec κ ( θ ) κ u ( θ ) u = lc. f t ( θ ) On cherche onc à résoure l'équation : 2 e eq + + c e 2µ K c σ + σ λ lc. f t f 1 λ = 0 2. G t t t t éq Sachant que la contrainte ans la irection est nulle, on obtient une secone équation : σ = s + σ = 0 = 1 2µ D'où : λt = + λ t σ 1 s + σ e eq e e λt e λt σ = = µ µε µ σ e σ eq a K c e µε 2. µ. a + σ que l'on peut substituer ans l'expression u critère 2µ 4 µε µ e σ eq 2.. a + K c. [éq 2.2-1]. Connaissant a, le éplacement imposé, on obtient une équation non linéaire à une inconnue, que l'on peut résoure simplement par ichotomie, et qui permet e calculer la éformation, puis l'ensemble es inconnues u sstème.

7 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 7/14 2. Incertitue sur la solution Elle est négligeable, e l'orre e la précision machine. 2.4 Références bibliographiques Le moèle a été éfini à partir es théses suivantes : 1) J. F. GEORGIN, lors e sa thèse "Contribution à la moélisation numérique u comportement u béton et es structures en béton armé sous sollicitations thermo-mécaniques à haute température", 2) G. EINFLING, lors e sa thèse "Contribution à la moélisation u béton sous sollicitation e namique rapie. La prise en compte e l'effet e vitesse par la viscoplasticité", et est écrit ans le rapport e spécification : ) SCSA/128IQ1/RAP/ , Développement 'un moèle e comportement D béton avec ouble critère e plasticité ans le Coe_Aster - Spécifications ".

8 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 8/14 Moélisation A.1 Caractéristiques e la moélisation D (EXA8) 1 élément, champ e contrainte et éformation uniforme. z U x = 0 U z = 0.2 Caractéristiques u maillage Nombre e nœus : 8 Nombre e mailles et tpe : 1 EXA8 x

9 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 9/14 4 Résultats e la moélisation A 4.1 Valeurs testées Ont été testées les composantes non nulles u champ e contraintes SIEF_ELNO (composante xx et zz ), la composante u champ e éformation EPSI_ELNO, qui constitue une inconnue u sstème (les éformations ans les eux autres irections étant imposées), la éformation plastique cumulée en traction (euxième variable interne, euxième composante u champ VARI_ELNO ), et enfin, uniquement pour le quatrième cas e chargement (écharge), la éformation plastique cumulée en compression, (première variable interne, première composante u champ VARI_ELNO ). Les trois premiers chargements corresponent à la charge, et possèent es résultats e référence. Le quatrième chargement correspon à la écharge, et constitue un résultat e non régression u coe. Champ SIEF_ELNO composante SIXX =0.2 et =0. et é (*) Champ SIEF_ELNO composante SIZZ =0.2 et =0. et é (*)

10 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 10/14 Champ EPSI_ELNO composante EPYY =0.2 et =0. et é (*) Champ VARI_ELNO composante VARI_2 (éformation plastique cumulée en traction) Pour un éplacement imposé Pour un éplacement imposé =0.2 et Pour un éplacement imposé =0. et Pour un éplacement imposé Champ VARI_ELNO composante VARI_1 (éformation plastique cumulée en compression) é (*)

11 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 11/14 5 Moélisation B 5.1 Caractéristiques e la moélisation D (EXA8) 1 élément, champ e contrainte et éformation uniforme. U n = 0 z U n = 0 x 5.2 Caractéristiques u maillage Nombre e nœus : 8 Nombre e mailles et tpe : 1 EXA8

12 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 12/14 6 Résultats e la moélisation B Ont été testées les composantes non nulles u champ e contraintes SIEF_ELNO (composante xx, zz et xz ), la éformation plastique cumulée en traction (euxième variable interne, euxième composante u champ VARI_ELNO ), et enfin, uniquement pour le quatrième cas e chargement (écharge), la éformation plastique cumulée en compression, (première variable interne, première composante u champ VARI_ELNO ). Les trois premiers chargements corresponent à la charge, et possèent es résultats e référence. Le quatrième chargement correspon à la écharge, et constitue un résultat e non régression u coe. 6.1 Valeurs testées Champ SIEF_ELNO composante SIXX =0.2 et =0. et é (*) Champ SIEF_ELNO composante SIZZ =0.2 et Pour un éplacement imposé en =0. et é (*)

