a p a [p] " e: Montrez que p est premier si et seulement si pour tout r {1 ; 2 ;... ; p - 1}, on a r p-1 1 [p]

Documents pareils
108y= 1 où x et y sont des entiers

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

1 Définition et premières propriétés des congruences

Triangle de Pascal dans Z/pZ avec p premier

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Angles orientés et trigonométrie

6. Les différents types de démonstrations

D'UN THÉORÈME NOUVEAU

Limites finies en un point

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Cours d arithmétique Première partie

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements

Développement décimal d un réel

FONDEMENTS DES MATHÉMATIQUES

Axiomatique de N, construction de Z

Mathématiques Algèbre et géométrie

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

chapitre 4 Nombres de Catalan

Date : Tangram en carré page

Représentation géométrique d un nombre complexe

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Pour l épreuve d algèbre, les calculatrices sont interdites.

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Carl-Louis-Ferdinand von Lindemann ( )

DEVOIR MAISON : THEME : LES CLES DE CONTROLE. I. La clé des codes barres

Raisonnement par récurrence Suites numériques

La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient

Cours d Analyse. Fonctions de plusieurs variables

Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités

Cours de Probabilités et de Statistique

Planche n o 22. Fonctions de plusieurs variables. Corrigé

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Fonctions de plusieurs variables

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Logique. Plan du chapitre

Structures algébriques

I. Ensemble de définition d'une fonction

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

2.4 Représentation graphique, tableau de Karnaugh

UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1

Chapitre VI - Méthodes de factorisation

Coefficients binomiaux

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

DOCM Solutions officielles = n 2 10.

Chapitre 6. Fonction réelle d une variable réelle

Introduction à l étude des Corps Finis

Nombres premiers. Comment reconnaître un nombre premier? Mais...

Le théorème de Thalès et sa réciproque

5 ème Chapitre 4 Triangles

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Probabilités sur un univers fini

Extrait du poly de Stage de Grésillon 1, août 2010

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Fonctions homographiques

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Correction du Baccalauréat S Amérique du Nord mai 2007

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Chapitre 1 : Évolution COURS

Géométrie dans l espace Produit scalaire et équations

Université Paris-Dauphine DUMI2E 1ère année, Applications

Cours 02 : Problème général de la programmation linéaire

La fonction exponentielle

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

1S Modèles de rédaction Enoncés

Probabilité. Table des matières. 1 Loi de probabilité Conditions préalables Définitions Loi équirépartie...

Représentation d un entier en base b

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Quelques contrôle de Première S

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Algèbre binaire et Circuits logiques ( )

1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)

Cours de mathématiques Première année. Exo7

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Capes Première épreuve

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Activités numériques [13 Points]

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

LE PRODUIT SCALAIRE ( En première S )

Problème 1 : applications du plan affine

NOMBRES COMPLEXES. Exercice 1 :

Produit semi-direct. Table des matières. 1 Produit de sous-groupes 2. 2 Produit semi-direct de sous-groupes 3. 3 Produit semi-direct de groupes 4

