CIRCUITS ELECTRIQUES R. DUPERRAY Lycée F. BUISSON PTSI REPONSE DES CIRCUITS A UN ECHELON DE TENSION: REGIME TRANSITOIRE D ORDRE 2

Documents pareils
Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires

Chapitre 1 Régime transitoire dans les systèmes physiques

Circuits RL et RC. Chapitre Inductance

Equations différentielles linéaires à coefficients constants

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

TP 7 : oscillateur de torsion

C f tracée ci- contre est la représentation graphique d une

Oscillations libres des systèmes à deux degrés de liberté

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Repérage d un point - Vitesse et

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques

Charges électriques - Courant électrique

TD1 Signaux, énergie et puissance, signaux aléatoires

Amplificateur à deux étages : gains, résistances "vues", droites de charges, distorsion harmonique

Introduction. Mathématiques Quantiques Discrètes

Automatique Linéaire 1 Travaux Dirigés 1A ISMIN

Commun à tous les candidats

Chapitre 0 Introduction à la cinématique

Multichronomètre SA10 Présentation générale

I- Définitions des signaux.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Donner les limites de validité de la relation obtenue.

SYSTEMES LINEAIRES DU PREMIER ORDRE

CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

ELEC2753 Electrotechnique examen du 11/06/2012

DYNAMIQUE DE FORMATION DES ÉTOILES

MATIE RE DU COURS DE PHYSIQUE

Continuité et dérivabilité d une fonction

Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction Production d un champ magnétique

BTS Groupement A. Mathématiques Session Spécialités CIRA, IRIS, Systèmes électroniques, TPIL

CONCOURS COMMUN 2010 PHYSIQUE

M HAMED EL GADDAB & MONGI SLIM

Chapitre 5: Oscillations d un pendule élastique horizontal

Chapitre 1 Cinématique du point matériel

Dérivation : cours. Dérivation dans R

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

La fonction exponentielle

sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati

Cours 9. Régimes du transistor MOS

LES APPAREILS A DEVIATION EN COURANT CONTINU ( LES APPREILS MAGNETOELECTRIQUES)

1 Systèmes triphasés symétriques

TABLE DES MATIERES CHAPITRE 1 OSCILLATEURS LINÉAIRES...3

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

TSTI 2D CH X : Exemples de lois à densité 1

F = B * I * L. Force en Newtons Induction magnétique en teslas Intensité dans le conducteur en ampères Longueur du conducteur en mètres

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

Complément d information concernant la fiche de concordance

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

GENERALITES SUR LA MESURE DE TEMPERATURE

Physique - Résumés de cours PCSI. Harold Erbin

TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S

Chapitre 11 : L inductance

Les Conditions aux limites

Fonctions de plusieurs variables

Les indices à surplus constant

Correction du Baccalauréat S Amérique du Nord mai 2007

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

Correction de l examen de la première session

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

Laboratoires de Physique générale

Mini_guide_Isis.pdf le 23/09/2001 Page 1/14

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

Représentation géométrique d un nombre complexe

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

Notice d Utilisation du logiciel Finite Element Method Magnetics version 3.4 auteur: David Meeker

aux différences est appelé équation aux différences d ordre n en forme normale.

Caractéristiques des ondes

Mini_guide_Isis_v6.doc le 10/02/2005 Page 1/15

Le transistor bipolaire

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Premier ordre Expression de la fonction de transfert : H(p) = K

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Limites finies en un point

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

I. Polynômes de Tchebychev

Précision d un résultat et calculs d incertitudes

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Eléments constitutifs et synthèse des convertisseurs statiques. Convertisseur statique CVS. K à séquences convenables. Source d'entrée S1

F411 - Courbes Paramétrées, Polaires

EXERCICE 4 (7 points ) (Commun à tous les candidats)

CHAPITRE IX : Les appareils de mesures électriques

Automatique Linéaire 1 1A ISMIN

1.1.1 Signaux à variation temporelle continue-discrète

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Module : propagation sur les lignes

La conversion de données : Convertisseur Analogique Numérique (CAN) Convertisseur Numérique Analogique (CNA)

Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année Cours de Génie Electrique G.

