Algèbre linéaire avancée I Jeudi 8 Octobre 2015 Prof. A. Abdulle J =



Documents pareils
Structures algébriques

Théorème du point fixe - Théorème de l inversion locale

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Représentation géométrique d un nombre complexe

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

NOMBRES COMPLEXES. Exercice 1 :

Axiomatique de N, construction de Z

Le produit semi-direct

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Chapitre 2. Matrices

Cours arithmétique et groupes. Licence première année, premier semestre

Université Paris-Dauphine DUMI2E 1ère année, Applications

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Intégration et probabilités TD1 Espaces mesurés Corrigé

Premiers exercices d Algèbre. Anne-Marie Simon

Développement décimal d un réel

DOCM Solutions officielles = n 2 10.

Calcul différentiel sur R n Première partie

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Exercices Corrigés Premières notions sur les espaces vectoriels

Mathématiques Algèbre et géométrie

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Fonctions de plusieurs variables

I. Ensemble de définition d'une fonction

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Image d un intervalle par une fonction continue

Problèmes de Mathématiques Filtres et ultrafiltres

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Problème 1 : applications du plan affine

Capes Première épreuve

1 Définition et premières propriétés des congruences

Probabilités sur un univers fini

Pour l épreuve d algèbre, les calculatrices sont interdites.

Cours d Analyse. Fonctions de plusieurs variables

1S Modèles de rédaction Enoncés

Corrigé du baccalauréat S Asie 21 juin 2010

Cours de mathématiques

Correction du Baccalauréat S Amérique du Nord mai 2007

Intégration et probabilités TD1 Espaces mesurés

CHAPITRE IV. L axiome du choix

Calcul fonctionnel holomorphe dans les algèbres de Banach

Chapitre 2 Le problème de l unicité des solutions

Optimisation des fonctions de plusieurs variables

Calcul différentiel. Chapitre Différentiabilité

Cours 02 : Problème général de la programmation linéaire

UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1

Programmation linéaire et Optimisation. Didier Smets

Polynômes à plusieurs variables. Résultant

3 Approximation de solutions d équations

Résumé du cours d algèbre 1, Sandra Rozensztajn. UMPA, ENS de Lyon, sandra.rozensztajn@ens-lyon.fr

Résolution de systèmes linéaires par des méthodes directes

Les travaux doivent être remis sous forme papier.

Déterminants. Marc SAGE 9 août Inverses et polynômes 3

I. Polynômes de Tchebychev

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Fonctions de plusieurs variables

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

LE PRODUIT SCALAIRE ( En première S )

Géométrie dans l espace Produit scalaire et équations


* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Chapitre VI Fonctions de plusieurs variables

Différentiabilité ; Fonctions de plusieurs variables réelles

Simulation de variables aléatoires

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Chapitre VI - Méthodes de factorisation

Nombres complexes. cours, exercices corrigés, programmation

NOTATIONS PRÉLIMINAIRES

Dérivées d ordres supérieurs. Application à l étude d extrema.

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Extrait du poly de Stage de Grésillon 1, août 2010

Calculs de probabilités

Produit semi-direct. Table des matières. 1 Produit de sous-groupes 2. 2 Produit semi-direct de sous-groupes 3. 3 Produit semi-direct de groupes 4

Cours d initiation à la programmation en C++ Johann Cuenin

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

par Denis-Charles Cisinski & Georges Maltsiniotis

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

[ édité le 30 avril 2015 Enoncés 1

Continuité et dérivabilité d une fonction

Programmation linéaire

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

Correction : E = Soit E = -1,6. F = 12 Soit F = y = 11. et G = -2z + 4y G = 2 6 = 3 G = G =

Introduction à l étude des Corps Finis

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Correction de l examen de la première session

La fonction exponentielle

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe

Moments des variables aléatoires réelles

Angles orientés et fonctions circulaires ( En première S )

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Transcription:

Algèbre linéaire avancée I Jeudi 8 Octobre 205 Prof. A. Abdulle EPFL Série 4 (Corrigé) Exercice Soit J M 2n 2n (R) la matrice définie par J 0 In, I n 0 où I n est la matrice identité de M n n (R) et 0 la matrice nulle de M n n (R). i) Est-ce que J est inversible? ii) Montrer que J JJ J Remarque : Les matrices M M 2n 2n (R) qui vérifient M JM J sont dites symplectiques. Elles apparaissent dans des systèmes dynamiques dits Hamiltoniens. iii) Soit S M 2n 2n (R) une matrice symétrique. Montrer que pour m pair J(J S) m est antisymétrique et pour m impair J(J S) m est symétrique. Remarque : Pour une matrice A M p p (K) on définit A m A } A {{ A}. m fois iv) Montrer que pour toute matrice A M p p (R) antisymétrique et y R p on a y Ay 0. v) Montrer que pour tout vecteur y R 2n et m impair on a y S(J S) m y 0. i) On cherche A, B, C, D M n n (R) telles que ( 0 In I n 0 ) A B In 0. C D 0 I n On obtient le système d équations C I n, D 0, A 0, B I n, ainsi On remarque que J J J. ii) Découle du fait que J J. J 0 In. I n 0 iii) On fait la démonstration par récurrence. On montre d abord que les propriétés sont vraies pour m 0 et m. m0 : On a J(J S) 0 J et J J donc J(J S) 0 est bien antisymétrique, m : On a J(J S) S et S S donc J(J S) est bien symétrique,

m+ : Supposons la propriété vraie pour m et montrons qu elle est vraie pour m +. Si m est impaire on a (J(J S) m ) J(J S) m donc (J(J S) m+ ) (J(J S) m (J S)) (J S) (J(J S) m ) () (J S) J(J S) m S J J(J S) m S JJ(J S) m SJ J(J S) m S(J S) m JJ S(J S) m J(J S) m+ Ainsi J(J S) m+ (où m+ est pair) est antisymétrique. La démonstration pour m paire est la même sauf que dans () il y a un moins qui apparait. iv) Soit y R p. Vu que y Ay est un scalaire il est symétrique, donc y Ay (y Ay) y A y y Ay. On à montré que y Ay y Ay pour tout y R p, ce qui est possible seulement si y Ay 0. v) On peut soit prouver que S(J S) m est antisymétrique et conclure avec la partie iv) ou faire explicitement les calculs. On va refaire les calculs et simultanément montrer que S(J S) m est antisymétrique. On va montrer que y S(J S) m y y S(J S) m y pour tout y, ce qui est possible seulement si y S(J S) m y 0. Vu que y S(J S) m y est un scalaire il est symétrique. Par la partie i) on a J (J ) J. Il s en suit y S(J S) m y (y S(J S) m y) y ( (J S) m) S y y ( (J S) ) m Sy y ( SJ ) m Sy y (SJ) m Sy y S(JS) m y y S( J S) m y ( ) m y S(J S) m y y S(J S) m y. Exercice 2 Montrer que (M n n (K), +, ), où K est un corps et +, sont l addition et la multiplication usuelles des matrices, est une anneau non commutatif. Le fait que (M n n (K), +) soit un groupe abélien à été montré dans le Lemme du chapitre I.2 du cours. L associativité de et la distributivité de par rapport à + sont données par le Lemme 5 et démontrées dans l exercice 7 de la série 2. Il reste à montrer qu il existe un élément neutre par rapport à la multiplication. Ceci est donné par I n, en fait pour A (a ij ) i,j n M n n (K) on a n n (AI n ) ij A ik (I n ) kj A ik δ kj A ij k k où δ ij est la fonction définie par si i j δ ij 0 sinon. 2

