1.1 Les deux différents types d énoncés

Documents pareils
Fonctions de deux variables. Mai 2011

Université Paris-Dauphine DUMI2E 1ère année, Applications

Cours de mathématiques

Chapitre 2 Le problème de l unicité des solutions

Logique. Plan du chapitre

DOCM Solutions officielles = n 2 10.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Limites finies en un point

Image d un intervalle par une fonction continue

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

1 Définition et premières propriétés des congruences

Représentation d un entier en base b

Pour l épreuve d algèbre, les calculatrices sont interdites.

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Comparaison de fonctions Développements limités. Chapitre 10

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Fonctions de plusieurs variables

Activités numériques [13 Points]

Premiers exercices d Algèbre. Anne-Marie Simon

Arithmétique binaire. Chapitre. 5.1 Notions Bit Mot

Continuité en un point

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Cours de Probabilités et de Statistique

Chapitre 2. Eléments pour comprendre un énoncé

Algèbre binaire et Circuits logiques ( )

Continuité et dérivabilité d une fonction

Continuité d une fonction de plusieurs variables

UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.

Equations cartésiennes d une droite

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS =

Raisonnement par récurrence Suites numériques

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Intégration et probabilités TD1 Espaces mesurés Corrigé

OM 1 Outils mathématiques : fonction de plusieurs variables

Cours Fonctions de deux variables

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

Problèmes de Mathématiques Filtres et ultrafiltres

Manuel d utilisation 26 juin Tâche à effectuer : écrire un algorithme 2

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Mathématiques Algèbre et géométrie

Programmation linéaire

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

III- Raisonnement par récurrence

MPI Activité.10 : Logique binaire Portes logiques

Marc HINDRY. Introduction et présentation. page 2. 1 Le langage mathématique page 4. 2 Ensembles et applications page 8

Cours arithmétique et groupes. Licence première année, premier semestre

Correction du Baccalauréat S Amérique du Nord mai 2007

La fonction exponentielle

Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.

Date : Tangram en carré page

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

NOMBRES COMPLEXES. Exercice 1 :

Logiciel de Base. I. Représentation des nombres

Corrigé du baccalauréat S Asie 21 juin 2010

Théorème du point fixe - Théorème de l inversion locale

LE PRODUIT SCALAIRE ( En première S )

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Premiers pas avec Mathematica

Développements limités, équivalents et calculs de limites

La persistance des nombres

CHAPITRE 10. Jacobien, changement de coordonnées.

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Chapitre 6. Fonction réelle d une variable réelle

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Calcul différentiel sur R n Première partie

Rappels sur les suites - Algorithme

Problème 1 : applications du plan affine

INITIATION AU LANGAGE C SUR PIC DE MICROSHIP

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Mesure d angles et trigonométrie

Logique : ENSIIE 1A - contrôle final

Eteindre. les. lumières MATH EN JEAN Mme BACHOC. Elèves de seconde, première et terminale scientifiques :

IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -

Géométrie dans l espace Produit scalaire et équations

Maple: premiers calculs et premières applications

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Le théorème de Thalès et sa réciproque

Complément d information concernant la fiche de concordance

1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

Carl-Louis-Ferdinand von Lindemann ( )

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application

Fonctions de plusieurs variables

Introduction à l étude des Corps Finis

108y= 1 où x et y sont des entiers

V- Manipulations de nombres en binaire

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES

Calcul intégral élémentaire en plusieurs variables

I. Polynômes de Tchebychev

Transcription:

Chapitre 1 Eléments de logique Le contenu de ce chapitre n est pas un cours de logique. La logique a pour objet d étude les processus de la pensée, elle ne montre à proprement parler aucun résultat, elle décrit ce qu est un raisonnement valide et explique pourquoi un raisonnement donné est valide. Elle est sous-jacente à toute construction mathématique mais aussi à toute construction théorique. Il existe plusieurs forme de logique, logique du premier ordre, logique multivaluée, différente forme de logique floue. Nous présentons ici simplement quelque élément de logique du premier ordre qui est la forme de la logique la plus utilisée en mathématique. 1.1 Les deux différents types d énoncés Il y a en mathématique deux grandes catégories d énoncés, les énoncés qui représentent ou désignent les objets étudiés et les énoncés qui affirment une propriété qu ont (ou n ont pas les objets étudiés. Exemples - Homer, Bart, Lisa. - Homer est gros. - Bart est un lapin. - L ensemble des entiers naturels. - L application à valeur réelle de la variable réelle f : x sin(x est continue sur R. - Les fonctions polynômiales sont des fonctions croissantes sur R. Les énoncés 1 et 4 désignent des objets. Les énoncés 2, 3, 5 et 6 sont des affirmations. 1

