Cours de morphologie mathématique
|
|
|
- Paule Delisle
- il y a 8 ans
- Total affichages :
Transcription
1 Cours de morphologie mathématique Master 2 IMA UPMC Antoine MANZANERA ENSTA/LEI 1 Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 1
2 Squelettes morphologiques Squelettes : introduction. Squelette morphologique euclidien. Squelette morphologique discret. Squelette et résidus. Squelettes connexes : Squelettes euclidiens multi-échelles (démo). Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 2
3 Squelettes : motivations L objectif de la squelettisation est de représenter un ensemble avec un minimum d information, sous une forme qui soit à la fois simple à extraire et commode à manipuler. Remarque : Pour les squelettes, on se limitera dans le cadre de ce cours au cas des ensembles bidimensionnels (images binaires 2D), bien que certaines notions s appliquent également aux dimensions supérieures. Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 3
4 Squelettes : propriétés recherchées (1) Préservation de la géométrie Le squelette doit rendre compte des propriétés géométriques de la forme : ramifications, parties allongées... Epaisseur nulle Le squelette doit être constitué de courbes sans épaisseur. Préservation de la topologie Le squelette doit conserver les relations de connexité : même nombre de composantes connexes, même nombre de trous par composante connexe. Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 4
5 Squelettes : propriétés recherchées (2) Invariance aux transformations affines Le squelette doit commuter avec la translation, la rotation et l homothétie Réversibilité Le squelette doit permettre de retrouver la forme originale Continuité Une petite modification de la forme originale doit induire une petite modification du squelette Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 5
6 Squelette morphologique Le squelette morphologique est fondée sur la notion d axe médian (Blum 67). Il utilise la notion de boule maximale : Une boule B est dite maximale dans si : B B' B' B Propriété : une boule maximale touche la frontière de en au moins deux points distincts Le squelette morphologique (euclidien) est la réunion des centres de boules (euclidiennes) maximales : S( ) 2 xr ; B( x, ) est maximaledans 0 B Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 6
7 Propriétés du squelette morphologique (1) De par sa définition, le squelette morphologique euclidien respecte la géométrie de la forme originale, et il est invariant par homothétie. Il possède de plus les propriétés suivantes : Il est sans épaisseur (d intérieur vide). Il est anti-extensif et idempotent : S( ) S( S( )) S( ) Si est ouvert, alors et S() ont la même topologie. Contre-exemple : S() Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 7
8 Propriétés du squelette morphologique (2) Réversibilité : La donnée de la transformée en distance euclidienne de sur S() permet de reconstruire exactement : Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 8
9 Propriétés du squelette morphologique (3) Non-continuité : Le squelette morphologique euclidien n est pas une transformation continue : Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 9
10 Squelette morphologique : passage au discret Dans le cas discret, les boules maximales sont les boules d une distance discrète donnée Exemples : voisinage élémentaire de l origine boule de rayon 3 voisinage élémentaire de l origine boule de rayon 3 Distance d 4 Distance d 8 PROPRIÉTÉ Un point x est centre d une boule maximale de rayon r dans si et seulement si il appartient à l érodé de par une boule de taille r, mais pas à l ouvert de cet érodé par la boule élémentaire : S ( ) r xz B(0, r ) 2 ; B( x, r) est maximaledans ( ) \ B(0,1) B(0, r ) ( ) Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 10
11 Squelette morphologique : passage au discret Par conséquent, le squelette morphologique est égal à l union des résidus d ouverture des érodés successifs de la forme originale : S( ) rn rn S ( ) r B( 0, r )( ) \ B(0,1) B(0, r ) ( ) Lantuéjoul 78 Formule d inversion du squelette morphologique : S ( ) rn B(0, r ) r Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 11
12 Squelette morphologique : passage au discret La formule de Lantuéjoul fournit un moyen explicite de calculer le squelette morphologique : ( ) ( ) B3 ( ) B 1 B 2 ( ) ) B 1 ( ) ( ) B B ( 1 1 B B 1 2 B B 1 3 S0 ( ) S1 ( ) S 0( ) S0 ( ) S1 ( ) S ( ) 2 S ( ) S ( ) 0 S ( ) S ( ) Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 12