13 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 1/14 Champ SIEF_ELNO composante SIXZ =0.2 et =0. et é (*) (*) en écharge, on effectue un test e non régression. Il n' a pas e solution analtique. Champ VARI_ELNO composante VARI_2 (éformation plastique cumulée en traction) =0.2 et =0. et é Champ VARI_ELNO composante VARI_1 (éformation plastique cumulée en compression) Pour un éplacement imposé en é (*)

14 Titre : SSNV14 - Traction biaxiale avec la loi e comport[...] Date : 17/02/2011 Page : 14/14 7 Snthèse es résultats Ce cas test offre es résultats satisfaisants par rapport aux résultats e référence, inférieurs à 0.06% pour les eux premiers cas e chargement, plus important pour le troisième, ce qui s'explique par un niveau e contrainte relativement faible (on atteint la fin e la courbe 'écrouissage en traction). Le test en écharge (quatrième chargement) permet e vérifier la non régression u coe. Le nombre 'itérations est relativement important au premier pas e calcul, e l'orre e 1, puis baisse à 7, 4 et 1, ce qui s'explique par le passage u seuil plastique au premier pas e calcul, pour atteinre un comportement quasi linéaire par la suite (courbes post-pic linéaires). On obtient aussi un nombre plus important 'itérations au pas 1 (ébut u quatrième cas e chargement), puis un nombre 'itérations baissant jusqu'à 1, u fait u passage en écharge, avec un changement e comportement, suivi 'un comportement quasi linéaire par la suite (courbes post-pic linéaires).

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel

Simulation Matlab/Simulink d une machine à induction triphasée. Constitution d un référentiel Simulation Matlab/Simulink une machine à inuction triphasée Constitution un référentiel Capocchi Laurent Laboratoire UMR CNRS 6134 Université e Corse 3 Octobre 7 1 Table es matières 1 Introuction 3 Moélisation

Plus en détail

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité :

SSNL126 - Flambement élastoplastique d'une poutre droite. Deux modélisations permettent de tester le critère de flambement en élastoplasticité : Titre : SSNL16 - Flambement élastoplastique d'une poutre [...] Date : 15/1/011 Page : 1/6 Responsable : Nicolas GREFFET Clé : V6.0.16 Révision : 8101 SSNL16 - Flambement élastoplastique d'une poutre droite

Plus en détail

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ

Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE. par S. CANTOURNET 1 ELASTICITÉ Chapitre XIV BASES PHYSIQUES QUANTITATIVES DES LOIS DE COMPORTEMENT MÉCANIQUE par S. CANTOURNET 1 ELASTICITÉ Les propriétés mécaniques des métaux et alliages sont d un grand intérêt puisqu elles conditionnent

Plus en détail

P M L R O G W. sylomer. Gamme de Sylomer Standard. Propriétés Méthode de test Commentaires. Polyuréthane (PUR) Cellulaire mixte

P M L R O G W. sylomer. Gamme de Sylomer Standard. Propriétés Méthode de test Commentaires. Polyuréthane (PUR) Cellulaire mixte Matière : Couleur : Polyuréthane (PUR) Cellulaire mixte Gris Recommandations d usage : Pression (dépend du facteur de forme) Déflexion Pression statique maximum :. N/mm ~ % Pression dyn. maximum :. N/mm

Plus en détail

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation 4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

Exercice 2 : Comment déterminer le relief du fond marin avec un sondeur? (5,5 pts) Les trois parties de l exercice sont indépendantes

Exercice 2 : Comment déterminer le relief du fond marin avec un sondeur? (5,5 pts) Les trois parties de l exercice sont indépendantes Exercice 2 : Comment éterminer le relief u fon marin avec un soneur? (5,5 pts) Amérique u nor 2007 http://labolycee.org Les trois parties e l exercice sont inépenantes 1. Étue e l one ultrasonore ans l

Plus en détail

Guilhem MOLLON. Polytech Grenoble Département Géotechnique, Troisième année Edition 1, 2012-2013 V1.10

Guilhem MOLLON. Polytech Grenoble Département Géotechnique, Troisième année Edition 1, 2012-2013 V1.10 INTRODUCTION A LA MECANIQUE DES MILIEUX CONTINUS PARTIE 2 Guilhem MOLLON Polytech Grenoble Département Géotechnique, Troisième année Edition 1, 212-213 V1.1 Table des matières Table des matières 2 Avertissement