2 CHAPITRE 1. LOGIQUE Concernant les énoncés désignant des objets, les concepts de vrai ou faux n ont aucun sens, en revanche un énoncé qui est une affirmation peut être vrai ou faux on dit qu il admet une véracité ou une valeur de vérité. Exemples - Dire ou écrire la fonction sinus est fausse ou le lapin est vrai sont des énoncés qui n ont pas sens. - L application f : R R; x sin(x est continue sur R est une affirmation vraie. - Les fonctions polynômiales sont des fonctions croissantes sur R est une affirmation fausse. Exercice 1. Parmi les énoncés suivants lesquels ont un sens? lesquels désignent un objet? une affirmation? lesquels admettent une véracité? (tiré d un poème de R.Desnos - Une fourmi de dix-huit mètres ça n existe pas! - Une fourmi parlant français, parlant latin et javanais. - Cette fourmi est fausse. - Une vraie fourmi. 1.2 Idées générales sur la construction axiomatique Les mathématiques sont une juxtaposition de constructions appelées théories, ce qu est exactement une théorie ne se dégage avec précision qu au fur et à mesure de l histoire de la pensée scientifique et mathématique en particulier. Les premiers textes dans lesquels on distingue clairement ce qu est une théorie sont des textes écrits vers la fin de l époque hellenistique (-300, 100, l un des plus célèbres est Les éléments d Euclide. Composé de 13 livres traitant de différents thèmes, géométrie plane et arithmétique. La structure globale du texte est en trois parties : - Une première partie fixe et donne un nom aux objets qui vont être étudiés, points, droites, cercles,... - Une deuxième partie est une liste d affirmations faites sur les objets décrits en première partie. Ces affirmations sont les axiomes de la théorie, elles sont affublée d office d une valeur de vérité vraie. - La troisième partie est également une liste d affirmations faites sur les objets décrits dans la première partie, mais contrairement aux axiomes énoncés dans la seconde partie, ces affirmations sont déduites des axiomes, elles sont

1.2. IDÉES GÉNÉRALES SUR LA CONSTRUCTION AXIOMATIQUE 3 appelées propositions ou théorèmes. Chacune de ces affirmations est suivie d un texte (la démonstration : partant des valeurs de vérités (déjà connues de certaines affirmations et en appliquant des règles de déduction (les règles de la logique la démonstration établit que l énoncé proposé admet une valeur de vérité vraie. 1.2.1 Termes Les objets étudiés sont représentés par des lettres appelés des termes. Par exemple dans la phrase les points A, B et C sont alignés Les lettres A, B et C sont des termes (chacun d eux représente un objet appelé point. Un terme peut prendre une valeur, par exemple dans les phrases Soit x un réel alors e x est un réel positif et si on suppose que le réel x vaut 1 alors x + 2 = 3 la lettre x est un terme elle représente un objet, dans les deux cas cet objet est un réel, dans la première phrase le réel représenté par le terme x n est pas précisé, dans la seconde on affecte au terme x une valeur précise. Il arrive souvent qu on rencontre des objets d un type nouveau, dans ce cas on décrit précisément quelle est la nature de ces objets grâce à une définition et on fixe très souvent une notation. Exemples - Définition : On appelle nombre premier tout entier naturel différent de 1 qui n est divisible que par 1 et par lui-même. Cette définition permet par exemple d écrire Soit p un nombre permier au lieu de Soit p un entier naturel différent de 1 et qui n est divisible que par 1 et par lui-même. - Notation : L ensemble des entiers naturels est noté N. Cela permet dans un texte de substituer la notation N à la phrase l ensemble des entiers naturels. - Définition et notation : Une sphère est l ensemble des points de l espace équidistants d un même point appelé centre de la sphère, la distance commune entre chaque point de la sphère et son centre est appelé rayon de la sphère. La sphère de centre C et rayon ϱ est notée S(C, ϱ. Il peut arriver qu aucun objet n entre dans le cadre d une définition donnée. Exemples - Définition : Une Drôle de fonction est une fonction réelle de la variable réelle continue et admettant une limite égale à + en 0.