IFT1215 Introduction aux systèmes informatiques

Une forme générale de la conjecture abc

Correction du baccalauréat S Liban juin 2007

Continuité et dérivabilité d une fonction

Cours Fonctions de deux variables

Comparaison de fonctions Développements limités. Chapitre 10

3. Conditionnement P (B)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Transcription:

EXERCICES D ARITHMETIQUE EXERCICE1 Guesmi.B Nombres de Mersenne: a: Montrez que pour tout n entier naturel > 2, si 2 n - 1 est premier alors n est premier b: Montrez que 2 11-1 n'est pas premier EXERCICE2 2. Le petit Théorème de FERMAT: (4è annee) Soit p un entier naturel premier et n un entier strictement compris entre 0 et p. a: Montrer que est divisible par p. b : Montrez que, pour tout entier naturel a, (a + 1) p - a p - 1 est divisible par p. c : Montrez que, pour tout b entier naturel, si (b p - b) est divisible par p alors (b +1) p -(b +1) l'est aussi. d : Déduisez-en le petit théorème de Fermat:"Pour tout entier p premier et tout a entier, a p a [p] " e: Montrez que p est premier si et seulement si pour tout r {1 ; 2 ;... ; p - 1}, on a r p-1 1 [p] EXERCICE3(4è annee) 3. Soit p un entier naturel premier. On note Ep l'ensemble {1 ; 2 ;... ; p-1}. a : Montrez que tout élément de Ep est premier avec p. b : Montrez que pour tout a de Ep, il existe b unique dans Ep tel que ab 1 [p]. c : Déterminez les a éléments de Ep tels que a 2 1 [p]. d : Montrez que 1x2x3...x( p-1) ( p -1 ) [p] e : Déduisez-en que pour tout p entier naturel premier, ( p -1)! + 1 est divisible par p EXERCICE4 Montrez que si un entier naturel a exactement trois diviseurs dans N alors cet entier est le carré d'un nombre premier. EXERCICE5. Montrez que pour tout couple d'entier relatifs (x, y), si x 2 + y 2 est divisible par 7 alors x et y sont aussi divisibles par 7 EXERCICE6. p est un nombre premier > 2. On suppose qu'il existe a et b dans N tels que p = a 2 + b 2. a: Déterminez les valeurs p < 100 possibles. b: Montrez que pour tout x dans N, x 2 est congru à 0 ou 1 modulo 4.

c: Montrez alors que p est congru à 1 modulo 4. d: Peut-écrire 2003 comme somme de deux carrés dans N? EXERCICE7(4è annee) p est un nombre premier. On note E l'ensemble {0 ; 1 ; 2 ;... ; p - 1}et E* l'ensemble E privé de 0. a: Montrez que pour tout a E*, il existe b E* unique tel que ab 1 [p]. b: Montrez que pour tout (a, b) dans E, on a : ab 0 [p] (a = 0 ou b = 0). c: Montrez que pour tout X appartenant à E*, il existe au plus deux éléments dans E* vérifiant x 2 X [p] d: Déterminez les x E* tels que x 1 [p]. On pose p = 13. e: Quelles sont les valeurs possibles X appartenant à E telles qu'il existe x dans E tel que x 2 X [p]? f: Déterminez l'ensemble de x dans Z vérifiant l'équation x 2 + 2x + 3 0 [p]. g: Déterminez l'ensemble des x dans Z tels que x 2 + 5x - 6 soit divisible par 13 EXERCICE8 En reprenant l'exercice 7:, résolvez les équations suivantes: a: x 2 + 5x 0 [ 5 ] b: x 2-5x + 2 0 [7] c: 2x 2 + 4x + 1 0 [7] d: (x 2-1) 2 9 [11 EXERCICE9 Deux nombres premiers n et m sont dits "jumeaux" si n + 2 = m. Par exemple, les couples (11, 13), (17, 19 ), (41, 43) sont des couples de nombres premiers jumeaux. a: Montrez que si (n, n + 2) est un couple de nombres premiers jumeaux alors n doit être congru à 2 modulo 3, autrement dit, on doit avoir, n 2 [3]. b: Montrez que si (n, n +2) est un couple de nombres premiers jumeaux alors n+ 4 ne peut pas être premier. c: Montrez que (n, n +2) est un couple de nombres premiers jumeaux si et seulement si n 2 + 2n a exactement 4 diviseurs dans N EXERCICE10 Montrez que, pour tout b entier 3, le nombre x = 1 + b + 2b 2 + b 3 + b 4 n'est pas un nombre premier