Plus en détail

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS

INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS INTRODUCTION À LA THÉORIE DE STABILITÉ DES SYSTÈMES CONSERVATIFS David Ryckelynck Centre des Matériaux, Mines ParisTech David.Ryckelynck@mines-paristech.fr Bibliographie : Stabilité et mécanique non linéaire,

Plus en détail

SDLV120 - Absorption d'une onde de compression dans un barreau élastique

SDLV120 - Absorption d'une onde de compression dans un barreau élastique Titre : SDLV120 - Absorption d'une onde de compression dan[...] Date : 09/11/2011 Page : 1/9 SDLV120 - Absorption d'une onde de compression dans un barreau élastique Résumé On teste les éléments paraxiaux

Plus en détail

Rupture et plasticité

Rupture et plasticité Rupture et plasticité Département de Mécanique, Ecole Polytechnique, 2009 2010 Département de Mécanique, Ecole Polytechnique, 2009 2010 25 novembre 2009 1 / 44 Rupture et plasticité : plan du cours Comportements

Plus en détail

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles 1 Chapitre Chapitre 1. Fonctions e plusieurs variables La TI-Nspire CAS permet e manipuler très simplement les onctions e plusieurs variables. Nous allons voir ans ce chapitre comment procéer, et éinir

Plus en détail

CHAPITRE. Les variables du mouvement CORRIGÉ DES EXERCICES

CHAPITRE. Les variables du mouvement CORRIGÉ DES EXERCICES CHAPITRE Les variables u mouvement CORRIGÉ DES EXERCICES 2 3 Exercices. Les variables liées à l espace et au temps. Une araignée grimpe le long une clôture. Elle parcourt abor 3 m vers le haut, puis 2

Plus en détail

INFLUENCE de la TEMPERATURE. Transition ductile/fragile Choc Thermique Fluage

INFLUENCE de la TEMPERATURE. Transition ductile/fragile Choc Thermique Fluage INFLUENCE de la TEMPERATURE Transition ductile/fragile Choc Thermique Fluage Transition ductile/fragile Henry Bessemer (UK)! 1856 : production d'acier à grande échelle Pont des Trois-Rivières 31 janvier

Plus en détail

Liste minimale des éléments habituellement demandés par le Groupe Spécialisé

Liste minimale des éléments habituellement demandés par le Groupe Spécialisé Document entériné par le Groupe Spécialisé n 3 le 15 janvier 2013 Liste minimale des éléments habituellement demandés par le Groupe Spécialisé Groupe Spécialisé n 3 «Structures, planchers et autres composants

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X INTRODUCTION La conception d'un mécanisme en vue de sa réalisation industrielle comporte plusieurs étapes. Avant d'aboutir à la maquette numérique du produit définitif, il est nécessaire d'effectuer une

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

et les Trois Marches d'assurance

et les Trois Marches d'assurance The Geneva Papers on Risk an Insurance, 20 (juillet 98), 36-40 Asymétrie 'Information et les Trois Marches 'Assurance par Jean-Jacques Laffont * La proposition stimulante e Monsieur Ic Professeur Borch

Plus en détail

TRANSFERT DE CHALEUR ETUDE D'UN ECHANGEUR A PLAQUES ET JOINTS

TRANSFERT DE CHALEUR ETUDE D'UN ECHANGEUR A PLAQUES ET JOINTS TRANSFERT DE CHALEUR ETUDE D'UN ECHANGEUR A PLAQUES ET JOINTS Manip n 9 Avril 2014 J. ALBET P. de CARO C. SAUDEJAUD 2 ème Année ATELIER INTER UNIVERSITAIRE DE GENIE DES PROCEDES Objectifs de la manipulation

Plus en détail

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE

TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE TUTORIAL 1 ETUDE D UN MODELE SIMPLIFIE DE PORTIQUE PLAN ARTICULE L'objectif de ce tutorial est de décrire les différentes étapes dans CASTOR Concept / FEM permettant d'effectuer l'analyse statique d'une

Plus en détail

Système d Information

Système d Information Système Information Système Information Rémy Courier Urbanisation es SI Système Information Urbanisme es SI 1 Rémy Courier Urbanisme es Systèmes Information Inytrouction De l Urbanisme à L Urbanisation

Plus en détail

MESURE DE LA TEMPERATURE

MESURE DE LA TEMPERATURE 145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les

Plus en détail

Analyse statique d une pièce

Analyse statique d une pièce Analyse statique d une pièce Contrainte de Von Mises sur une chape taillée dans la masse 1 Comportement d un dynamomètre On considère le dynamomètre de forme globalement circulaire, excepté les bossages

Plus en détail

TP2 ACTIVITE ITEC. Centre d intérêt : AUBE D UN MIRAGE 2000 COMPORTEMENT D UNE PIECE. Documents : Sujet Projet Dossier technique - Document réponse.