Fonctions homographiques

Fonctions de deux variables. Mai 2011

Electricité. Electrostatique

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Transcription:

IRUITS ELETRIQUES R. DUPERRAY Lycée F. BUISSON PTSI REPONSE DES IRUITS A UN EHELON DE TENSION: REGIME TRANSITOIRE D ORDRE «Une panne d électricité laisse l aveugle indifférent» Grégoire Lacroix Dans les circuits électriques, les régimes ont toujours un début. Nous allons étudier comment à partir des conditions initiales, les courants et les tensions s établissent dans les circuits. e chapitre est la suite du chapitre sur les circuits d ordre d où la numérotation. IV Réponse à un échelon de tension : circuit d ordre RL Série 4. Equation différentielle qui gouverne la tension aux bornes du condensateur Loi des mailles : E = R i + L di + u. i = dq = du soit : L d u + R du + u = E On obtient une équation différentielle du second ordre. Exercice d application 3: ircuit équivalent en régime permanent et grandeurs électriques. A partir de la connaissance du comportement de la bobine et du condensateur en D, représenter le circuit équivalent au circuit précédent en régime permanent (c est-à-dire quand t +, les tensions et courants ne varient plus dans le temps). En déduire i t + et u c ( t + )., u L ( t + ), u R ( t + )

4. Ecriture canonique et résolution L équation différentielle précédente peut se mettre, comme en mécanique, sous les formes canoniques usuelles : u + τ u + ω u = ω E ω L = pulsation propre, τ L = temps de relaxation R u + β u + ω u = ω E β = coefficient d'amortissement τ u + ω Q u + ω u = ω E Q = ω τ = R L = facteur de qualité (sans dimension)

La réponse complète du circuit à l échelon, c est-à-dire u ( t ) peut se mettre, comme on l a vu précédemment, sous la forme : réponse du régime transitoire : u tr t Partie temporaire du circuit Maths SGSSM Réponse complète : u ( t ) = + réponse du régime permanent : E Partie permanente du circuit Maths SPASM Il nous reste donc à trouver u tr ( t ) ce qui est le plus délicat. Heureusement, nous avons déjà réalisé le travail en mécanique. Nous allons suivre la même démarche, il s agit d un simple copier-coller. u tr ( t ) est solution de l équation différentielle du second ordre sans second membre u tr + ω Q u + ω tr u tr =. On cherche une solution de la forme e r t que l on réinjecte dans l équation précédente. On arrive à l équation caractéristique de la forme r + ω Q r + ω =. Il s agit à présent d une équation algébrique. Dans le cas général, r admet deux solutions r et r qui sont complexes ou réelles, ce qui donne: u tr ( t ) = A e r t + A e r t, où A et A sont des constantes (complexes conjuguées car u tr ( t ) doit être réelle) que l on détermine à partir des conditions initiales du problème. La nature de l évolution de u tr ( t ) va dépendre du facteur de qualité Q donc de l amortissement du système. En effet selon la valeur de Q, la nature des racines r et r sera différente. a) Régime pseudo périodique : Q > Si Q > alors β < ω. Soit Δ le discriminant de l équation caractéristique : Δ = ω Q 4ω = ω Q 4 <. On pose Ω = ω β avec Ω la pseudo-pulsation. 4β Δ = ω ω 4 = 4 β ω = 4ω < 3

ω Q jω On obtient : r = = β j Ω r = β + j Ω et finalement : u tr. ( t ) = e βt A e j Ωt + A e j Ωt On sait que cos(ωt) = e j Ωt + e j Ωt et sin(ωt) = e j Ωt e j Ωt j ce qui permet de réécrire la solution sous les formes équivalentes suivantes : u tr ( t ) =! e βt Acos( Ωt ) + B sin( Ωt ) " $$$$ # $$$$ % = e βt cos Ωt + ϕ décroissante exponentielle de l'amplitude. (l'energie du système diminue) facteur oscillant à la pseudo-pulsation Ω A, B, et ϕ sont des constantes réelles que l on détermine à partir des conditions initiales (tension initiale u et intensité initiale i, par exemple i = A et u = V si le condensateur est déchargé à l instant initial). Le système oscille, mais sans être périodique à cause de l amortissement, jusqu'à ce que le régime transitoire meure pour laisser place au régime permanent. On a un mouvement pseudopériodique de pseudo-période : T = π Ω = T β ω = T Q. b) Régime apériodique : Q < Si Q < alors β > ω. On pose Ω = β ω avec Ω la pseudo-pulsation. Δ = 4Ω > On obtient : r = β Ω r = β + Ω et finalement : u tr ( t ) = e βt A e Ωt + A e Ωt!###" ### $ termes purement exponentiels A et A sont des constantes réelles que l on détermine à partir des conditions initiales (tension initiale u et intensité initiale i ). 4