4 CHAPITRE 1. LOGIQUE Il n existe aucune drôle de fonction. On dit que cette définition est vide. 1.2.2 Assertions Une assertion est la représentation d une affirmation. On a déjà dit qu une affirmation peut être vraie ou fausse, les axiomes sont des assertions dont on décide arbitrairement qu elles sont vraies. Exemples - Par un point hors d une droite donnée du plan passe une et une seule droite parallèlle C est un des axiomes d Euclide. Un axiome ne se démontre pas, il est vrai a priori. C est sur la collection des axiomes que repose l ensemble de la théorie : Après s être donné une liste d axiome on applique des règles de déduction (que nous étudierons plus tard pour trouver de nouvelles assertions vraies. Ces nouvelles assertions sont appelées théorèmes, lemmes, ou corollaires. La distinctions entre ces trois types d assertion est plutôt de nature culturelle voire émotionnelle, les théorèmes sont les assertions qui semblent les plus importantes, les lemmes sont des assertions préparatoires aux théorèmes, les corollaires sont des conséquences de théorèmes. Ce qu on exige de la collection initiale d axiome est qu ils ne soient pas contradictoires. Les théorèmes, lemmes et corollaires sont accompagnés d un texte appelé démonstration ce texte établit la véracité de l énoncé. Un type particulier d assertions sont les égalités : si a et b sont deux termes, lorqu ils désignent le même objet on dit que a égale b et on écrit a = b. Exemples - 5 = 3 + 3, 7 = 4 + 3 sont des assertions, la première est fausse, la seconde est vraie. Le symbole = ne peut être écrit qu entre deux termes! Par exemple, (x + 4 = 0 = (x = 4 n a pas de sens puisque (x + 4 = 0 est une assertion et non un terme.

1.3. RÈGLES ET SYMBOLES LOGIQUES 5 1.3 Règles et symboles logiques Les symboles logiques sont des symboles qui permettent d écrire de nouvelles assertions à partir d assertions déjà écrites, ils obéïssent à des règles de syntaxe précises qui doivent être respectées. Les règles logiques établissent les valeurs de vérité des assertions écrites à l aide des symboles logiques et d assertions de valeur de vérité connues. La négation Syntaxe : Soit A une assertion. En écrivant à gauche de A le symbole NON, on obtient une assertion NON (A. Exemple Si A est l assertion la fonction cosinus est continue. On obtient une nouvelle assertion en écrivant NON (la fonction cosinus est continue dans l usage courant on utilisera bien entendu plutôt la phrase La fonction cosinus n est pas continue. L assertion NON (A est appelée la négation de A. Règle logique : La véracité d une négation s obtient par application de la règle suivante donnée sous forme d un tableau de vérité. A V F NON A F V On dit qu une famille d axiome est non contradictoire lorsqu on ne peut pas en déduire d assertions qui soient à la fois vraie et fausse. La disjonction Syntaxe : Soit A et B deux assertions. Une nouvelle assertion est obtenue en écrivant AouB. L assertion A ou B est appelée la disjonction de A et de B. Règle logique : La véracité d une disjonction s obtient par application de la règle suivante donnée sous forme d un tableau de vérité. A B A ou B V V V V F V F V V F F F La négation NON et la disjonction ou sont deux symboles logiques à partir desquels on peut définir tous les autres symboles logiques, les symboles suivants peuvent donc être vus comme de simple abbréviations destinées à alléger les textes.

6 CHAPITRE 1. LOGIQUE L implication logique Syntaxe : Soit A et B deux assertions. L assertion (N ON A ou B est notée A B. L assertion A B est appelée l implication de B par A. Règle logique : La véracité d une implication s obtient par application de la règle suivante donnée sous forme d un tableau de vérité. A B A B V V V V F F F V V F F V Exercice 2. a Vérifier cette règle. b Que peut-on dire de la véracité de B sachant que A B est vraie, dans le cas où l on sait que A est vraie? dans le cas où l on sait que A est fausse? La conjonction Syntaxe : Soit A et B deux assertions. L assertion NON((NONA ou (NONB est notée A et B. L assertion A et B est appelée la conjonction de B et de A. Règle logique : La véracité d une conjonction s obtient par application de la règle suivante donnée sous forme d un tableau de vérité. L équivalence logique A B A et B V V V V F F F V F F F F Syntaxe : Soit A et B deux assertions. L assertion (A B et (B A est notée A B. L assertion A B est appelée la équivalence logique de B et de A. Règle logique : La véracité d une équivalence logique s obtient par application de la règle suivante donnée sous forme d un tableau de vérité. A B A B V V V V F F F V F F F V