13 Squelette morphologique : passage au discret Comme l ensemble des résidus d ouverture coïncide avec l ensemble des maxima locaux de la transformée en distance, le squelette morphologique discret est égal aux maxima locaux de la transformée en distance : S( ) x ; y, ( x, y) 1 ( y, c ) ( x, c )! Contrairement au cas continu, le squelette morphologique ne préserve pas la topologie de la forme originale : Les algorithmes de squelettisation connexe traitent donc le problème de préservation de la topologie directement dans le cadre discret. Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 13
14 Squelette morphologique / Erodés ultimes REMARQUE : Noter les parallèles entre le squelette morphologique et les érodés ultimes : Squelette morphologique Erodés ultimes = Maxima locaux de la transformée en distance = = Résidus d ouverture Maxima régionaux de la transformée en distance = Résidus d ouverture par reconstruction Cours de Morphologie Marhématique Antoine MANZANERA ENSTA/LEI 14
15
16
17
18 !!!! ###!! #
Master IMA - UMPC Paris 6 RDMM - Année 2009-2010 Fiche de TP
Master IMA - UMPC Paris 6 RDMM - Année 2009-200 Fiche de TP Préliminaires. Récupérez l archive du logiciel de TP à partir du lien suivant : http://www.ensta.fr/~manzaner/cours/ima/tp2009.tar 2. Développez
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Traitement bas-niveau
Plan Introduction L approche contour (frontière) Introduction Objectifs Les traitements ont pour but d extraire l information utile et pertinente contenue dans l image en regard de l application considérée.
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection
ProxiLens : Exploration interactive de données multidimensionnelles à partir de leur projection Nicolas HEULOT (CEA LIST) Michaël AUPETIT (CEA LIST) Jean-Daniel FEKETE (INRIA Saclay) Journées Big Data
Présentation du Master Ingénierie Informatique et du Master Science Informatique 2007-2008, Année 2 Université Paris-Est Marne-la-Vallée
Présentation du Master Ingénierie Informatique et du Master Science Informatique 2007-2008, Année 2 Université Paris-Est Marne-la-Vallée Responsable du Master Informatique : Marc Zipstein Responsable de
Géométrie discrète Chapitre V
Géométrie discrète Chapitre V Introduction au traitement d'images Géométrie euclidienne : espace continu Géométrie discrète (GD) : espace discrétisé notamment en grille de pixels GD définition des objets
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
MABioVis. Bio-informatique et la
MABioVis Modèles et Algorithmes pour la Bio-informatique et la Visualisation Visite ENS Cachan 5 janvier 2011 MABioVis G GUY MELANÇON (PR UFR Maths Info / EPI GRAVITE) (là, maintenant) - MABioVis DAVID
L apprentissage automatique
L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Calculer avec Sage. Revision : 417 du 1 er juillet 2010
Calculer avec Sage Alexandre Casamayou Guillaume Connan Thierry Dumont Laurent Fousse François Maltey Matthias Meulien Marc Mezzarobba Clément Pernet Nicolas Thiéry Paul Zimmermann Revision : 417 du 1
Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)
(d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
CARTE DE VOEUX À L ASSOCIAEDRE
CARTE DE VOEUX À L ASSOCIAEDRE JEAN-LOUIS LODAY Il y a cinq ans le Centre International de Rencontres Mathématiques de Luminy a envoyé ses voeux avec la carte ci-dessus. L illustration choisie par Robert
R-ICP : une nouvelle approche d appariement 3D orientée régions pour la reconnaissance faciale
R-ICP : une nouvelle approche d appariement 3D orientée régions pour la reconnaissance faciale Boulbaba BEN AMOR, Karima OUJI, Mohsen ARDABILIAN, et Liming CHEN Laboratoire d InfoRmatique en Images et
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Cours d Analyse 3 Fonctions de plusieurs variables
Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet [email protected]
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard
Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard Pylote (http://pascal.peter.free.fr/?17/pylote) Logiciels d aide en mathématique
Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France
Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes
Projet de Traitement du Signal Segmentation d images SAR
Projet de Traitement du Signal Segmentation d images SAR Introduction En analyse d images, la segmentation est une étape essentielle, préliminaire à des traitements de haut niveau tels que la classification,
Licence Sciences et Technologies Examen janvier 2010
Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.
