EXAMEN FINAL. 2 Février heures Aucun document autorisé

Dimension: px
Commencer à balayer dès la page:

Download "EXAMEN FINAL. 2 Février 2006-2 heures Aucun document autorisé"

Transcription

1 MIE - E ANNÉE ALGORITHMIQUE GÉNÉRALE Vincent Mousseau EXAMEN FINAL Février heures Aucun document autorisé Exercice : On s intéresse à la gestion informatique des réservations sur l année d une salle de conférences. La salle ne peut être réservée que par journées complètes. Ainsi, une réservation peut être assimilée à un intervalle de jours I = [u(i), v(i)], où u(i) est le jour d arrivée des participants et v(i) le dernier jour de la conférence. Au cours de l année, les clients potentiels envoient au gestionnaire de la salle des demandes de réservations sous la forme d un intervalle. Celui-ci doit vérifier qu aucune demande antérieure n intersecte cette demande. Dans ce cas, il peut accepter cette réservation. Il arrive, enfin, que des clients annulent une réservation. Il existe donc trois opérations de base à réaliser : Intersecte(I) est une fonction qui renvoie Vrai lorsqu il existe une réservation antérieure qui intersecte I. Ajouter(I) ajoute un intervalle disjoint à l ensemble des réservations. Supprimer(I) supprime une réservation. a) On suppose que les réservations acceptées sont gérées à l aide d une liste simplement chaînée. Donner les déclarations de ce type LISTINTERVAL. Indiquer la complexité des trois opérations de base, lorsque la liste est quelconque, puis lorsque la liste est triée selon les u(i) croissant. Justifier votre réponse. b) On suppose maintenant que les réservations sont stockées dans un arbre binaire de recherche et que la clé d un intervalle I est u(i). Les sommets comporteront donc, en plus des champs habituels fgauche, fdroit et pere, les champs u,v représentant les bornes de l intervalle associé au sommet. On notera ABRI le type correspondant. Donnez les déclarations de ce type. c) Représentez graphiquement l arbre binaire de recherche (de type ABRI) correspondant aux réservations successives (dans l ordre) [7,9], [,7], [00,0], [50,68], [0,0], [,] et [8,9]. d) Ecrire l algorithme Intersecte(I :intervalle, A :ABRI) et analyser sa complexité. Exercice : On considère un type LISTENT représentant des listes simplement chaînées d entiers. Dans tout l exercice, vous utiliserez, sans les re-écrire, les primitives sur les listes. Toutefois, pour chacune des primitives utilisées, vous en rappellerez la définition précise. a) Ecrire deux algorithmes, l un récursif, l autre itératif, permettant de calculer la somme des éléments de la liste. b) Ecrire l algorithme itératif permettant de supprimer toutes les occurrences de l entier n de la liste L. c) Ecrire l algorithme itératif permettant de supprimer la première occurrence de l entier n de la liste L. d) En supposant que les listes L et L ne peuvent pas comporter de doublons, écrire un algorithme récursif permettant de déterminer la liste L intersection des listes L et L. e) Analyser la complexité de l algorithme de la question d) en fonction de la complexité des primitives.

2 Exercice : Un graphe G = (X,Y ) est défini par un ensemble de noeuds X et un ensemble d arcs Y (un arc (x,y) est représenté dans le schéma ci-dessous par une flèche du noeud x au noeud y). S il existe un arc (x,y) dans le graphe G, on dit que y est successeur de x et que x est prédécesseur de y (dans l exemple, 5 est successeur de et est prédécesseur de 5). La figure ci-dessous représente le graphe pour lequel X = {,,,,5,6} et Y = {(,5),(,),(,), (, ),(,), (, 5),(5,6),(6, )}. 5 6 Il est classique de représenter un graphe en, stockant pour chacun de ses noeuds x X la liste de ses successeurs. Ainsi, pour l exemple précédent, on a : successeurs() = (,, 5), successeurs() = (,, 5), successeurs() = successeurs() = (), successeurs(5) = (6), successeurs(6) = (). Dans cette perspective on considère les déclarations suivantes : Max=00 lien= cellule cellule=enregistrement noeud :entier suiv :lien Graphe=Enregistrement taille :entier tab :Tableau[Max] de lien a) Représentez l état de la mémoire lorsque le graphe ci-dessus est stockée dans une variable G de type Graphe b) Ecrire l algorithme AJOUTARC(i,j,G) qui ajoute en O() un arc allant du noeud i au noeud j dans le graphe G. c) On peut stocker un graphe dans G une variable de type Graphe en considérant que les liste chaînées correspondent aux listes de prédécesseurs (au lieu de liste de successeurs). Représentez l état de la mémoire lorsque le graphe ci-dessus est stockée dans une variable G de type Graphe en considérant que les listes chaînées représentent la liste des prédécesseurs des noeuds. d) On cherche à définir la représentation d un graphe en terme de listes de prédécesseurs (cf. c)) à partir de sa représentation en terme de liste de successeurs. Ecrire un algorithme qui, en O(m) (m étant le nombre d arc du graphe), calcule la représentation d un graphe en terme de listes de prédécesseurs à partir de sa représentation en terme de liste de successeurs. On pourra utiliser l algorithme AJOUTARC.