TP2 ACTIVITE ITEC. Centre d intérêt : AUBE D UN MIRAGE 2000 COMPORTEMENT D UNE PIECE. Documents : Sujet Projet Dossier technique - Document réponse. ACTIVITE ITEC TP2 Durée : 2H Centre d intérêt : COMPORTEMENT D UNE PIECE AUBE D UN MIRAGE 2000 BA133 COMPETENCES TERMINALES ATTENDUES NIVEAU D ACQUISITION 1 2 3 * * Rendre compte de son travail par écrit.

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

RÉSISTANCE DES MATÉRIAUX EN CONCEPTION MÉCANIQUE

RÉSISTANCE DES MATÉRIAUX EN CONCEPTION MÉCANIQUE ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, texte revu et augmenté en 007 RÉSISTANCE DES MATÉRIAUX EN CONCEPTION MÉCANIQUE Traction et compression simples Cisaillement simple

Plus en détail

SDNL112 - Endommagement d'origine vibratoire d'un cintre de générateur de vapeur

SDNL112 - Endommagement d'origine vibratoire d'un cintre de générateur de vapeur Titre : SDNL112 - Endommagement d'origine vibratoire d'un [...] Date : 30/07/2015 Page : 1/9 SDNL112 - Endommagement d'origine vibratoire d'un cintre de générateur de vapeur Résumé Ce cas de validation

Plus en détail

Colle époxydique multi usages, à 2 composants

Colle époxydique multi usages, à 2 composants Notice Produit Edition 20 01 2014 Numéro 9.11 Version n 2013-310 01 04 02 03 001 0 000144 Colle époxydique multi usages, à 2 composants Description est une colle structurale thixotrope à 2 composants,

Plus en détail

Exemple d application du EN 1993-1-2 : Poutre fléchie avec section tubulaire reconstituée

Exemple d application du EN 1993-1-2 : Poutre fléchie avec section tubulaire reconstituée Exemple d application du EN 1993-1-2 : Poutre fléchie avec section tubulaire reconstituée P. Schaumann, T. Trautmann University of Hannover Institute for Steel Construction, Hannover, Germany 1 OBJECTIF

Plus en détail

Calcul des charpentes d acier Tome I

Calcul des charpentes d acier Tome I Calcul des charpentes d acier Tome I 2 e édition, 2 e tirage revu, 2008 RÉVISIONS À l intention des lecteurs de la 2 e édition, 1 er tirage, 2005, les principales révisions apportées au 2 e tirage se trouvent

Plus en détail

Hydrodynamique des lits fluidisés en régime de bullage

Hydrodynamique des lits fluidisés en régime de bullage Hyroynamique es lits fluiisés en régime e ullage M. HEMATI Régime e ullage. La plupart es lits fluiisés inustriels fonctionnent en régime e ullage. Ce régime est oservé ès que la vitesse u gaz épasse la

Plus en détail

Oscillations libres des systèmes à deux degrés de liberté

Oscillations libres des systèmes à deux degrés de liberté Chapitre 4 Oscillations libres des systèmes à deux degrés de liberté 4.1 Introduction Les systèmes qui nécessitent deux coordonnées indépendantes pour spécifier leurs positions sont appelés systèmes à

Plus en détail

CONTROLE D UN SIMULATEUR A BASE MOBILE À 3 DDL

CONTROLE D UN SIMULATEUR A BASE MOBILE À 3 DDL Zie Amara 1/8 CONTROLE D UN SIMULATEUR A BASE MOBILE À 3 DDL Zie AMARA 1 Directeur(s) e thèse: Joël BORDENEUVE-GUIBIE* et Caroline BERARD Laboratoire 'accueil: * Laboratoire Avionique & Système Ecole Nationale

Plus en détail

CHAPITRE I Modélisation d un panneau solaire 2012

CHAPITRE I Modélisation d un panneau solaire 2012 1 I.Généralités sur les cellules photovoltaïques I.1.Introduction : Les énergies renouvelables sont des énergies à ressource illimitée. Les énergies renouvelables regroupent un certain nombre de filières