Programme scientifique Majeure INTELLIGENCE NUMERIQUE. Mentions Image et Réalité Virtuelle Intelligence Artificielle et Robotique
É C O L E D I N G É N I E U R D E S T E C H N O L O G I E S D E L I N F O R M A T I O N E T D E L A C O M M U N I C A T I O N Programme scientifique Majeure INTELLIGENCE NUMERIQUE Langage Java Mentions
Accélérer l agilité de votre site de e-commerce. Cas client
Accélérer l agilité de votre site de e-commerce Cas client L agilité «outillée» devient nécessaire au delà d un certain facteur de complexité (clients x produits) Elevé Nombre de produits vendus Faible
Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications
L intelligence économique outil stratégique pour l entreprise Professeur Bernard DOUSSET [email protected] http://atlas.irit.fr Institut de Recherche en Informatique de Toulouse (IRIT) Equipe Systèmes d
Note de service À : De :
Note de service À : De : Tous les Fellows, affiliés, associés et correspondants de l Institut canadien des actuaires et autres parties intéressées Jim Christie, président Conseil des normes actuarielles
Rétablissement d un réseau cellulaire après un désastre
Rétablissement d un réseau cellulaire après un désastre Anaïs Vergne avec Laurent Decreusefond, Ian Flint, et Philippe Martins Journées MAS 2014 29 août 2014 Rétablissement d un réseau cellulaire après
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
LA BATTERIE DU PORTABLE
LA BATTERIE DU PORTABLE Table des matières Fiche professeur... 2 Fiche élève... 4 Narration de séance et productions d élèves... 5 1 Fiche professeur LA BATTERIE DU PORTABLE Niveaux et objectifs pédagogiques
Master of Science en mathématiques 2013-2014
Remarques liminaires : 1 Ce master à (3 semestres) permet 2 orientations distinctes : 1) Un master général en mathématiques 2) Un master qui permet de choisir des mineurs en finance, statistique, informatique
Transmission d informations sur le réseau électrique
Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en
TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent
TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires
Maîtrise universitaire ès sciences en mathématiques 2012-2013
1 / 6 Remarques liminaires : Ce master à (3 semestres) permet 2 orientations distinctes : - Un master général : "Mathématiques, Systèmes dynamiques et phénomènes d'évolution" - Un master qui permet de
L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :
La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.
Utilisation du logiciel ImageJ gratuit
Utilisation du logiciel ImageJ gratuit on peut récupérer sur le lien suivant : http://rsbweb.nih.gov/ij/ à partir duquel ce résumé très bref (!!) a été élaboré Lancer ImageJ Vous avez une fenêtre qui s'ouvre
Extraction et reconstruction de bâtiments en 3D à partir de relevés lidar aéroportés
Thèse présentée pour obtenir le grade de Docteur de l Université Louis Pasteur Strasbourg I Discipline : Sciences pour l Ingénieur Spécialité : Topographie-Géomatique Par : Fayez TARSHA KURDI Extraction
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
Mises en relief. Information supplémentaire relative au sujet traité. Souligne un point important à ne pas négliger.