3 Exercice : a) On suppose que les réservations acceptées sont gérées à l aide d une liste simplement chaînée. Donner les déclarations de ce type LISTINTERVAL. Indiquer la complexité des trois opérations de base, lorsque la liste est quelconque, puis lorsque la liste est triée selon les u(i) croissant. Justifier votre réponse. lien= cellule cellule=enregistrement u,v :entier suiv :lien LISTINTERVAL=lien Si la liste chaînée est quelconque et comporte n éléments, alors l ajout d un élément peut se faire en complexité constante O() (ajout en tête). Mais pour recherche un élément ou comparer les éléments avec un intervalle donné pour savoir s ils l intersectent, il faut parcourir entièrement la liste, d où une complexité en O(n). Lorsque la liste chaînée est triée selon les u(i) croissants, dans le pire des cas, le paramètre I d Intersecte ou de Ajoute a une borne inférieure u(i) qui est supérieure à celle des autres intervalles ce qui nécessite le parcours complet de la liste. Il en est de même lorsque l on supprime le dernier intervalle. Les trois opérations ont donc une complexité en O(n). b) On suppose maintenant que les réservations sont stockées dans un arbre binaire de recherche et que la clé d un intervalle I est u(i). Les sommets comporteront donc, en plus des champs habituels fgauche, fdroit et pere, les champs u,v représentant les bornes de l intervalle associé au sommet. On notera ABRI le type correspondant. Donnez les déclarations de ce type. lien= cellule cellule=enregistrement u,v :entier fgauche,fdroit,pere :lien ABRI= cellule c) Représentez graphiquement l arbre binaire de recherche correspondant aux réservations successives (dans l ordre) [7,9], [,7], [00,0], [50,68], [0,0], [,] et [8,9]. [7,9] [,7] [00,0] [,] [0,0] [50,68] [8,9]

4 d) Ecrire l algorithme Intersecte(I,A) et analyser sa complexité. Intersecte(I :intervalle, A :ABRI) booléen Si (A=Null) Alors Retourner(faux) Sinon si (u(i)<a.u) alors si (v(i)<a.u) alors Retourner (intersecte(i,a.g) sinon Retourner (vrai) sinon si (u(i)<a.v) alors Retourner (intersecte(i,a.d) sinon Retourner (vrai) Fin Si Exercice : On considère un type LISTENT représentant des listes simplement chaînées d entiers. Dans tout l exercice, vous pourrez utiliser, sans les re-écrire, les primitives sur les listes. Toutefois, pour chacune des primitives utilisées, vous en rappellerez la définition précise. a) Ecrire deux algorithmes, l un récursif, l autre itératif, permettant de calculer la somme des éléments de la liste. somme-iter(l :Liste) entier somme 0 p Premier(L) Tant que (p Fin(L)) faire somme somme+acceder(p,l) p Suivant(p) Fin Tant que retourner(somme) considérer comme juste les deux versions suivantes : somme-recu(l :Liste) entier Si (Premier(L) = Fin(L)) alors retourner(0) alors retourner(0) Sinon retourner(acceder(p,l)+somme-recu(l.suiv) somme-recu(l :Liste) entier Si (Premier(L) = Fin(L)) alors retourner(0) alors retourner(0) L Supprimer(premier(L),L) Sinon retourner(acceder(p,l)+somme-recu(l )

5 b) Ecrire l algorithme itératif permettant de supprimer toutes les occurrences n dans L. retire-tout-iter(c : caractère L :Liste) Liste p premier(l) Tant que (p Fin(L)) faire Si (Acceder(p,L)=c) alors Supprimer(p,L) sinon p Suivant(p,L) Fin Tant que retourner(l) c) Ecrire l algorithme itératif permettant de supprimer la première occurrence n dans L. inter(c : caractère L :Liste) Liste p premier(l) Tant que (p Null) et (Acceder(p,L) c) faire p Suivant(p,L) Fin Tant que Si (p Null) alors Supprimer(p,L) retourner(l) d) En supposant que les listes L et L ne peuvent comporter de doublons, écrire un algorithme récursif permettant de déterminer la liste L intersection des listes L et L. inter(l,l) Liste L Liste vide p Premier(L) Tant que (p Fin(L)) faire x Acceder(p,L) q Premier(L) Tant que (q Fin(L) et (Acceder(q,L) x) faire q Suivant(q,L) Fin tant que Si (q Fin(L)) alors Inserer(x,Fin(L),L) p Suivant(p,L) Fin Tant que retourner(l) e) Analyser la complexité de l algorithme de la question d) en fonction de la complexité des primitives. Supposons que chacune des primitives utilisées (Fin, Suivant, Premier, Inserer) sont en O() (c est le cas pour une mise en oeuvre par liste simplement chaînée). Le pire cas intervient lorsque L et L n ont aucun élément commun. Soit n et n la longueurs de L et L. Pour chaque élément de L, il faut le comparer à tous les éléments de L. On est donc en O(n n ). 5

6 Exercice : Un graphe G = (X,Y ) est défini par un ensemble de noeuds X et un ensemble d arcs Y (un arc (x,y) est représenté dans le schéma ci-dessous par une flèche du noeud x au noeud y). S il existe un arc (x,y) dans le graphe G, on dit que y est successeur de x et que x est prédécesseur de y (dans l exemple, 5 est successeur de et est prédécesseur de 5). La figure ci-dessous représente le graphe pour lequel X = {,,,,5,6} et Y = {(,5),(,),(,), (, ),(,), (, 5),(5,6),(6, )}. 5 6 a) Il est classique de représenter un graphe en, stockant pour chacun de ses noeuds x X la liste de ses successeurs. Ainsi, pour l exemple précédent, on a : successeurs() = (,, 5), successeurs() = (,, 5), successeurs() = () successeurs() = (), successeurs(5) = (6), successeurs(6) = (). Dans cette perspective on considère les déclarations suivantes : Max=00 lien= cellule cellule=enregistrement noeud :entier suiv :lien Graphe=Enregistrement taille :entier tab :Tableau[Max] de lien Représentez l état de la mémoire lorsque le graphe ci-dessus est stockée dans une variable G de type Graphe 6