CORRECTION EXERCICE1 a: Faisons un raisonnemnt par l'absurde. Supposons que n ne soit pas premier. On a donc n = ab avec a et b entiers > 1. Rappelons l'identidé : X k - 1 = (X-1)(X k-1 + X k-2 +... + X + 1). On peut alors écrire: 2 ab - 1 = (2 a ) b - 1 = (2 a -1)[(2 a ) b-1 + (2 a ) b-2 +... + 1], produit de deux entiers > 1. D'où 2 ab -1 n'est pas premier d'où la conclusion b: 2 11-1 = 2047 = 23 89 donc 2 11-1 n'est pas premier EXERCICE2 a: Si p est premier et si n est entier avec 0 < n < p, alors: On a donc la relation : b: Il suffit alors, pour voir que (a + 1) p - a p - 1 est divisible par p, d'utiliser la formule du binôme de Newton, et de constater qu'en développant (a + 1) p - a p - 1, il ne reste que des termes divisibles par p, d'après la question précédente. c: Même principe que la question précédente mais en faisant une récurrence sur b. d: Conséquence directe des questions c: et b: e: p est premier si et seulement si p est premier avec tout entier r appartenant à {1;2;...;p-1}. Si p est premier alors pour tout r dans {1;2;...;p-1}, on a (r p - r) divisible par p. Or, (r p - r) = r(r p-1-1). Comme p et r sont premiers entre eux, on a alors (r p-1-1) divisible par p, ou encore, r p-1 1 [p EXERCICE3

a: Evident car tout si a et p, avec a dans Ep ont un diviseur d > 1commun alors d est inférieur à a donc stirctement inférieur à p et comme p est premier, la seule valeur possible pour d est 1. b: Si a est dans Ep, comme a et p sont premiers entre eux, on sait d'après le théorème de Bachet-Bezout, qu'il existe deux entiers naturels u et v tels que au+pv=1. Soit u = Qp + b la division euclidienne de u par p. On a b dans {1;2;...;p-1}. Effectivement, si b = 0 alors au + pv est divisble par p, ce qui contredit l'égalité au+pv=1. Alors au + pv = a(qp+b) + pv = ab + (aq+v)p = 1 On a donc ab 1 [p]. L'existence de b est donc assurée. Pour l'unicité, supposons qu'il existe un autre entier c dans Ep tel que ac 1 [p] Alors a(b-c) est divisble par p. Comme a est premier avec p, on a donc (b-c) divisible par p. Or, (b-c) est compris entre -(p-1) et (p-1) donc il ne peut pas être divisible par p. D'où l'unicité de b. c: a 2 1 [p] si et seulement si (a-1)(a+1) est divisible par p. a = 1 et a = (p-1) sont deux solutions évidentes. Si a est dans {2;3;...;p-2} alors (a-1) et (a+1) sont dans {1;2;...;p-1}, donc premiers avec p. Dans ce cas (a-1)(a+1) ne pas être divisible par p (car p premier). Les seules solutions sont donc 1 et (p-1). d: Pour p = 2,le résultat est évident car dans ce cas (p-1)! = 1! = 1 = (p-1) [p]. Pour p > 2 et premier: Pour k compris strictement entre 1 et (p-1), il existe un k' unique distinct de k compris strictement entre 1 et (p-1) tel que kk' 1 [p]. Dans le produit 1*2*3*...*(p-2)*(p-1), on regroupe alors les facteurs compris entre 2 et (p-2) deux par deux tels que le produit de ces facteurs soit identique à 1. On a donc 1*(aa')*(bb')*(cc')*...(dd')*(p-1) = 1*2*3*...*(p-1). ce qui s'écrit 1*(p-1) 1*2*3*...*(p-1) [p] d'où 1*2*3*...*(p-1) (p-1) [p]. e: Comme (p-1) -1 [p], on en déduit que 1*2*3*...*(p-1) +1 0 [p] ou encore (p-1)! + 1 0 [p], c'est à dire (p-1)! + 1 est divisible par p