1.3. RÈGLES ET SYMBOLES LOGIQUES 7 Exercice 3. Les lettres minuscules désignant des termes et les lettres majuscules des assertions, parmi les énoncés suivants quels sont ceux qui respectent la syntaxe (donc ont un sens? a a B. b a = B. c A = B. d (a = b NON(a = b. Autres règles logiques Les règles présentées dans ce paragraphe sont des conséquences des règles déjà vues. 1 Transitivité de l implication logique Soit A, B et C trois assertions. L assertion ( (A B et (B C (A C est vraie en toutes circonstances. En effet, on a le tableau de vérité A B C A B B C (A Bet(B C A C ( (A Bet(B C (A C V V V V V V V V V V F V F F F V V F V F V F V V V F F F V F F V F V V V V V V V F V F V F F V V F F V V V V V V F F F V V V V V 2 Règles de Morgan Soit A et B deux assertions. Les assertions ( NON(A ou B (NONA et (NONB ( NON(A et B (NONA ou (NONB sont vraies en toutes circonstances. 3 Double négation Soit A une assertion. L assertion NON(NONA A est toujours vraie.

8 CHAPITRE 1. LOGIQUE 4 Associativité de la disjonction et de la conjonction Soit A, B et C trois assertions. Les assertions [A et (B et C (A et B et C] et [A ou (B ou C (A ou B ou C] sont toujours vraies. Exercice 4. Vérifier les règles 2, 3 et 4 5 Discussion Soit A, B( et C des assertions. L assertion (A ou B et (A C et (B C vraie. En effet, on a le tableau ( de vérité suivant ( D note l assertion (AouBet(A Cet(B C C est toujours A B C AouB A C B C (A ou B et (A C et (B C D C V V V V V V V V V V F V F F F V V F V V V V V V V F F V F V F V F V V V V V V V F V F V V F F V F F V F V V F V F F F F V V F V Cette règle est le fondement des raisonnement par discussion. Exemples Si n est un entier naturel alors n(n+3 est un entier 2 Un entier naturel n est pair ou impair. - Si n est pair alors n n(n+3 est un entier, on a = n (n + 3 est 2 2 2 donc le produit de deux entiers : c est un entier. - Si n est impair alors n + 3 est la somme de deux entiers impairs donc est pair, donc n+3 est un entier, on a n(n+3 = n+3n 2 2 2 c est donc le produit de deux entiers : c est un entier. La structure du raisonnement est visible : Notons H l assertion n est un entier, A l assertion n est pair, B l assertion n est impair, et C l assertion n(n+3 est un entier. 2 - Lorsque H est vraie on a AouB - Si A alors C - Si B alors C donc C est toujours vrai.

1.3. RÈGLES ET SYMBOLES LOGIQUES 9 6 Contraposition Soit A et B deux assertions. L assertion (A B (NONB NONA est toujours vraie. Exercice 5. 1 Montrer cette règle. 2 Supposons qu on veuille montrer que Tout point M du plan situé sur le cercle d équation x 2 + y 2 = 1 forme avec les points A = ( 1, 0 et B = (+1, 0 un triangle rectangle en M. On suppose qu on sait qu un triangle (A, B, C est rectangle en C si et seulement si la formule de Pythagore est satisfaite. a Donner une démonstration directe du résultat. b Donner une démonstration par contraposition du résultat. 7 Règle du raisonnement par l absurde Soit A une assertion. S il existe une assertion B telle que est vraie, alors A est vraie. (NONA B et (NONA NONB Exercice 6. Etablir une table de vérité montrant l équivalence de A et de [(NONA B et (NONA NONB]. Exemples On veut montrer que lorsque n est un entier naturel, n 2 + 1 n est pas le carré d un entier naturel non nul. Soit n un entier naturel. Si n 2 + 1 est le carré d un entier naturel non nul a, alors n 2 + 1 = a 2, donc (n + a(n a = 1. Or le produit de deux entiers vaut 1 si et seulement si ces deux entiers valent simultanément 1 ou valent simultanément 1, donc - ou bien n + a = 1 et n a = 1 ce qui entraîne que a = 0. - ou alors n + a = 1 et n a = 1 ce qui entraîne que a = 0. Exercice 7. Identifier la nature de ce raisonnement.