7 b) Ecrire l algorithme AJOUTARC(i,j,G) qui ajoute en O() un arc allant du noeud i au noeud j dans le graphe G. Ajoutarc(i,j :entier, G :Graphe) Allouer(nv) nv.suiv G.tab[i] nv.noeud j G.tab[i] nv c) On peut stocker un graphe dans G une variable de type Graphe en considérant que les liste chaînées correspondent aux listes de prédécesseurs (au lieu de liste de successeurs). Représentez, en mémoire le graphe ci-dessus dans une variable de type Graphe en considérant que les listes chaînées représentent la liste des prédécesseurs des sommets. d) On cherche à définir la représentation d un graphe en terme de listes de prédécesseurs (cf. c)) à partir de sa représentation en terme de liste de successeurs. Ecrire un algorithme qui, en O(m) (m étant le nombre d arc du graphe), calcule la représentation d un graphe en terme de listes de prédécesseurs à partir de sa représentation en terme de liste de successeurs. On pourra utiliser l algorithme AJOUTARC. Listpred(G :Graphe) Graphe G Graphe vide G.taille G.taille pour i= à G.taille faire p G[i] Tant que (p Null) faire Ajoutarc(p.noeud,i,G ) Fin tant que Fin pour Retourner(G ) 7

8

Série d exercices N 9 Arbres

Série d exercices N 9 Arbres Série d exercices N 9 Arbres Exercice 1 a) Ecrire une fonction ARBIN creerarbreentiers() qui permet de créer et de renvoyer l arbre d entiers suivant : b) Ecrire une fonction int feuilles(arbin a) qui

Plus en détail

Points fixes de fonctions à domaine fini

Points fixes de fonctions à domaine fini ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2013 FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Algorithmes pour les graphes

Algorithmes pour les graphes Algorithmes pour les graphes 1 Définitions Un graphe est représenté par : V : L ensemble des noeuds ou sommets. E : L ensemble des arcs ou arrêtes. E est un sous-ensemble de V xv. On note G = (V, E). Si

Plus en détail

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3 I Arbres binaires 2014-2015 Table des matières 1 Rappels 2 1.1 Définition................................................ 2 1.2 Dénombrements............................................ 2 1.3 Parcours.................................................

Plus en détail

Structures de données, IMA S6

Structures de données, IMA S6 Structures de données, IMA S6 Arbres Binaires d après un cours de N. Devésa, Polytech Lille. Laure Gonnord http://laure.gonnord.org/pro/teaching/ Laure.Gonnord@polytech-lille.fr Université Lille 1 - Polytech

Plus en détail

Enveloppes convexes dans le plan

Enveloppes convexes dans le plan ÉCOLE POLYTECHNIQUE ÉCOLES NORMALES SUPÉRIEURES ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE B (XECLR)

Plus en détail

Exercice 1 : Questions diverses (5 points)

Exercice 1 : Questions diverses (5 points) Université Claude Bernard Lyon 1 Licence Sciences, Technologies, Santé L2 Année 2010-2011, 2ème semestre LIF5 Algorithmique & Programmation procédurale Contrôle final du 20 juin 2011 Durée : 1h30 Note

Plus en détail

Initiation aux algorithmes des arbres binaires

Initiation aux algorithmes des arbres binaires Initiation aux algorithmes des arbres binaires Plan I. Les arbres biniaires I. Définition II. Représentation graphique d un arbre III. Terminologie IV. Représentation en mémoire des arbres binaires V.

Plus en détail

ALGORITHMIQUE II. Récurrence et Récursivité. SMI AlgoII

ALGORITHMIQUE II. Récurrence et Récursivité. SMI AlgoII ALGORITHMIQUE II Récurrence et Récursivité Récurrence Suite récurrente: la déition d une suite est la donnée d un terme général déi en fonction du (ou des) terme(s) précédant(s) D un terme initial qui

Plus en détail

Algorithmique avancée en Python TDs

Algorithmique avancée en Python TDs Algorithmique avancée en Python TDs Denis Robilliard sept. 2014 1 TD 1 Révisions 1. Ecrire un programme qui saisit un entier, et détermine puis affiche si l entier est pair où impair. 2. Ecrire un programme

Plus en détail

Introduction: Arbres de recherche + Rappel: Arbres binaires de recherche

Introduction: Arbres de recherche + Rappel: Arbres binaires de recherche Introduction: Arbres de recherche + Rappel: Arbres binaires de recherche Dictionnaires ordonnés: Opérations principales: trouver(k): find(k): Si le dictionnaire a une entrée de clé k, retourne la valeur

Plus en détail

Listes et arbres binaires

Listes et arbres binaires Des structures de données dynamiques Listes, Listes ordonnées Arbres binaires, arbre binaires de recherche Listes chaînées Utile si le nombre d éléments n est pas connu à l avance et évolue beaucoup. Permet

Plus en détail

Université Paris Diderot Paris 7. TD n 2. Arbres Binaire de Recherche

Université Paris Diderot Paris 7. TD n 2. Arbres Binaire de Recherche Université Paris Diderot Paris L Informatique Algorithmique Année 00-0, er semestre TD n Arbres Binaire de Recherche Le type de donné arbre" sera utilisé pour indiquer l ensemble de toutes les Arbres Binaires

Plus en détail

Langage C/C++ TD 3-4 : Création dynamique d objets. Hubert Godfroy. 27 novembre 2014

Langage C/C++ TD 3-4 : Création dynamique d objets. Hubert Godfroy. 27 novembre 2014 Langage C/C++ TD 3-4 : Création dynamique d objets Hubert Godfroy 7 novembre 014 1 Tableaux Question 1 : Écrire une fonction prenant un paramètre n et créant un tableau de taille n (contenant des entiers).