Le circuit atteint le régime permanent sans osciller car l amortissement est devenu trop important. c) Régime critique: Q = Si Q = alors β = ω. Δ = 4 α ω =. On peut écrire u tr + ω u tr + ω u tr = soit =. u tr t d u t tr e ω t donne : e ω t est donc une fonction affine du temps u tr ( t )e ω t = a + bt ce qui u tr ( t ) = ( a + bt )e βt a et b sont des constantes réelles que l on détermine à partir des conditions initiales (tension initiale u et intensité initiale i ). Quand Q = alors R = R = L, on parle de résistance critique. c Le circuit atteint le régime permanent sans osciller car l amortissement est devenu trop important. Il s agit du cas où l équilibre (régime permanent) est atteint le plus rapidement. Les figures ci-dessous donnent l évolution de u ( t ) = u tr t Pour obtenir i ( t ), il suffit de noter que i ( t ) = du t tr. + E et de i ( t ) en fonction du temps. Quand t, le condensateur se comporte comme un interrupteur ouvert et la bobine comme un fil sans résistance (bobine idéale) donc i et u E. Si, à partir de ces nouvelles conditions initiales (u = E,i = ), on débranche le générateur ( u G = ), alors u évolue comme indiqué sur les figures ci-dessous en fonction de la valeur du facteur de qualité (en suivant exactement la même démarche que ce que l on a fait jusqu'à présent, vous pouvez résoudre ce problème). 5

4.3 Aspects énergétiques a) Réponse à l échelon de tension On repart de l équation différentielle sous sa forme initiale: L u + R u + u = E soit L q+ R q + q di = E. On multiplie par i de chaque côté ce qui donne : L i + R i + q i = E i que l on peut réécrire sous la forme : d L i énergie de la bobine + q énergie du condensateur = R i + puissance dissipée dans la résistance (effet Joule) E i puissance fournie par le générateur L énergie fournie par le générateur est stockée dans le condensateur et la bobine et dissipée dans la résistance. b) ondensateur initialement chargé, absence de générateur (décharge du condensateur) Si on part des conditions initiales suivantes : u on a : d L i énergie de la bobine + = E, i = et u G = (courbes ci-dessus), q énergie du condensateur = R i. puissance dissipée dans la résistance (effet Joule) L énergie stockée dans le condensateur et la bobine est entièrement dissipée à terme dans la résistance par effet Joule.. c) ondensateur initialement chargé, absence de générateur et absence de résistance. Si il n y pas de résistance dans le circuit ( R = ) alors : d L i énergie de la bobine + q énergie du condensateur =. 6

q = constante au cours du temps. Il y a échange d énergie Dans ce cas ε + ε L = L i + permanent entre le condensateur et la bobine. Vous pouvez facilement montrer que ε + ε L = E. La figure ci-dessous illustre cet échange d énergie (ce qui est noté UE q correspond à l énergie du condensateur ε = la bobine ε L = et ce qui est noté UB correspond à l énergie de L i ). L énergie présente dans le condensateur est due à la présence d un champ électrique entre les armatures du condensateur qui est symbolisé par les flèches sur le schéma ci-dessus (cf. cours d électrostatique en PTSI). L énergie présente dans la bobine est due à la présence d un champ magnétique dans les spires de la bobine qui est symbolisé par les flèches sur le schéma cidessus (cf. cours d électromagnétisme en PT). On peut qualifier ce système d oscillateur électromagnétique par analogie avec l oscillateur mécanique (masse + ressort). Enfin, pour terminer avec l aspect énergétique, l étude que nous avons menée dans le cas de l oscillateur mécanique et qui nous a conduits à montrer que Q = π εm Δε m dans le cas d un régime pseudopériodique peut se faire de façon totalement analogue dans le cas présent pour l oscillateur électromagnétique. 7