EXERCICE4 Soit n un entier naurel ayant exactement 3 diviseurs dans. Comme 1 et n divise n, il existe alors un unique entier naturel non nul k n divisant n. distincts de 1 et Il existe donc un entier naturel q tel tel n = kq. q est donc égal soit à 1, soit à n, soit à k. - Si q = 1 alors comme n = kq, on a alors k = n... c'est NON car k est distinct de n. - Si q = n alors comme n = kq, on a alors k = 1... c'est NON car k est distinct de 1. - Il reste alors q = k... on a alors n = k k = k 2. Donc, n est le carré d'un entier k non nul! et et on a k < n. Mais si k n'est pas premier, alors k admet au moins un diviseur a distinct de 1 et de k. a est alors < k... donc a est distinct de n. Donc, comme a divise k et que k divise n, a divise n. n admet alors au moins 4 diviseurs distincts à savoir 1, a, k et n. Incompatible avec le fait que n a exactement 3 diviseurs... Donc, k n'a aucun diviseur autre que 1 et k... k est donc premier! Donc, n est bien le carré d'un nombre premier. Autre démonstration... avec la décomposition en facteurs premiers! Supposons que n admettent au moins deux diviseurs premiers distincts p et m. On peut alors écrire que n = p a m b K avec K premiers avec p et m. Mais alors 1, p, m et pm divise n... donc n a au moins 4 diviseurs premiers.. Contradiction avec le fait que n a exactement 3 diviseurs! Donc, n est diisible par un seul nombre premierp. On a donc: n = p a avec a. Mais le nombre de diviseurs de p a est (a+1).

On a donc a+1 = 3... d'où.. a= 2... d'où n = p 2. n est bien le carré d'un nombre premier EXERCICE5 Soit x et y entiers tels x 2 + y 2 soit divisible par 7...ou encore..x 2 + y 2 0 [7] Les carrés modulo 7 sont: - 0 2 0 [7] - 1 2 1 [7] - 2 2 4 [7] - 3 2 2 [7] - 4 2 2 [7] - 5 2 4 [7] - 6 2 1 [7] D'où, pour tout couple d'entier (x ; y), on a x 2 + y 2 0 [7] x et y 0 [7] D'où... la réponse EXERCICE6 a) Faites la liste... b)pour tout x dans Z, on a x congru à 0 ou 1 ou 2 ou 3 modulo 4. Donc, x 2 est congru à 0 2 ou 1 2 ou 2 2 ou 3 2 modulo 4. D'où x 2 est congru à 0 ou 1 modulo 4. c) Comme p est un nombre premier > 2, p est impair donc congru à 1 ou 3 modulo 4. p = a 2 + b 2. Or, a 2 et b 2 0 ou 1 modulo 4. Donc, modulo 4, les valeurs possibles de a 2 + b 2 sont 0 ou 1 ou 2. Comme p est congru à 1 ou 3 modulo 4, on a alors p congru à 1 modulo4. d) 2003 est premier (faites-vous la vérification!) De plus, 2003 = 3 modulo 4.