Plus en détail

C12. Les structures arborescentes. Août 2006

C12. Les structures arborescentes. Août 2006 Les structures arborescentes Août 2006 Objectifs du C12 Connaître le principe de la structure d arbre binaire Connaître les détails d implémentation de la structure d arbre binaire de recherche Les structures

Plus en détail

Arbres binaires Version prof Version prof

Arbres binaires Version prof Version prof Arbres binaires Version prof Version prof types /* déclaration du type t_element */ t_arbrebinaire = t_noeudbinaire t_noeudbinaire = enregistrement t_element cle t_arbrebinaire fg, fd n enregistrement

Plus en détail

Définitions. Numéro à préciser. (Durée : )

Définitions. Numéro à préciser. (Durée : ) Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.

Plus en détail

TD 1 de Langage C module Outils pour l'informatique Industrielle - Corrigés des Tds : http://www-lagis.univ-lille1.fr/~macaire/td.

TD 1 de Langage C module Outils pour l'informatique Industrielle - Corrigés des Tds : http://www-lagis.univ-lille1.fr/~macaire/td. Exercice 1 TD 1 de Langage C module Outils pour l'informatique Industrielle - Corrigés des Tds : http://www-lagis.univ-lille1.fr/~macaire/td.htm Exercices de base de Programmation Arbre Programmatique

Plus en détail

Arbres binaires et codage de Huffman

Arbres binaires et codage de Huffman MP Option Informatique Premier TP Caml Jeudi 8 octobre 2009 Arbres baires et codage de Huffman 1 Arbres baires Soit E un ensemble non vide. On défit la notion d arbre baire étiqueté (aux feuilles) par

Plus en détail

Algorithmique et Programmation Projets 2012/2013

Algorithmique et Programmation Projets 2012/2013 3 Dames 3. Objectif Il s agit d écrire un programme jouant aux Dames selon les règles. Le programme doit être le meilleur possible. Vous utiliserez pour cela l algorithme α β de recherche du meilleur coup

Plus en détail

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures)

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures) L2 - lgorithmique et structures de données (nnée 2010/2011) Delacourt, Phan Luong, Poupet xamen (2 heures) Les documents (cours, TD, TP) sont autorisés. Les quatre exercices sont indépendants. À la fin

Plus en détail

Arbres binaires de recherche (ABR) Binary Search Trees (BST)

Arbres binaires de recherche (ABR) Binary Search Trees (BST) LSVIII-BIM Algorithmie, 2015 Arbres binaires de recherche (ABR) Binary Search Trees (BST) I. Arbres binaires 1. Structure 2. Parcours II. Arbres binaires de recherche 1. Définition 2. Opérations sur les

Plus en détail

Machines composées de (depuis 1940 env.) : http://cui.unige.ch/isi/cours/std/

Machines composées de (depuis 1940 env.) : http://cui.unige.ch/isi/cours/std/ données pr ogramme 11111101 11001101 01000101 b us disque ma gnétique processeur écran Structures de données et algorithmes Ordinateurs Gilles Falquet, printemps-été 2002 Machines composées de (depuis

Plus en détail

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr)

Partie 3. Gilles Lebrun (gilles.lebrun@unicaen.fr) Partie 3 Gilles Lebrun (gilles.lebrun@unicaen.fr) Les arbres binaires Définition : C est une structure arborescente ou hiérarchique ou récursive Chaque élément (nœud) constituant la structure de l arbre

Plus en détail

Concours 2015 Épreuve d Informatique Filière : MP Durée de l épreuve : 3 heures. L utilisation d une calculatrice est autorisée.

Concours 2015 Épreuve d Informatique Filière : MP Durée de l épreuve : 3 heures. L utilisation d une calculatrice est autorisée. A 2015 INFO. MP École des Ponts ParisTech, SUPAERO (ISAE), ENSTA ParisTech, Télécom ParisTech, Mines ParisTech, Mines de Saint-étienne, Mines Nancy, Télécom Bretagne, ENSAE ParisTech (filière MP), École

Plus en détail

Architecture des Systèmes d Information Architecture des Systèmes d Information

Architecture des Systèmes d Information Architecture des Systèmes d Information Plan... Tableaux et tris I3 - Algorithmique et programmation 1 Rappels Nicol Delestre 2 Tableaux à n dimensions 3 Initiation aux tris Tableaux - v2.0.1 1 / 27 Tableaux - v2.0.1 2 / 27 Rappels : tableau

Plus en détail

Structures de données linéaires

Structures de données linéaires Structures de données linéaires I. Liste, Pile et file. Une liste linéaire est la forme la plus simple et la plus courante d'organisation des données. On l'utilise pour stocker des données qui doivent