Plus en détail

ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE

ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE 562 ANNEXE J POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS SELON UN CHARGEMENT CYCLIQUE ET STATIQUE 563 TABLE DES MATIÈRES ANNEXE J... 562 POTEAUX TESTÉS SELON UN CHARGEMENT STATIQUE ET TESTÉS

Plus en détail

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique

Plus en détail

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES

RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES Sommaire 1 Méthodes de résolution... 3 1.1. Méthode de Substitution... 3 1.2. Méthode des combinaisons linéaires... 6 La rubrique d'aide qui suit s'attardera aux

Plus en détail

SSLS116 - Chargement membranaire d une plaque excentrée

SSLS116 - Chargement membranaire d une plaque excentrée Titre : SSLS116 - Excentrement de plaque. Chargement membr[...] Date : 11/03/2010 Page : 1/12 Manuel de Validation Fascicule V3.03 : Statique linéaire des plaques et coques Document : V3.03.116 SSLS116

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de

Plus en détail

Test : principe fondamental de la dynamique et aspect énergétique

Test : principe fondamental de la dynamique et aspect énergétique Durée : 45 minutes Objectifs Test : principe fondamental de la dynamique et aspect énergétique Projection de forces. Calcul de durée d'accélération / décélération ou d'accélération / décélération ou de

Plus en détail

Cours de Résistance des Matériaux (RDM)

Cours de Résistance des Matériaux (RDM) Solides déformables Cours de Résistance des Matériau (RDM) Structure du toit de la Fondation Louis Vuitton Paris, architecte F.Gehry Contenu 1 POSITIONNEMENT DE CE COURS... 2 2 INTRODUCTION... 3 2.1 DEFINITION

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

Modélisation d une section de poutre fissurée en flexion

Modélisation d une section de poutre fissurée en flexion Moéliation une ection e poutre fiurée en flexion Prie en compte e effort tranchant Chritophe Varé* Stéphane Anrieux** * EDF R&D, Département AMA 1, av. u Général e Gaulle, 92141 Clamart ceex chritophe.vare@ef.fr

Plus en détail

Vis à billes de précision à filets rectifiés

Vis à billes de précision à filets rectifiés sommaire Calculs : - Capacités de charges / Durée de vie - Vitesse et charges moyennes 26 - Rendement / Puissance motrice - Vitesse critique / Flambage 27 - Précharge / Rigidité 28 Exemples de calcul 29

Plus en détail

Théorie des graphes et optimisation dans les graphes

Théorie des graphes et optimisation dans les graphes Théorie es graphes et optimisation ans les graphes Christine Solnon Tale es matières 1 Motivations 2 Définitions Représentation es graphes 8.1 Représentation par matrice ajacence......................

Plus en détail

SOUS EPREUVE E51 MODELISATION ET COMPORTEMENT DES PRODUITS INDUSTRIELS

SOUS EPREUVE E51 MODELISATION ET COMPORTEMENT DES PRODUITS INDUSTRIELS BREVET DE TECHNICIEN SUPERIEUR CONCEPTION DE PRODUITS INDUSTRIELS SESSION 214 ETUDE DE PRODUITS INDUSTRIELS SOUS EPREUVE E51 MODELISATION ET COMPORTEMENT DES PRODUITS INDUSTRIELS Durée : 4 heures Aucun

Plus en détail

Cours 02 : Problème général de la programmation linéaire

Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =

Plus en détail

Adhésif structural pour le collage de renforts

Adhésif structural pour le collage de renforts Notice Produit Edition 18/07/2014 Numéro 3022 Version N 2014-253 N identification : 020206040010000001 Adhésif structural pour le collage de renforts Description est une colle structurale thixotrope à

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble.. 1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé

Plus en détail

Quantité de mouvement et moment cinétique

Quantité de mouvement et moment cinétique 6 Quantité de mouvement et moment cinétique v7 p = mv L = r p 1 Impulsion et quantité de mouvement Une force F agit sur un corps de masse m, pendant un temps Δt. La vitesse du corps varie de Δv = v f -

Plus en détail

Dérivées et intégrales non entières

Dérivées et intégrales non entières que "non entière". Dérivées et intégrales non entières. Notations. Outils Robert Janin La terminologie est plutôt "fractionnaire" On notera f (k) ou k x k f la érivée orre k e la fonction f et nous pourrons