Donc AI n A et de la même manière on obtient I n A A. Pour finir, on a vu dans la série 2 qu en général pour deux matrices A, B M n n (K) on a AB BA, donc l anneau n est pas commutatif. a b Exercice 3 Montrer que M 2 {A M 2 2 (R); A, a, b R}, muni de l addition b a et de la multiplication usuelle des matrices, est un corps. On fera la démonstration par étapes : i) On vérifie que les opérations + et sont internes, i.e. pour deux éléments A, B M 2 on a A + B M 2 et A B M 2, ii) On montre que (M 2, +) est un groupe abélien (commutatif), iii) On montre que (M 2, +, ) est un anneau commutatif, iv) On montre que (M 2, +, ) est un corps. i) On montre d abord que M 2 est stable par rapport à la somme ( et la) multiplication, ( i.e. ) a b c d pour A, B M 2 on a A + B M 2 et AB M 2. Soit A et B, b a d c on a a + c b + d A + B M b d a + c 2, ac bd ad + bc AB M ad bc ac bd 2. ii) On a vu dans l exercice précédent que M 2 2 (R) est un anneau, il s ensuit que dans M 2 la somme est associative et commutative, (puisque c est le cas dans M 2 2 (R)). De plus 0 M 2 et pour tout A M 2 on a A M 2. On a donc montré que (M 2, +) est un groupe abélien (commutatif). iii) Comme pour l addition, les propriétés de distributivité et associativité de la multiplication découlent de M 2 2 (R). De plus I 2 M 2 donc (M 2, +, ) est un anneau. Et vu que AB BA pour tout A, B M 2 alors l anneau est commutatif. iv) Pour montrer qu il est un corps il nous reste à montrer que tout élément non nul de M 2 possède une inverse qui appartient aussi à M 2. Prenons A non nulle, donc a ou b est différent de 0. On cherche e, f tels que a b e f b a f e 0 0 On obtient l unique solution e a/(a 2 + b 2 ) et f b/(a 2 + b 2 ), ainsi A a 2 + b 2 a b M b a 2. x y Exercice 4 On définit l application f : C M 2 définie par f(x + iy). y x i) Montrer que f est un isomorphisme de groupe entre (C, +) et (M 2, +). 3

ii) Montrer que f((x +iy )(x 2 +iy 2 )) f(x +iy )f(x 2 +iy 2 ) où (x +iy )(x 2 +iy 2 ) est la multiplication de nombres complexes. Est-ce que f est un isomorphisme d anneaux? iii) Déduire de l exercice 3 et de ii) que (C \ {0}, ) est un groupe. iv) Pour un z C comment peut-on représenter z dans M 2? i) Soient z, z 2 C où z i x i + iy i pour i, 2. Il faut montrer que f(z + z 2 ) f(z ) + f(z 2 ) et que f est bijective. x + x f((x + iy ) + (x 2 + iy 2 )) f(x + x 2 + i(y + y 2 )) 2 y + y 2 y y 2 x + x 2 x y x2 y + 2 f(x y x y 2 x + iy ) + f(x 2 + iy 2 ) 2 a b Pour la bijectivité. Soit A M b a 2, on a f(a+ib) A, donc f est surjective. Pour z, z 2 C si f(z ) f(z 2 ) alors Re(z ) Re(z 2 ) et Im (z ) Im (z 2 ), donc z z 2 et f est injective. ii) On commence par montrer f(z z 2 ) f(z )f(z 2 ), f((x + iy )(x 2 + iy 2 )) f(x x 2 y y 2 + i(x y 2 + x 2 y )) x x 2 y y 2 x y 2 + x 2 y x y 2 x 2 y x x 2 y y 2 x y x2 y 2 y x y 2 x 2 f(x + iy )f(x 2 + iy 2 ). Par definition f(z) M 2 et l on sait que la multiplications des matrices est associative, i.e. A(BC) (AB)C, pour toutes matrices A, B, et C M 2. Ainsi pour z, z 2, et z 3 C, on a f(z (z 2 z 3 )) f(z )f(z 2 z 3 ) f(z )f(z 2 )f(z 3 ) f(z z 2 )f(z 3 ) f((z z 2 )z 3 ). Comme f est bijective est associative dans C. On montre la distributivité en utilisant (i) et (ii) f(z (z 2 + z 3 )) f(z )f(z 2 + z 3 ) f(z )(f(z 2 ) + f(z 3 )) f(z )f(z 2 ) + f(z )f(z 3 ) f(z z 2 ) + f(z z 3 ) f(z z 2 + z z 3 ). Avec l élément neutre + i0, on a que (C, + cdot) est un anneau. Pour que f soit un isomorphisme d anneaux il nous reste à montrer f( + i0) I 2. Or f( + i0) I 2 par définition. Donc f est un isomorphisme d anneaux. 4