Plus en détail

TP 8 : Arbres binaires de recherche

TP 8 : Arbres binaires de recherche TP 8 : Arbres binaires de recherche Semaine du 17 Mars 2008 Exercice 1 Dénir une structure struct noeud_s permettant de coder un n ud d'un arbre binaire contenant une valeur entière. Ajouter des typedef

Plus en détail

Plus courts et plus longs chemins

Plus courts et plus longs chemins Plus courts et plus longs chemins Complément au chapitre 8 «Une voiture nous attend» Soit I={1,2,,n} un ensemble de tâches à ordonnancer. La durée d exécution de chaque tâche i est connue et égale à p

Plus en détail

Projet d informatique M1BI : Compression et décompression de texte. 1 Généralités sur la compression/décompression de texte

Projet d informatique M1BI : Compression et décompression de texte. 1 Généralités sur la compression/décompression de texte Projet d informatique M1BI : Compression et décompression de texte Le but de ce projet est de coder un programme réalisant de la compression et décompression de texte. On se proposera de coder deux algorithmes

Plus en détail

Option Informatique Arbres binaires équilibrés

Option Informatique Arbres binaires équilibrés Option Informatique Arbres binaires équilibrés Sujet novembre 2 Partie II : Algorithmique et programmation en CaML Cette partie doit être traitée par les étudiants qui ont utilisé le langage CaML dans

Plus en détail

Introduction Tableaux / Vecteurs Listes chaînées Un principe général Quelques algorithmes de tri À faire pour lundi prochain. Tableaux VS Listes

Introduction Tableaux / Vecteurs Listes chaînées Un principe général Quelques algorithmes de tri À faire pour lundi prochain. Tableaux VS Listes Tableaux VS Listes Tableaux VS Listes Petit chapitre. Plan Introduction Tableaux / Vecteurs Définition abstraite Qu a-t-on fait avec des vecteurs? Que peut-on faire avec des vecteurs? Listes chaînées Définition

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 6 Arbres binaires de recherche 6.1 Introduction On a étudié le problème de la recherche dans une collection d éléments ordonnés entre eux : on a montré que Pour une liste contiguë, la recherche

Plus en détail

Cours d Algorithmique et Complexité

Cours d Algorithmique et Complexité Cours d Algorithmique et Complexité Structures de données (2e suite) Catalin Dima Arbres binaires de recherche Propriété de base des arbres binaires de recherche Soit x un noeud de l arbre. Alors : 1.

Plus en détail

Arbres binaires de recherche et arbres rouge noir

Arbres binaires de recherche et arbres rouge noir Institut Galilée lgo, rbres, Graphes I nnée 006-007 License rbres binaires de recherche et arbres rouge noir Rappels de cours et correction du TD rbres binaires de recherche : définitions Un arbre binaire

Plus en détail

Épreuve d informatique 2011

Épreuve d informatique 2011 A 2011 INFO. MP ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L AÉRONAUTIQUE ET DE L ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE

Plus en détail

Chapitre 5 : Flot maximal dans un graphe

Chapitre 5 : Flot maximal dans un graphe Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d

Plus en détail

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0.

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0. Université Bordeaux 1. Master Sciences & Technologies, Informatique. Examen UE IN7W11, Modèles de calcul. Responsable A. Muscholl Session 1, 2011 2012. 12 décembre 2011, 14h-17h. Documents autorisés :

Plus en détail

alg - Arbres binaires de recherche [br] Algorithmique

alg - Arbres binaires de recherche [br] Algorithmique alg - Arbres binaires de recherche [br] Algorithmique Karine Zampieri, Stéphane Rivière, Béatrice Amerein-Soltner Unisciel algoprog Version 25 avril 2015 Table des matières 1 Définition, Parcours, Représentation

Plus en détail

Cours Algorithmique, 2ème partie AS IUT

Cours Algorithmique, 2ème partie AS IUT Cours Algorithmique, 2ème partie AS IUT Cours 2 : Arbres Binaires Anne Vilnat http://www.limsi.fr/individu/anne/coursalgo Plan 1 Représentations arborescentes 2 Définition d un arbre binaire récursive

Plus en détail

Séance de TD 05 TD05. 1 Exercice 1. 1.1 Question 1 : dessins des ABR avec hauteurs différentes AG51

Séance de TD 05 TD05. 1 Exercice 1. 1.1 Question 1 : dessins des ABR avec hauteurs différentes AG51 Séance de TD 05 1 Exercice 1 1. Dessinez les arbres binaires de recherche de hauteur 2,3,4,5 et 6 pour le même ensemble de clés S = 1,4,5,10,16,17,21. 2. Donnez l algorithme de l opération ArbreRechercher(x,k)

Plus en détail

Info0101 Intro. à l'algorithmique et à la programmation. Cours 5. Tableaux

Info0101 Intro. à l'algorithmique et à la programmation. Cours 5. Tableaux Info0101 Intro. à l'algorithmique et à la programmation Cours 5 Tableaux Pierre Delisle, Cyril Rabat et Christophe Jaillet Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique

Plus en détail

Algorithmique et Analyse d Algorithmes

Algorithmique et Analyse d Algorithmes Algorithmique et Analyse d Algorithmes L3 Info Cours 11 : Arbre couvrant Prétraitement Benjamin Wack 2015-2016 1 / 32 La dernière fois Rappels sur les graphes Problèmes classiques Algorithmes d optimisation

Plus en détail

Partie I : Automates et langages

Partie I : Automates et langages 2 Les calculatrices sont interdites. N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut

Plus en détail

Les arbres Florent Hivert

Les arbres Florent Hivert 1 de 1 Algorithmique Les arbres Florent Hivert Mél : Florent.Hivert@lri.fr Page personnelle : http://www.lri.fr/ hivert 2 de 1 Algorithmes et structures de données La plupart des bons algorithmes fonctionnent

Plus en détail

Les graphes d intervalles

Les graphes d intervalles Les graphes d intervalles Complément au chapitre 3 «Vol aux archives cantonales» Considérons un ensemble de tâches ayant chacune une heure de début et une heure de fin bien précises. Supposons qu on demande

Plus en détail

Arbres binaires de recherche

Arbres binaires de recherche Chapitre 1 Arbres binaires de recherche 1 Les arbre sont très utilisés en informatique, d une part parce que les informations sont souvent hiérarchisées, et peuvent être représentées naturellement sous

Plus en détail

Cours numéro 9 : arbres binaires et de recherche

Cours numéro 9 : arbres binaires et de recherche Cours numéro 9 : arbres binaires et de recherche LI213 Types et Structures de données Licence d Informatique Université Paris 6 Arbre Arbre Un arbre est un ensemble fini A d éléments, liés entre eux par

Plus en détail

INF601 : Algorithme et Structure de données

INF601 : Algorithme et Structure de données Cours 2 : TDA Arbre Binaire B. Jacob IC2/LIUM 27 février 2010 Plan 1 Introuction 2 Primitives u TDA Arbin 3 Réalisations u TDA Arbin par cellules chaînées par cellules contiguës par curseurs (faux pointeurs)

Plus en détail

ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES FILIÈRE MP HORS SPÉCIALITÉ INFO

ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES FILIÈRE MP HORS SPÉCIALITÉ INFO ÉCOLE POLYTECHNIQUE ÉCOLE NORMALE SUPÉRIEURE DE CACHAN ÉCOLE SUPÉRIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES CONCOURS D ADMISSION 2012 FILIÈRE MP HORS SPÉCIALITÉ INFO FILIÈRE PC COMPOSITION D INFORMATIQUE

Plus en détail

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante :

x n = x x n 1 Exercice 3 Le but de cet exercice est de modéliser les suites définies par récurrence de la façon suivante : Ocaml - Exercices Exercice Définir en Ocaml les fonctions suivantes:. f : x sin x + cos x. g : x x 3x+ x x 5 3. Fonction h calculant la moyenne géométrique de deux float positifs ( xy) Exercice Ecrire

Plus en détail

Algorithmique et Structures de données Feuille 5 : Arbres binaires

Algorithmique et Structures de données Feuille 5 : Arbres binaires Université Bordeaux Algorithmique et Structures de données Feuille : Arbres binaires On considère le type abstrait arbrebinaire d objet défini en cours. Pour rappel voir annexe A. LicenceInformatique0-0

Plus en détail

Programmation avancée Examen final

Programmation avancée Examen final Programmation avancée Examen final jeudi 17 décembre 2009 Nom : Prénom : Vos points sont précieux, ne les gaspillez pas! Votre nom Le travail qui ne peut pas vous être attribué est perdu: écrivez votre

Plus en détail

Chaîne d additions ATTENTION!

Chaîne d additions ATTENTION! Chaîne d additions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juin 2012 ATTENTION! N oubliez en aucun cas

Plus en détail

Les structures de données. Rajae El Ouazzani

Les structures de données. Rajae El Ouazzani Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l

Plus en détail

Objectifs du cours d aujourd hui. Informatique I : Cours d introduction à l informatique et à la programmation Structures de Données Abstraites & Tris

Objectifs du cours d aujourd hui. Informatique I : Cours d introduction à l informatique et à la programmation Structures de Données Abstraites & Tris Objectifs du cours d aujourd hui Informatique I : Cours d introduction à l informatique et à la programmation Structures de Données Abstraites & Tris Continuer l approfondissement de la programmation de

Plus en détail

Machine de Turing. Informatique II Algorithmique 1

Machine de Turing. Informatique II Algorithmique 1 Machine de Turing Nous avons vu qu un programme peut être considéré comme la décomposition de la tâche à réaliser en une séquence d instructions élémentaires (manipulant des données élémentaires) compréhensibles

Plus en détail

1. Les fondements de l informatique 13

1. Les fondements de l informatique 13 Introduction à l'algorithmique 1. Les fondements de l informatique 13 1.1 Architecture de Von Neumann 13 1.2 La machine de Turing 17 1.3 Représentation interne des instructions et des données 19 1.3.1

Plus en détail

Algorithmique et Structures de Données

Algorithmique et Structures de Données 1.1 Algorithmique et Structures de Données Jean-Charles Régin Licence Informatique 2ème année 1.2 Itérations Jean-Charles Régin Licence Informatique 2ème année Itération : définition 3 En informatique,

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

10' - LES ARBRES BINAIRES

10' - LES ARBRES BINAIRES Ch 10' - LES ARBRES BINAIRES On va restreindre les capacités des arbres en obligeant les nœuds à posséder au maximum deux sous-arbres. Ces nouveaux arbres seront plus faciles à maîtriser que les arbres

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

Marches, permutations et arbres binaires aléatoires

Marches, permutations et arbres binaires aléatoires Marches, permutations et arbres binaires aléatoires Épreuve pratique d algorithmique et de programmation Concours commun des Écoles Normales Supérieures Durée de l épreuve: 4 heures Cœfficient: 4 Juillet