Cet ouvrage est fondé sur les notes d un cours dispensé pendant quelques années à l Institut universitaire de technologie de Grenoble 2, au sein du Département statistique et informatique décisionnelle
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Mickaël Bergem 25 juin 2014 Maillages et applications 1 Table des matières Introduction 3 1 La modélisation numérique de milieux urbains
L informatique en BCPST
L informatique en BCPST Présentation générale Sylvain Pelletier Septembre 2014 Sylvain Pelletier L informatique en BCPST Septembre 2014 1 / 20 Informatique, algorithmique, programmation Utiliser la rapidité
UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd
UE 503 L3 MIAGE Initiation Réseau et Programmation Web La couche physique A. Belaïd [email protected] http://www.loria.fr/~abelaid/ Année Universitaire 2011/2012 2 Le Modèle OSI La couche physique ou le
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Object Removal by Exemplar-Based Inpainting
Object Removal by Exemplar-Based Inpainting Kévin Polisano A partir d un article de A. Criminisi, P. Pérez & H. K. Toyama 14/02/2013 Kévin Polisano Object Removal by Exemplar-Based Inpainting 14/02/2013
FICHE UE Licence/Master Sciences, Technologies, Santé Mention Informatique
NOM DE L'UE : Algorithmique et programmation C++ LICENCE INFORMATIQUE Non Alt Alt S1 S2 S3 S4 S5 S6 Parcours : IL (Ingénierie Logicielle) SRI (Systèmes et Réseaux Informatiques) MASTER INFORMATIQUE Non
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Sites web éducatifs et ressources en mathématiques
Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition
Synthèse «Le Plus Grand Produit»
Introduction et Objectifs Synthèse «Le Plus Grand Produit» Le document suivant est extrait d un ensemble de ressources plus vastes construites par un groupe de recherche INRP-IREM-IUFM-LEPS. La problématique
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas
Cours 1 : La compilation
/38 Interprétation des programmes Cours 1 : La compilation Yann Régis-Gianas [email protected] PPS - Université Denis Diderot Paris 7 2/38 Qu est-ce que la compilation? Vous avez tous déjà
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
F1C1/ Analyse. El Hadji Malick DIA
F1C1/ Analyse Présenté par : El Hadji Malick DIA [email protected] Description sommaire du cours Porte sur l analyse réelle propose des outils de travail sur des éléments de topologie élémentaire
Système binaire. Algèbre booléenne
Algèbre booléenne Système binaire Système digital qui emploie des signaux à deux valeurs uniques En général, les digits employés sont 0 et 1, qu'on appelle bits (binary digits) Avantages: on peut utiliser
Parallélisme et Répartition
Parallélisme et Répartition Master Info Françoise Baude Université de Nice Sophia-Antipolis UFR Sciences Département Informatique [email protected] web du cours : deptinfo.unice.fr/~baude Septembre 2009 Chapitre
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique
Franck VAUTIER, Jean-Pierre TOUMAZET, Erwan ROUSSEL, Marlène FAURE, Mohamed ABADI, Marta FLOREZ, Bertrand DOUSTEYSSIER
Utilisation d images dérivées d un jeu de données LIDAR pour la détection automatisée de vestiges archéologiques (programme de recherche méthodologique LiDARCHEO) Franck VAUTIER, Jean-Pierre TOUMAZET,
Sujet 1 : Diagnostique du Syndrome de l apnée du sommeil par des techniques d analyse discriminante.
Sujet 1 : Diagnostique du Syndrome de l apnée du sommeil par des techniques d analyse discriminante. Objectifs et formulation du sujet Le syndrome de l apnée du sommeil (SAS) est un problème de santé publique
Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo
Projet Matlab/Octave : segmentation d'un ballon de couleur dans une image couleur et insertion d'un logo Dans ce projet, nous allons réaliser le code qui permet d'insérer sur une image, un logo sur un
Figure 1 : représentation des différents écarts
ulletin officiel spécial n 9 du 30 septembre 2010 Annexe SIENES DE L INGÉNIEUR YLE TERMINAL DE LA SÉRIE SIENTIFIQUE I - Objectifs généraux Notre société devra relever de nombreux défis dans les prochaines
Plan du cours : électricité 1
Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)
Introduction. Mathématiques Quantiques Discrètes
Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
MASTER 2 IMAFA. Informatique et Mathématiques Appliquées à la Finance et à l'assurance
OBJECTIFS Ce Master prend le relais du DESS IMAFA créé en 1997 à l'essi. Il se fixe pour objectif de former des informaticiens de haut niveau maîtrisant parfaitement les concepts et outils mathématiques
Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique
Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
Journées Télécom-UPS «Le numérique pour tous» David A. Madore. [email protected]. 29 mai 2015
et et Journées Télécom-UPS «Le numérique pour tous» David A. Madore Télécom ParisTech [email protected] 29 mai 2015 1/31 et 2/31 : définition Un réseau de R m est un sous-groupe (additif) discret L