iii) Vu que M 2 est un corps alors (M 2 \{0}, ) est un groupe. Vu que (C, +, ) est un anneau alors (C\{0}, ) est un semi-groupe. Il reste à montrer que chaque a C\{0} admet un élément inverse b C\{0} avec ab ba + 0i. Soit a C\{0}. Comme f est surjective il existe b C\{0} tel que f(b) f(a). Donc, f(a)f(b) f(b)f(a) I 2. Comme f préserve la multiplication et f( + 0i) I 2 on a f(ab) f(ba) f( + 0i). Comme f est injective on a ab ba + 0i. Ainsi (C \ {0}, ) est un groupe. iv) Dans M 2 le conjugué est représenté par la transposé : x y f(z ) f(x iy ) x y f(x y x y x + iy ) f(z ) Exercice 5 Démontrer le lemme suivant du cours : Soit (A, +, ) un anneau et U A. Alors les assertions suivantes sont équivalentes : i) (U, +, ) est un sous anneau de (A, +, ). ii) A U et pour tout a, b U on a a b U et a b U. i) ii) : Découle de la définition de sous-anneau. ii) i) :Comme A U on a U non vide et comme A A 0 on a 0 U. Si b U on a : b 0 b U. Si a, b U alors a + b a ( b) U. Donc (U, +) est un sous-groupe de (A, +). Si a, b U alors a b U d après l hypothèse et donc (U, +, ) est un sous anneau de (A, +, ). Exercice 6 i) Pour chacun des nombres complexes suivants, déterminer la partie réelle, la partie imaginaire, le module et l argument : 5 + 2i, ( 2i) 9, ii) Résoudre dans C les équations suivantes : 5 i 57. 3 + 2i, i z 3i 2z + 4 + 3i 2 i, z2 5 2i, z 2 ( + 3i)z 2 + 2i 0. iii) Déterminer la partie réelle et imaginaire des expressions suivantes : (a) /( + 2i), (b) (5 + 3i)/( i). iv) Montrer que z + z 2 z + z 2 pour tous z, z 2 C, avec égalité si et seulement si z 2 αz avec α R +. 5

i) Pour le premier nombre 5 + 2i, on a : Re( 5 + 2i) 5, Im ( 5 + 2i) 2, 5 + 2i 5 2 + 22 3, arg( 5 + 2i) Arctg( 2 5 5 ) (car Re( 5 + 2i) > 0). Pour le deuxième nombre ( 2i) 9, on calcule : ( 2i) 2 3 4i, ( 2i) 4 ( 3 4i) 2 7 + 24i ( 2i) 8 ( 7 + 24i) 2 527 336i, ( 2i) 9 ( 2i) 8 ( 2i) ( 527 336i)( 2i) 99 + 78i. Donc Re(( 2i) 9 ) 99 et Im(( 2i) 9 ) 78. De plus, 2i 5, donc ( 2i) 9 2i 9 5 9 2, et arg( 2i) Arctg( 2) ϑ, donc arg(( 2i) 9 ) 9 ϑ (vu que l argument d un produit est la somme des arguments). Pour le troisième nombre, on rend le dénominateur réel et on obtient : 5 i 3 + 2i (5 i)(3 2i) (3 + 2i)(3 2i) 3 3i 3 i. On a i 2, Re( i), Im ( i), arg( i) π 4. Enfin, 57 i et i 4, donc i 57 i 4 4+ (i 4 ) 4 i i i. On i i obtient Re(i) 0, Im (i), i, arg(i) π 2. ii) On calcule z 3i 2z + 4 + 3i 2 i (z 3i)(2 i) (2z + )(4 + 3i) z(2 i) 6i 3 z(8 + 6i) + 4 + 3i z( 6 7i) 7 + 9i z 7 + 9i + 9i)(6 7i) + 5i (7 05 6 + 7i (6 + 7i)(6 7i) 85 2 + i 7. Les solutions de z 2 5 2i s obtiennent en écrivant z x + yi et donc (x 2 y 2 ) + (2xy)i 5 2i. Cela donne le système x 2 y 2 5, 2xy 2. En substituant y 6 dans la ère équation, on obtient x x4 + 5x 2 36 0, donc x 2 4 (la solution x 2 9 est impossible). On trouve finalement x ±2 et y ±( 3), donc z ±(2 3i). Les solutions de z 2 ( + 3i)z 2 + 2i 0 se calculent en trouvant les racines carrées du discriminant ( + 3i) 2 4( 2 + 2i) 2i, ce qui donne ±( i). ( + 3i) ± ( i) On trouve ensuite z, ce qui donne les deux valeurs z + i et 2 z 2i. 6