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

Fiche technique relative aux clous pour la fixation d'isolants rigides et semi-rigides d'épaisseur 30 à 200 mm

Fiche technique relative aux clous pour la fixation d'isolants rigides et semi-rigides d'épaisseur 30 à 200 mm Systèmes de fixation Fiche technique relative aux clous pour la fixation d'isolants rigides et semi-rigides d'épaisseur 30 à 200 mm X-IE avec clou type X-PH Fiche technique acceptée par SOCOTEC sous le

Plus en détail

Modélisation d'un axe asservi d'un robot cueilleur de pommes

Modélisation d'un axe asservi d'un robot cueilleur de pommes Modélisation d'un axe asservi d'un robot cueilleur de pommes Problématique Le bras asservi Maxpid est issu d'un robot cueilleur de pommes. Il permet, après détection d'un fruit par un système optique,

Plus en détail

Recherche par similarité dans les bases de données multimédia : application à la recherche par le contenu d images

Recherche par similarité dans les bases de données multimédia : application à la recherche par le contenu d images UNIVERSITÉ MOHAMMED V AGDAL FACULTÉ DES SCIENCES Rabat N orre 460 THÈSE DE DOCTORAT Présentée par DAOUDI Imane Discipline : Sciences e l ingénieur Spécialité : Informatique & Télécommunications Titre :

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

Chapitre 5. Le ressort. F ext. F ressort

Chapitre 5. Le ressort. F ext. F ressort Chapitre 5 Le ressort Le ressort est un élément fondamental de plusieurs mécanismes. Il existe plusieurs types de ressorts (à boudin, à lame, spiral etc.) Que l on comprime ou étire un ressort, tel que

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL

IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL IMPLEMENTATION D UN SYSTEME D INFORMATION DECISIONNEL Proposé par BUMA Feinance Master en management e projets informatiques Consultant en système écisionnel I. COMPREHENSION DU CONTEXTE «L informatique

Plus en détail

Cours de résistance des matériaux

Cours de résistance des matériaux ENSM-SE RDM - CPMI 2011-2012 1 Cycle Préparatoire Médecin-Ingénieur 2011-2012 Cours de résistance des matériau Pierre Badel Ecole des Mines Saint Etienne Première notions de mécanique des solides déformables

Plus en détail

Observer TP Ondes CELERITE DES ONDES SONORES

Observer TP Ondes CELERITE DES ONDES SONORES OBJECTIFS CELERITE DES ONDES SONORES Mesurer la célérité des ondes sonores dans l'air, à température ambiante. Utilisation d un oscilloscope en mode numérique Exploitation de l acquisition par régressif.

Plus en détail

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE

ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE ÉTUDE DE L EFFICACITÉ DE GÉOGRILLES POUR PRÉVENIR L EFFONDREMENT LOCAL D UNE CHAUSSÉE ANALYSIS OF THE EFFICIENCY OF GEOGRIDS TO PREVENT A LOCAL COLLAPSE OF A ROAD Céline BOURDEAU et Daniel BILLAUX Itasca

Plus en détail

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE

DÉVERSEMENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYMÉTRIQUE SOUMISE À DES MOMENTS D EXTRÉMITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE Revue Construction étallique Référence DÉVERSEENT ÉLASTIQUE D UNE POUTRE À SECTION BI-SYÉTRIQUE SOUISE À DES OENTS D EXTRÉITÉ ET UNE CHARGE RÉPARTIE OU CONCENTRÉE par Y. GALÉA 1 1. INTRODUCTION Que ce

Plus en détail

Chapitre 4. La circulation océanique

Chapitre 4. La circulation océanique Chapitre 4 La circulation océanique Equations du mouvement Force et contraintes agissant sur l'océan Equilibre géostrophique Circulation et transport d'ekman Upwelling Les cellules de circulation subtropicales

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX

BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX Coefficient 8 Durée 4 heures Aucun document autorisé Calculatrice

Plus en détail

SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE L-70

SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE L-70 SOCIETE NATIONALE DES CHEMINS DE FER BELGES SPECIFICATION TECHNIQUE L-70 PIECES EN CAOUTCHOUC POUR ORGANES DE SUSPENSION, DE TRANSMISSION ET D ENTRAINEMENT EDITION: 2005 Version 12/07/2005 ST L70 -Version

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

Les composites thermoplastiques

Les composites thermoplastiques Les composites thermoplastiques Définition Par définition, un thermoplastique (anglais :thermoplast) est un matériau à base de polymère (composé de macromolécules) qui peut être mis en forme, à l état