Plus en détail

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 2

Licence informatique - L3 Année 2012/2013. Conception d algorithmes et applications (LI325) COURS 2 Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Cette deuxième séance est entièrement consacrée aux applications du principe Diviser pour Régner. Nous regarderons

Plus en détail

Programmation avancée en C

Programmation avancée en C Département Informatique Nom : Prénom : Année scolaire : 2007 2008 Date : 23 juin 2008 Module INF446 Session de juin Programmation avancée en C Contrôle de connaissance 1 de 45 minutes ÅERCI de répondre

Plus en détail

Algorithmique IN102 TD 3

Algorithmique IN102 TD 3 Algorithmique IN10 TD 16 décembre 005 Exercice 1 Clairement, il existe des arbres de hauteur h à h + 1 éléments : il sut pour cela que leurs n uds internes aient au plus un ls non vide. On a alors un arbre

Plus en détail

pedigree d'un cheval Zoe ; son père est Tonnerre et sa mère Belle ; mère de Belle est Rose et père de Belle est Eclair jean jean marc paul luc

pedigree d'un cheval Zoe ; son père est Tonnerre et sa mère Belle ; mère de Belle est Rose et père de Belle est Eclair jean jean marc paul luc Chap. 3 Les arbres binaires Un arbre est un ensemble de nœuds, organisés de façon hiérarchique, à partir d'un nœud distingué, appelé racine. La structure d'arbre est l'une des plus importantes et des plus

Plus en détail

Séance de travaux pratiques n 1 Quelques éléments de correction

Séance de travaux pratiques n 1 Quelques éléments de correction Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Séance de travaux pratiques n 1 Quelques éléments

Plus en détail

Fondements de l informatique: Examen Durée: 3h

Fondements de l informatique: Examen Durée: 3h École polytechnique X2013 INF412 Fondements de l informatique Fondements de l informatique: Examen Durée: 3h Sujet proposé par Olivier Bournez Version 3 (corrigé) L énoncé comporte 4 parties (sections),

Plus en détail

Cours 1: Introduction à l algorithmique

Cours 1: Introduction à l algorithmique 1 Cours 1: Introduction à l algorithmique Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique 2011-12 Algorithmique 2 Aujourd hui Calcul de x n Maximum Complexité d un problème Problème

Plus en détail

Gestion d'un entrepôt

Gestion d'un entrepôt Gestion d'un entrepôt Épreuve pratique d'algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l'épreuve: 3 heures 30 minutes Juin/Juillet 2010 ATTENTION! N oubliez

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Langages de spécification cours 4

Langages de spécification cours 4 Langages de spécification cours 4 Diagrammes de décision binaire(bdd) Catalin Dima Arbres de décision binaire Étant donnée une formule logique, on peut lui associer un arbre qui permet d évaluer la valeur

Plus en détail

Arbres Binaires de Recherche : Introduction

Arbres Binaires de Recherche : Introduction Arbres Binaires de Recherche : Introduction I. Guessarian cours ISN 11 janvier 2012 LIAFA, CNRS and University Paris Diderot 1/13 Arbre Binaire de Recherche Un Arbre Binaire de Recherche (ABR) est un arbre

Plus en détail

Les automates. Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ

Les automates. Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ Les automates Fabrice EUDES, Pascal EVRARD, Philippe MARQUET, François RECHER & Yann SECQ Avril 2015 Retour sur l île et le barman Deux problèmes similaires: Des îles, des bateaux et un trésor à trouver

Plus en détail

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des

Plus en détail

MAP-SIM2 : Planification de trajectoire

MAP-SIM2 : Planification de trajectoire MP-SIM : Planification de trajectoire sujet proposé par Nicolas Kielbasiewicz : nicolas.kielbasiewicz@ensta-paristech.fr 0 janvier 06 La planification de trajectoire consiste à déterminer une trajectoire,

Plus en détail

Tri en Python. # on cherche k tel que a k = min(a j ) ji

Tri en Python. # on cherche k tel que a k = min(a j ) ji Tri en Python On considère ici des tableaux ou listes d entiers ou de ottants. En Python, on peut trier une liste à l aide de la méthode sort : si a est une liste d entiers ou de ottants, a.sort() modi

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On

Plus en détail

Arbres couvrants minimaux

Arbres couvrants minimaux Arbres couvrants minimaux Algorithmique L François Laroussinie er décembre 00 Plan Définitions Algorithme de Prim Algorithme de Kruskal Application au voyageur de commerce Plan Définitions Algorithme de

Plus en détail

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas

Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas Arbres ordonnés, binaires, tassés, FAP, tri par FAP, tas, tri par tas 1. Arbres ordonnés 1.1. Arbres ordonnés (Arbres O) On considère des arbres dont les nœuds sont étiquetés sur un ensemble muni d'un

Plus en détail

Licence STIC, Semestre 1 Algorithmique & Programmation 1

Licence STIC, Semestre 1 Algorithmique & Programmation 1 Licence STIC, Semestre 1 Algorithmique & Programmation 1 Exercices Alexandre Tessier 1 Introduction 2 instruction de sortie 3 expressions 4 variable informatique 5 séquence d instructions, trace Exercice

Plus en détail

Algorithmique P2. Optimisation d'un algorithme de tri 2009-2010, Ulg R.Dumont

Algorithmique P2. Optimisation d'un algorithme de tri 2009-2010, Ulg R.Dumont Algorithmique P2 Optimisation d'un algorithme de tri 2009-2010, Ulg R.Dumont Sources supplémentaires Cours Algorithms and Data Structures in Java, Patrick Prosser, 2000, Glasgow University Algorithmique