iii) (a) (b) + 2i 2i ( + 2i)( 2i) 5 2 5 i 5 + 3i i 4 + i iv) Soient z x + iy et z 2 x 2 + iy 2 z + z 2 2 (z + z 2 )(z + z 2 ) (z + z 2 )(z + z 2 ) z 2 + z 2 2 + z z 2 + z z 2 z 2 + z 2 2 + z z 2 + z z 2 z 2 + z 2 2 + 2Re(z z 2 ) () z 2 + z 2 2 + 2 z z 2 ( z + z 2 ) 2 où () découle de Re(z z 2 ) (2) Re(z z 2 ) 2 + Im (z z 2 ) 2 z z 2 z z 2 z z 2. En enlevant les carrés on obtient l inégalité requise. Supposons que () soit égalité, alors Re(z z 2 ) z z 2. Ceci est vrai si et seulement si Im (z z 2 ) 0 (sinon l inégalité (2) est stricte) et si Re(z z 2 ) 0 (car z z 2 0). Il faut donc z z 2 Re(z z 2 ) β R +. Si z 2 0 on a bien z 2 αz avec α 0. z Si z 2 0 alors z z 2 z 2 βz 2, i.e. z 2 2 z 2 αz. Supposons z 2 αz avec α R +, alors z β 2, on a donc trouvé α z 2 2 β tel que z +z 2 z +αz (+α)z (+α) z z +α z (3) z + αz z + z 2 Remarquer que si α < 0 l égalité (3) est un <. { } a b Exercice 7 On considère le sous-ensemble H ; a, b C de M b a 2 2 (C). i) Montrer que (H, +, ) est un sous-anneau de (M 2 2 (C), +, ), où + et sont l addition et multiplication usuelles des matrices. ii) Montrer que tous les éléments de H \ {0} sont inversible par la multiplication. Est-ce que (H, +, ) est un corps? Indication : Pour l inverse d un élément non nul de H on a une formule similaire (mais pas identique) que pour l inverse d une matrice réelle 2 2 inversible. NB : L ensemble H muni des opérations + et s appelle l ensemble des quaternions. a b c d i) Soient A, B H. On voit facilement que A + B H aussi. b a d c L associativité de la somme découle de M 2 2 (C). L élément neutre 0 pour l addition appartient à H et pour tout A H on a A H. Donc (H, +) est un sous groupe de (M 2 2 (C), +, ). On montre que H est stable pour la multiplication : a b c d ac bd ad + bc ac bd ad + bc AB H. b a d c bc ad bd + ac (ad + bc) ac bd Et pour finir l élément neutre pour la multiplication I 2 appartient à H aussi. Donc (H, +, ) est un sous anneau de (M 2 2 (C), +, ). 7

ii) Soit A H \ {0}, donc a 0 ou b 0. Supposons a 0. On cherche B telle que AB I 2. ac bd ad + bc 0 AB bc ad bd + ac 0 La première ligne donne le système d équations ac bd et ad + bc 0. Ce qui donne c ( + bd)/a et ad + b( + bd)/a 0, en développant on obtient d b/( a 2 + b 2 ) et c a/( a 2 + b 2 ). Si a 0 et b 0 on trouve les mêmes solutions pour c, d. Ainsi A possède l inverse A a 2 + b 2 a b H. b a On a que (H, +, ) est un anneau dont tout élément non nul possède une inverse multiplicative dans H. L anneau n est pas commutatif (ceci se voit par un calcul direct), ainsi (H, +, ) n est pas un corps. Remarque : si on multiplie ac bd par a et ad + bc 0 par b on peut trouver c et d sans effectuer divisions par a ni b, il n est donc pas necessaire que a 0 ou b 0 mais il suffit que a 2 + b 2 0. Informations générales, séries et corrigés: cf. http://anmc.epfl.ch/algebre.html. 8