Plus en détail

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q

1 Codes linéaires. G = [I k A]. Dans ce cas on constate que la matrice. H = [ t A I n k ] est une matrice de contrôle de C. Le syndrome de x F n q 1 Codes linéaires Un code de longueur n est une partie de F n q. Un code linéaire C de longueur n sur le corps ni F q est un sous-espace vectoriel de F n q. Par défaut, un code sera supposé linéaire. La

Plus en détail

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE

BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE BACCALAURÉAT GÉNÉRAL SÉRIE SCIENTIFIQUE ÉPREUVE DE SCIENCES DE L INGÉNIEUR ÉPREUVE DU VENDREDI 20 JUIN 2014 Session 2014 Durée de l épreuve : 4 heures Coefficient 4,5 pour les candidats ayant choisi un

Plus en détail

Exemples de dynamique sur base modale

Exemples de dynamique sur base modale Dynamique sur base modale 1 Exemples de dynamique sur base modale L. CHAMPANEY et Ph. TROMPETTE Objectifs : Dynamique sur base modale réduite, Comparaison avec solution de référence, Influence des modes

Plus en détail

SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite

SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite Titre : SDLS08 - Modes propres d'une plaque carrée calculé[...] Date : 03/08/2011 Page : 1/6 SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite Résumé : Ce cas test a pour objectif de

Plus en détail

De la composition de taux à l'espace vectoriel des taux

De la composition de taux à l'espace vectoriel des taux De la composition de taux à l'espace vectoriel des taux Marcel Délèze, Collège du Sud, 630 Bulle Dans la majorité des livres scolaires, les chapitres consacrés à l'utilisation des taux font intensément

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

I- Définitions des signaux.

I- Définitions des signaux. 101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais

Plus en détail

Présentation du générateur de code mfront

Présentation du générateur de code mfront 1/19 Présentation du générateur de code mfront Thomas Helfer, É. Castelier 26 novembre 2009 gérer les connaissances matériau : les propriétés matériau (module d Young, etc...); les lois de comportements

Plus en détail

Modélisation de l'amortissement en dynamique linéaire

Modélisation de l'amortissement en dynamique linéaire Titre : Modélisation de l'amortissement en dynamique linéa[...] Date : 4/11/11 Page : 1/13 Modélisation de l'amortissement en dynamique linéaire Résumé : Les analyses dynamiques linéaires des structures

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX

BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX Coefficient 8 Durée 4 heures Aucun document autorisé Calculatrice

Plus en détail

63. Protection des ouvrages d art

63. Protection des ouvrages d art 63. Protection des ouvrages d art 63.05 ADHERENCE D'UNE FEUILLE SUR SUPPORT (ESSAI SUR SITE). 63.06 ADHERENCE D'UNE RESINE AU SUPPORT (ESSAI EN LABORATOIRE). 63.07 ADHERENCE D'UNE RESINE AU SUPPORT (ESSAI

Plus en détail

Calculs Computional fluide dynamiques (CFD) des serres à membrane de Van der Heide

Calculs Computional fluide dynamiques (CFD) des serres à membrane de Van der Heide Calculs Computional fluide dynamiques (CFD) des serres à membrane de Van der Heide J.B. Campen Wageningen UR Glastuinbouw, Wageningen xxx 2007 Rapport xxx 2007 Wageningen, Wageningen UR Glastuinbouw Tous

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

CODAGE D UN NOMBRE SYSTEME DE NUMERATION

CODAGE D UN NOMBRE SYSTEME DE NUMERATION 1. Base d un système de numération 1.1 Système décimal. C est le système de base 10 que nous utilisons tous les jours. Il comprend dix symboles différents :... Exemple du nombre 2356 de ce système : nous

Plus en détail

Annexe A. Annexe A. Tableaux et données relatifs à la vérification par Eurocode 3 A.3

Annexe A. Annexe A. Tableaux et données relatifs à la vérification par Eurocode 3 A.3 Annexes Annexe A : Tableaux et données relatifs à la vérification par Eurocode 3... A.2 Annexe B : Format des fichiers générés et utilisés par CADBEL... A.11 Annexe C : Calcul de la résistance au flambement