V Analogie électro-magnéto-mécanique Il y a analogie entre deux systèmes physiques s ils sont régis par les mêmes équations différentielles. Oscillateur électromagnétique L d q ( t ) + R dq ( t ) + q t harge q = E m d x ( t ) Oscillateur mécanique + h dx ( t ) + kx ( t ) = Elongation x Intensité i = dq Résistance R Vitesse v = dx oefficient d amortissement h L m u L = L di m dv Raideur k (homogène à une force) ε bobine = Li ε c = mv u c = q k x (homogène à une force) ε condensateur = q ε p = k x u R = R i h v (homogène à une force) P = R i P = h v 8

VI Portrait de phase, quelques notions 6. Généralités Dans l étude des systèmes dynamiques (qui présentent une évolution temporelle) comme les oscillateurs amortis (mécaniques ou électriques), nous nous sommes intéressé à l évolution au () cours du temps d un seul paramètre d intérêt physique x t () ou uc t. ependant pour les systèmes dynamiques plus complexe, il ne s agit pas de la méthode la plus pertinente. Une autre possibilité est de tracer une des grandeurs d intérêt physique en fonction de sa dérivée première par rapport au temps, c est ce que l on appelle le PORTRAIT DE PHASE. Exemple de l'oscillateur amorti mécanique: x = v en fonction de x Portrait de phase: Exemple de l'oscillateur amorti électrique: u = i en fonction de u c c Il faut bien comprendre que la variable temporelle n apparaît pas explicitement dans un portrait de phase, contrairement au tracé d une évolution temporelle pour laquelle l abscisse représente le temps. Un tel tracé point par point peut être laborieux. L utilisation d un ordinateur simplifie le procédé soit en réalisant une acquisition de valeurs expérimentales, soit en résolvant numériquement les équations différentielles modélisant le système étudié. 6. as d un oscillateur harmonique (pas de frottement et pas de dissipation d énergie) Dans le cas d un oscillateur harmonique, on obtient le portrait de phase de la figure 5 suivante qui est dans le plan uc,uc (dit plan de phase) une trajectoire fermée (qui dans le cas général est une ellipse). L évolution de l oscillateur harmonique sur le portrait de phase est périodique, à l image de la trajectoire. La trajectoire n atteint jamais le centre de l ellipse qui est la position d équilibre. ela signifie qu il n y a aucun frottement dans le système considéré, l énergie est conservée, il n y a pas de dissipation d énergie (système idéalisé). 9

6.3 as d un oscillateur amorti (présence de frottement et donc dissipation d énergie) Dans ce cas la situation est plus compliquée donc plus riche. Dans le cas d un faible amortissement, Q = 4 de la figure ci dessus à droite, l évolution n est plus périodique. A l instant auquel le portrait de phase débute, x =, x = x ( x noté u sur la figure), cela correspond (pour un oscillateur mécanique) à une position initiale différente de la position d équilibre et une vitesse initiale nulle. Ensuite l oscillateur se met en mouvement. ela se traduit par une trajectoire de phase qui s enroule en amenant la mobile de plus en plus près de la situation d équilibre x =, x =. et enroulement signifie que le système se rapproche de la position d équilibre en réalisant des oscillations d amplitude décroissante car il y a des pertes d énergie, il s agit du régime pseudopériodique. Au bout d un temps suffisamment long, le système atteint sa valeur d équilibre x =, x =. On se rend compte qu il s agit d un équilibre stable. On parle de centre attracteur. Si le système est un peu écarté de sa position d équilibre, il la rejoint en effectuant une spirale convergente autour. L évolution temporelle des cas critiques et apériodique est nettement différente. Il n y a pas d enroulement. La valeur finale est en revanche inchangée, il s agit toujours du point attracteur x =, x =. La figure ci-dessous montre le portrait de phase d un oscillateur harmonique et d un oscillateur amorti (damped an en anglais) en régime pseudo-périodique.