10 CHAPITRE 1. LOGIQUE 1.4 Quantificateurs Soit A l assertion n est un entier pair - Si on fait n = π cette assertion est fausse (π n est pas un entier donc encore moins un entier pair. - Si on fait n = 18 cette assertion est vraie. On voit donc que la valeur de vérité d une assertion donnée peut dépendre de la valeur donnée à un terme (n dans notre exemple, en fait même si ce n est pas systématique c est la plupart du temps le cas. Lorsque la valeur de vérité d une assertion A dépend de la valeur donnée à un terme x on la notera A(x. Dans l exemple qui précède on notera donc A(n l assertion n est un entier pair. - Si n = π ( ou 21 A(n est fausse - Si n = 16, A(n est vraie. - Pour exprimer qu il arrive qu une assertion A(x dont la valeur de vérité dépend du choix de la valeur du terme x soit vraie, on écrit qui se lit il existe x tel que A(x. x/a(x - Pour exprimer qu une assertion A(x dont la valeur de vérité dépend du choix de la valeur du terme x est vraie pour n importe quelle valeur donnée de x, on écrit x, A(x qui se lit pour tout x, A(x. Les énoncés x/a(x et x, A(x sont des assertions ils peuvent être vrais ou faux. Exemples n/n est un entier pair est vraie. x/x est un réel et e x est un réel négatif est fausse. n, si n est un entier c est un entier pair est fausse. x, si x est un réel x 2 est un réel positif ou nul est vraie.

1.4. QUANTIFICATEURS 11 Règles concernant les quantificateurs 1 Quantificateurs et négation NON( x/a(x x, NON(A(x NON( x, A(x x/non(a(x 2 Quantificateurs, disjonction et conjonction ( x, A(x et B(x ( x, A(x et ( x, B(x ( x, A(x ou B(x = ( x, A(x ou ( x, B(x ( x/a(x et B(x = ( x/a(x et ( x/b(x ( x/a(x ou B(x ( x/a(x ou ( x/b(x Exercice 8. Trouver un exemple de deux assertions dépendant d un terme x sur lesquelles on constate que les implications ( x, A(x ou B(x ( x, A(x ou ( x, B(x ( x/a(x et B(x ( x, A(x et ( x, B(x sont fausses. Exercice 9. 1 Ecrire des assertions équivalentes aux négations des assertions x, y/b(y A(x x/ y, NON(A(x et B(y En n utilisant le symbole NON qu éventuellement appliqué à A ou B. 2 Comparer du point de vue de l implication logique les assertions x/ y, A(x, y et y, x/a(x, y. I.5 Compléments : lettres muettes, lettres parlantes L utilisation des quantificateurs pose un problème concernant les noms donnés aux termes : - Lorsqu on écrit x, A(x ou x/a(x on peut changer le nom du terme x sans pour autant changer le sens de l assertion ni sa valeur de vérité. Ainsi x, A(x y, A(y. On dit que dans l assertion x, A(x la lettre x est muette. - Dans d autre cas le nom donné à un terme a une véritable importance Les deux assertions x, A(x B(x, y et x, A(x B(x, z

12 CHAPITRE 1. LOGIQUE n ont pas la même signification la première affirme que le terme y a une certaine propriété la seconde que c est le terme z qui l a! ici les lettres y et z sont parlantes.