Donc, d'après la question précédente, 2003 ne peut s'écrire sous la forme a 2 +b 2 avec a et b entiers EXERCICE7 p est un nombre premier. On note E l'ensemble {0 ; 1 ; 2 ;... ; p - 1}et E* l'ensemble E privé de 0. a: Montrez que pour tout a E*, il existe b E* unique tel que ab 1 [p]. Si a E* alors a et p sont premiers entre eux. Donc, d'après le Théorème de Bezout, il existe u et v dans tels que au + pv = 1. Donc, il existe u tel que au 1 [p]. Posons alors b = reste dans la division euclidienne de u par p. On a alors b Donc, ab 1 [p].. il existe donc bien b E* tel que ab 1 [p]. u [p]. Supposons alors qu'il existe deux entiers b et c E* tels que ab 1[p] et ac 1 [p]. On a par exemple, b c. On a alors a(b-c) 0 [p]. Donc a(b-c) est divisible par p. Mais, a et p sont premiers entre eux, donc, d'après le Théorème de Gauss, p divise (b-c). Mais, b et c sont inférieurs à (p-1). Donc, (b-c) (p-1). Donc, (b-c) est divisible par p mais (b-c) (p-1)...donc, (b-c)=0..d'où b = c. Conclusion: Il existe bien b E* unique tel que ab 1 [p] b: Montrez que pour tout (a, b) dans E, on a : ab 0 [p] (a = 0 ou b = 0). Supposons que a et b soient non nuls. a et b E*, donc a et b sont premiers avec p. Mais ab 0 [p], c'est à dire, ab est divisible par p. p divise ab donc p divise a ou b. Impossible...a et b premiers avec p... Donc, a =0 ou b = 0. c: Montrez que pour tout X appartenant à E*, il existe au plus deux éléments dans E* vérifiant x 2 X [p] Supposons qu'il existe trois éléments distincts a,b et c de E* vérifiant l'équation x 2 X [p]. On a alors a 2 b 2 [p]...donc (a-b)(a+b) 0 [p]. Donc, comme (a-b) est premiers avec p, on a: a+b [p]. De même, a+c 0 [p].

On a alors a -b [p] et a -c [p]...d'où.. b c [p]. Mais b et c E*...donc b = c. Donc, il existe bien au plus deux solutions dans E* pour l'équation x 2 X [p]. d: Déterminez les x E* tels que x 2 1 [p]. On sait que 1 2 = 1 et (-1) 2 = 1. Donc, 1 et -1 sont des solutions de l'équation dans x 2 1 [p]. Mais -1 (p-1) [p]. Donc, 1 et (p-1) sont les seules solutions dans E* de l'équation x 2 1 [p]. On pose p = 13. e: Quelles sont les valeurs possibles X appartenant à E telles qu'il existe x dans E tel que x 2 X [p]? Il suffit de faire défiler les carrés modulo 13 de x, pour x variant dans E. 0 2 = 0 0 [13] 1 2 = 1 1 [13] 2 2 = 4 4 [13] 3 2 = 9 9 [13] 4 2 = 16 3 [13] 5 2 = 25 12 [13] 6 2 = 36 10 [13] 7 2 = 49 10 [13] On peut remarquer alors que pour x > 7, (13-x) < 6 et (13-x) 2 x 2 [13]. Les carrés modulo 13 sont donc 0, 1, 4, 9, 3, 12, 10. f: Déterminez l'ensemble de x dans Z vérifiant l'équation x 2 + 2x + 3 0 [p]. On pense à la forme canonique! x 2 + 2x + 3 = (x+1) 2 + 2. x 2 + 2x + 3 (x+1) 2 + 2 [13] donc x 2 + 2x + 3 0 [13] (x+1) 2-2 [13]. Mais, -2 11 [13]...on a donc x 2 + 2x + 3 0 [13] (x+1) 2 11 [13]. Mais, 11 n'est pas un carré modulo 13... donc il n'existe pas de x dans 0 [13]. tel que x 2 +2x+3 g: Déterminez l'ensemble des x dans Z tels que x 2 + 5x - 6 soit divisible par 13. On remarque que 5 2 9 [13]. On a donc : x 2 + 5x - 6 0 [13] x 2 + 2 9x - 6 0 [13].

Mais, x 2 + 18x - 6 = (x + 9) 2-9 2-6. Mais 9 2 3 [13], donc x 2 + 18x - 9 0 [13] (x+9) 2-9 0 [13] D'où : x 2 + 18x - 6 0 [13] mod sii mod:: 0 [13]. Donc, x 2 + 5x - 6 est divisible par 13 (x-7)(x-1) est divisible par 13. Mais 13 est premier, donc (x-1)(x-12) divisible par 13 (x-7) OU (x-1) divisible par 13. Donc il existe k tel que x = 13k + 7 OU x = 13k + 1. Les solutions de l'équation dans sont donc les entiers congrus à 7 ou 1 modulo 13