Plus en détail

Calcul des pertes de pression et dimensionnement des conduits de ventilation

Calcul des pertes de pression et dimensionnement des conduits de ventilation Calcul des pertes de pression et dimensionnement des conduits de ventilation Applications résidentielles Christophe Delmotte, ir Laboratoire Qualité de l Air et Ventilation CSTC - Centre Scientifique et

Plus en détail

Chapitre 1: Facteurs d'échelle

Chapitre 1: Facteurs d'échelle Chapitre 1: Facteurs d'échelle Des considérations générales sur la taille des objets ou des êtres vivants et leur influence sur différents paramètres, permettent d'établir simplement quelques lois ou tendances,

Plus en détail

avec E qui ne dépend que de la fréquence de rotation.

avec E qui ne dépend que de la fréquence de rotation. Comment régler la vitesse d un moteur électrique?. Comment régler la vitesse d un moteur à courant continu? Capacités Connaissances Exemples d activités Connaître le modèle équivalent simplifié de l induit

Plus en détail

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015 BT V 2015 (envoyé par Frédéric COTTI - Professeur d Electrotechnique au Lycée Régional La Floride Marseille) Document 1 - Etiquette énergie Partie 1 : Voiture à faible consommation - Une étiquette pour

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques

Manuel de validation Fascicule v4.25 : Thermique transitoire des structures volumiques Titre : TTLV100 - Choc thermique dans un tuyau avec condit[...] Date : 02/03/2010 Page : 1/10 Manuel de Validation Fascicule V4.25 : Thermique transitoire des structures volumiques Document : V4.25.100

Plus en détail

Induction électromagnétique

Induction électromagnétique Induction électromagnétique Sommaire I) Théorie de l induction électromagnétique..2 A. Introduction 2 B. Notion de force électromotrice 3 C. Loi de Faraday..5 D. Quelques applications.7 Spire circulaire

Plus en détail

ÉQUATIONS MISE EN ÉQUATION ET RÉSOLUTION D UN PROBLÈME. 3 x + 5 = 11. x + 4 = 0-5 + 3 x = 4 Mais qui sont ces inconnues?

ÉQUATIONS MISE EN ÉQUATION ET RÉSOLUTION D UN PROBLÈME. 3 x + 5 = 11. x + 4 = 0-5 + 3 x = 4 Mais qui sont ces inconnues? ÉQUATIONS MISE EN ÉQUATION ET RÉSOLUTION D UN PROBLÈME Utilisation des équations du er degré à une inconnue x + 5 = - z = x + = 0-5 + x = Mais qui sont ces inconnues? Dossier n Juin 005 Tous droits réservés

Plus en détail

S.A. au capital de 352 275.- euros r.c.s. Versailles B 331 815 266 00035 code NAF 511T

S.A. au capital de 352 275.- euros r.c.s. Versailles B 331 815 266 00035 code NAF 511T 9 Rue de la Gare 78640 Villiers Saint Frédéric Tel : 01 34 89 68 68 Fax : 01 34 89 69 79 APPAREIL DE TEST DE DURETE, ADHERENCE RESISTANCE à LA TRACTION, FLEXION, ARRACHEMENT.. L appareil ROMULUS se compose

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

LES EXTENSIONS RÉGIONALES ET LOCALES DE L ENQUÊTE LOGEMENT 2006 ÉCHANTILLONNAGE ET REPONDÉRATION

LES EXTENSIONS RÉGIONALES ET LOCALES DE L ENQUÊTE LOGEMENT 2006 ÉCHANTILLONNAGE ET REPONDÉRATION LES EXTENSIONS RÉGIONALES ET LOCALES DE L ENQUÊTE LOGEMENT 2006 ÉCHANTILLONNAGE ET REPONDÉRATION J. Le Guennec INSEE, pôle ingéniérie statistique ménages Problématique L INSEE réalise tous les quatre ans

Plus en détail

APPAREIL ŒDOMÉTRIQUE INSTRUMENTÉ POUR L ÉTUDE DES SOLS NON SATURÉS

APPAREIL ŒDOMÉTRIQUE INSTRUMENTÉ POUR L ÉTUDE DES SOLS NON SATURÉS PPREIL ŒOMÉTRIQUE INSTRUMENTÉ POUR L ÉTUE ES SOLS NON STURÉS INSTRUMENTE OEOMETER PPRTUS TO STUY UNSTURTE SOILS Bernardo IEO, Juan arlos ULLO, Julián TRISTNHO 1 Universidad de Los ndes, Bogotá.. olombie

Plus en détail