1.4. QUANTIFICATEURS 13 I.6 Application pratique des tableaux de vérité : algèbre de Boole, un des fondements de l informatique Il s agit ici d une applications des mathématiques à électronique. Les aspects électroniques ne sont pas un détails mais n ont pas leur place dans ce cours. 1 Variable Booléenne, fonction booléenne et simultation électronique : Un terme qui peut prendre deux valeurs est un Booléen, par exemple une assertion peut être vue comme un booléen. Etant donné deux Booléens indépendants, il existe exactement 4 situations données par le tableau A V V F F B V F V F - Il existe exactement 16 tableaux de trois colonnes ayant les colonnes du tableau précédent pour premières colonnes à savoir A B V V V (1 V F V F V V F F V (2 A B A(OuB V V V V F V F V V F F F (3 A B A B V V V V F V F V F F F V (4 A B A B V V V V F F F V V F F V (5 A B A(NandB V V F V F V F V V F F V A B V V V (6 V F V F V F F F F A B V V V (7 V F F F V V F F F (8 A B A B V V V V F F F V F F F V (9 A B A(XorB V V F V F V F V V F F F A B V V F (10 V F V F V F F F V A B V V F (11 V F F F V V F F V (12 A B A(EtB V V V V F F F V F F F F A B V V F (13 V F V F V F F F F A B V V F (14 V F F F V V F F F (15 A B A(NorB V V F V F F F V F F F V A B V V F (16 V F F F V F F F F

14 CHAPITRE 1. LOGIQUE Il est d usage de noter 0 au lieu de F et 1 au lieu de V, c est ce que nous ferons désormais. Chacun de ces tableaux est un opérateur logique, les tableaux (2, (4, (8 et (12 correspondent respectivement au Ou, à implication logique, à l équivalence logique et au Et étudiés dans le cours. Les tableaux (5, (9 et (15 représentent les opérateurs Nand, Xor et Nor, ils n ont pas été étudiés car on ne les utilise que très rarement en mathématiques. Une fonction booléenne de k variables booléenne est une application de {0, 1} k vers {0, 1}. On peut représenter une fonction booléenne de k variables boolénnes par une table de vérité à k + 1 colonnes, les k premières colonnes représentent le k variables (il y a 2 k situations différentes la dernière colonne donnant la valeur de la fonction selon les valeurs données aux variables. L opérateur Nand est particulièrement important. L intéret de cet opérateur est double : D une part toute fonction booléenne peut être définie exclusivement à l aide de cet opérateur et d autre part il existe des systèmes électroniques simples simulant cet opérateur. Concernant le premier point on se contentera de donner deux exemples, si A est un booléen NON(A (l application A NON(A est une fonction booléenne d une variable booléenne est équivalente à A(N anda puisque A NON(A A(NandA 1 0 0 0 1 1 Si A et B sont deux booléens, A B (l application (A, B A B est une fonction booléenne de deux variables booléennes est équivalente à A(N and[b(n andb] puisque A B A B B(NandB A(Nand[B(NandB] 1 1 1 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 1 1 Il existe une technique simple, la méthode des diagrammes de Karnaugh, permettant d obtenir une expression de toute fonction booléenne de k variables booléennes n utilisant que l opérateur Nand. D autre part, pour simuler électroniquement une variable booléenne on utilise sur un composant une tension faible (de 0 à 0,8 V qui simule un 0 ou une tension forte (de 2,5 à 2,8 V qui simule un 1. Il existe des systèmes electroniques relativement simples et faciles à fabriquer, appelés portes Nand, ayant deux entrées et une sortie pour lesquels

1.4. QUANTIFICATEURS 15 l état de la sortie est donnée par le tableau suivant E1 E2 S 1 1 0 1 0 1 0 1 1 0 0 1 (Le nom de portes Nand provient evidemment de l anglais Un circuit électronique composé de portes Nand pourra donc simuler n importe quel opérateur. Si on représente une porte Nand par le schéma Nand Le circuit électronique A B Nand Nand simulera A(Nand[B(NandB] qui n est autre que A B. Chaque circuit de porte Nand représentant un opérateur logique (à deux entrée sera représenté par un schéma Nom de l opérateur par exemple le circuit précédent sera représenté par le schéma