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
CALENDRIER DES STAGES 2014/2015
CALENDRIER DES STAGES NIVEAU MASTER 1 : BAC +4 Stage obligatoire et/ou recommandé par la formation Dauphine propose aussi 40 formations en apprentissage voir la liste sur https://dauphinentreprises.dauphine.fr
Programmation par contraintes. Laurent Beaudou
Programmation par contraintes Laurent Beaudou On se trouve où? Un problème, une solution : la solution est-elle une solution du problème? simulation, vérification 2 On se trouve où? Un problème, une solution
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
UNIVERSITE DES ANTILLES et DE LA GUYANE Campus de Fouillole BP250-97157 Pointe-à-Pitre Cedex CONTRAT 2010-2013 LE MASTER NOM DU DOMAINE STS
UNIVERSITE DES ANTILLES et DE LA GUYANE Campus de Fouillole BP20-9717 Pointe-à-Pitre Cedex CONTRAT 2010-201 LE MASTER NOM DU DOMAINE STS Mention : Mathématiques Implantation : Guadeloupe FICHES DESCRIPTIVES
Analyse dialectométrique des parlers berbères de Kabylie
Saïd GUERRAB Analyse dialectométrique des parlers berbères de Kabylie Résumé de la thèse (pour affichage) Il est difficile de parler du berbère sans parler de la variation. Il y a d abord une variation
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
Représentation d un entier en base b
Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir
PROGRAMMES D INFORMATIQUE
RÉPUBLIQUE TUNISIENNE MINISTERE DE L EDUCATION ET DE LA FORMATION DIRECTION GENERALE DES PROGRAMMES ET DE LA FORMATION CONTINUE ----------------------- DIRECTION DES PROGRAMMES ET DES MANUELS SCOLAIRES
Des réels aux flottants : préservation automatique de preuves de stabilité de Lyapunov
Des réels aux flottants : préservation automatique de preuves de stabilité de Lyapunov Olivier Hermant et Vivien Maisonneuve CRI, MINES ParisTech, PSL Research University [email protected]
Conservation des documents numériques
Conservation des documents numériques Qu'est ce qu'un document numérique? Matthieu GIOUX [email protected] Contexte de la préservation des documents numériques Une croissance en expansion Développement
I- Définitions des signaux.
101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais
Représentation des Nombres
Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
L exclusion mutuelle distribuée
L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué
OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES
OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES ACADÉMIE DE RENNES SESSION 2006 CLASSE DE PREMIERE DURÉE : 4 heures Ce sujet s adresse à tous les élèves de première quelle que soit leur série. Il comporte cinq
Introduction au datamining
Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des
S3CP. Socle commun de connaissances et de compétences professionnelles
S3CP Socle commun de connaissances et de compétences professionnelles Référentiel Le présent socle décrit un ensemble de connaissances et compétences devant être apprécié dans un contexte professionnel.
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
L utilisation d un réseau de neurones pour optimiser la gestion d un firewall
L utilisation d un réseau de neurones pour optimiser la gestion d un firewall Réza Assadi et Karim Khattar École Polytechnique de Montréal Le 1 mai 2002 Résumé Les réseaux de neurones sont utilisés dans
Feuille TD n 1 Exercices d algorithmique éléments de correction
Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments
PROGRAMME DETAILLE. Parcours en première année en apprentissage. Travail personnel. 4 24 12 24 CC + ET réseaux
PROGRAMME DETAILLE du Master IRS Parcours en première année en apprentissage Unités d Enseignement (UE) 1 er semestre ECTS Charge de travail de l'étudiant Travail personnel Modalités de contrôle des connaissances
Débouchés professionnels
Master Domaine Droit, Economie, Gestion Mention : Monnaie, Banque, Finance, Assurance Spécialité : Risque, Assurance, Décision Année universitaire 2014/2015 DIRECTEUR de la spécialité : Monsieur Kouroche
Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques
Licence 2 Mathématiques- Semestre 3 Introduction aux mathématiques financières Année universitaire 2010-11 1 Version Septembre 2010 1 Responsable du cours: Marie-Amélie Morlais 2 0.1 Plan sommaire du cours
Examen Médian - 1 heure 30
NF01 - Automne 2014 Examen Médian - 1 heure 30 Polycopié papier autorisé, autres documents interdits Calculatrices, téléphones, traducteurs et ordinateurs interdits! Utilisez trois copies séparées, une
Information. BASES LITTERAIRES Etre capable de répondre à une question du type «la valeur trouvée respecte t-elle le cahier des charges?
Compétences générales Avoir des piles neuves, ou récentes dans sa machine à calculer. Etre capable de retrouver instantanément une info dans sa machine. Prendre une bouteille d eau. Prendre CNI + convocation.
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