Plus en détail

INF601 : Algorithme et Structure de données

INF601 : Algorithme et Structure de données Cours 2 : TDA Liste B. Jacob IC2/LIUM 15 février 2010 Plan 1 Définition du TDA Liste 2 Réalisation du TDA Liste 3 Type de stockage des éléments 4 Recherche d un élément Dans une liste non triée Dans une

Plus en détail

Baccalauréat ES Asie 19 juin 2013 Corrigé

Baccalauréat ES Asie 19 juin 2013 Corrigé accalauréat E sie 19 juin 201 orrigé EXERIE 1 ommun à tous les candidats On ne demandait aucune justification dans cet exercice. 4 points 1. b. 2. a.. c. 4. c. La longueur de l intervalle [ 1; 1] est 2

Plus en détail

Résolution générique à la volée de systèmes d équations booléennes et applications

Résolution générique à la volée de systèmes d équations booléennes et applications Résolution générique à la volée de systèmes d équations booléennes et applications Radu Mateescu INRIA Rhône-Alpes / VASY Plan Introduction Systèmes d équations booléennes d alternance 1 Algorithmes de

Plus en détail

Algorithmique avancée et programmation C Exercices de TD 3.0.1 avec solutions. N. Delestre

Algorithmique avancée et programmation C Exercices de TD 3.0.1 avec solutions. N. Delestre Algorithmique avancée et programmation C Exercices de TD 3.0.1 avec solutions N. Delestre 2 Table des matières 1 Rappels : chaîne de caractères, itérations, conditionnelles 5 1.1 estunprefixe............................................

Plus en détail

Les arbres binaires. Terminologie avancée (1) TAD arbre binaire. Terminologie avancée (2) Terminologie avancée (3)

Les arbres binaires. Terminologie avancée (1) TAD arbre binaire. Terminologie avancée (2) Terminologie avancée (3) Les arbres Structures les plus importantes et les plus utilisées en informatique Liste = cas dégénéré d arbre Eemples: Arbres généalogiques Arbres de classification Arbres d epression / - Traduction de

Plus en détail

Module ITC34 - Algorithmique et Programmation

Module ITC34 - Algorithmique et Programmation Module ITC34 - Algorithmique et Programmation TDs Algorithmique (trois séances) Benoît Darties - benoit.darties@u-bourgogne.fr Univ. Bourgogne Franche-Comté Année universitaire 2015-2016 Avant-propos :

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

Routage compact. 1 Préambule. 2 Détail du sujet. Sujet proposé par Gilles Schaeffer Gilles.Schaeffer@lix.polytechnique.fr. 2.1 Un modèle de routage

Routage compact. 1 Préambule. 2 Détail du sujet. Sujet proposé par Gilles Schaeffer Gilles.Schaeffer@lix.polytechnique.fr. 2.1 Un modèle de routage Routage compact Sujet proposé par Gilles Schaeffer Gilles.Schaeffer@lix.polytechnique.fr URL de suivi : http://www.enseignement.polytechnique.fr/profs/informatique/ Gilles.Schaeffer/INF431/projetX06.html

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Informatique TP4 : Manipulations de fichiers Manipulations de chaînes et de tableaux CPP 1A

Informatique TP4 : Manipulations de fichiers Manipulations de chaînes et de tableaux CPP 1A Informatique TP4 : Manipulations de fichiers Manipulations de chaînes et de tableaux CPP 1A Djamel Aouane, Frederic Devernay, Matthieu Moy Mars - avril 2015 1 Manipulations de fichiers Pour organiser des

Plus en détail

Chapitre 7. Problèmes de flots. 7.1 Exemple. 7.2 Notions de base sur les graphes

Chapitre 7. Problèmes de flots. 7.1 Exemple. 7.2 Notions de base sur les graphes Chapitre 7 Problèmes de flots. 7.1 Exemple. Un réseau electrique est formé de lignes reliant des noeuds (transformateurs, centre de redistributions,...), chaque ligne a une capacité de transport maximale.

Plus en détail

Ecole Nationale Polytechnique Département Génie Industriel Année Universitaire 2011/2012. Les Files

Ecole Nationale Polytechnique Département Génie Industriel Année Universitaire 2011/2012. Les Files . Ecole Nationale Polytechnique Département Génie Industriel Année Universitaire 2011/2012 Algorithmique et Programmation Les structures de données Les Files Introduction Une File ressemble fortement à

Plus en détail

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak

Arbres Binaire. PSI DAKHLA Prof Youssef El marzak. 1 Prof Youssef Elmarzak Arbres Binaire PSI DAKHLA Prof Youssef El marzak 1 Prof Youssef Elmarzak 1.introduction: Les arbre sont très utilisées en informatique, d une part parce que les informations sont souvent hiérarchisées,

Plus en détail

Application des arbres binaires. Plan

Application des arbres binaires. Plan Application des arbres binaires. Plan Compter les arbres binaires Tétrarbres (quad trees) Problème des n corps Recherche dans un intervalle Recherche dans un nuage de points Recherche dans un arbre d intervalles

Plus en détail

Compression méthode de Huffman

Compression méthode de Huffman Compression méthode de Huffman Thierry Lecroq Université de Rouen FRANCE La méthode de Huffman consiste à remplacer les caractères les plus fréquents par des codes courts et les caractères les moins fréquents

Plus en détail