16 CHAPITRE 1. LOGIQUE 2 Système de numération binaire : Le deuxième ingrédient est de nature plus mathématique. Tous les nombres entiers peuvent être représentés par une succession de chiffre, dans le cas de l écriture décimale - celle avec laquelle on est en général le plus familier - on dispose de 10 chiffres : 0, 1, 2, 3, 4, 5, 6, 7, 8 et 9. Une succession de chiffres s interprète comme un nombre entier : Le nombre N s écrivant C k... C 2 C 1 C 0 où C 0, C 1,..., C k sont des chiffres vaut C 0 + C 1.10 + C 2.10 2 + + C k.10 k. La succession C k... C 2 C 1 C 0 est la représentation décimale de N. On peut utiliser un nombre quelconque de symboles c est-à-dire un nombre de chiffres différents de 10. Historiquement, en Mésopotamie par exemple on utilisait, un système similaire mais comportant 60 chiffres (on parle alors de représentation sexagégimale. Lorsque le nombre de symboles utilisés vaut 2 on parle de système binaire. On utilise usuellement les chiffres 0 et 1. Le nombre N s écrivant C k... C 2 C 1 C 0 où C 0, C 1,..., C k sont des chiffres (donc dans ce système des 0 ou des 1 vaut C 0 + C 1.2 + C 2.2 2 + + C k.2 k. La succession C k... C 2 C 1 C 0 est la représentation binairede N. Par exemple, le nombre onze (qui s écrit 11 dans le système décimal s écrit 1011 dans le système binaire puisque 11 = 1 + 1.2 + 0.2 2 + 1.2 3. La représentation binaire des entiers permet de simuler un nombre facilement de manière électronique. Pour représenter concrètement un entier dont la représentation binaire est C k... C 2 C 1 C 0 on considérera k fils ( numérotés de 1 à k, par exemple une tension faible ou forte étant appliquée à chaque fils selon que C j vaut 0 ou 1. On peut maintenant réaliser un circuit additionneur Par exemple un additionneur de deux nombres ayant une représentation binaire comportant chacun au plus 5 chiffres ( donc valant au maximum 11111 binaire = 1 + 2 + 4 + 8 + 16 = 31 decimal peut être vue comme une machine ayant 10 entrées disons A 1,..., A 5, B 1,..., B 5 et 6 sorties di-

1.4. QUANTIFICATEURS 17 sons R 1,..., R 6 (le résultat de l addition ne peut dépasser 62 donc admet une représentation binaire d au plus 6 chiffres. Les entrées A 1 à A 5 et B 1 à B 5 permetront de simuler les deux nombres à additionner, le circuit doit être tel que les tensions des sorties R 1 à R 6 représentent la somme. Commençons par un additionneur de deux nombres N 1 et N 2 ayant une représentation binaire à un chiffre ces deux nombres valent chacun 0 ou 1 donc le résultat peut valoir 0, 1 ou 2 et donc le résultat nécéssite peut être deux chiffres pour être représenté. La représentation binaire de la somme N 1 + N 2 est donnée par le tableau N 1 N 2 N 1 + N 2 1 1 10 1 0 01 0 1 01 0 0 00 Donc si on nomme S la sortie représentant le chiffre des unités et R celui des deuzaines (la retenue. Il nous faudra réaliser deux circuits Un premier circuit donnant un résultat suivant le tableau N 1 N 2 S 1 1 0 1 0 1 0 1 1 0 0 0 un deuxième suivant le tableau N 1 N 2 R 1 1 1 1 0 0 0 1 0 0 0 0 On constate que S équivaut à N 1 XorN 2 et R à N 1 etn 2 Le circuit électronique suivant fourni une réponse concrète. Xor Et

18 CHAPITRE 1. LOGIQUE La réalisation d additionneurs pour des nombres de valeurs plus élevées nécéssite de considérer des additions de trois nombres N 1, N 2 et N 3 ayant une représentation binaire à un chiffre, cette nécéssité est due à la présence éventuelle de retenue, ces trois nombres valent chacun 0 ou 1 donc leur somme peut valoir 0, 1, 2 ou 3 et donc le résultat nécéssite peut être deux chiffres pour être représenté (c est une chance!. La représentation binaire de la somme N 1 +N 2 +N 3 est donnée par le tableau N 1 N 2 N 3 N 1 + N 2 + N 3 1 1 1 11 1 1 0 10 1 0 1 10 1 0 0 01 0 1 1 10 0 1 0 01 0 0 1 01 0 0 0 00 Donc si on nomme S la sortie représentant le chiffre des unités et R celui des deuzaines (la retenue. Il nous faudra réaliser deux circuits Un premier circuit donnant un résultat suivant le tableau N 1 N 2 N 3 S 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 0 un deuxième suivant le tableau N 1 N 2 N 3 R 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0

1.4. QUANTIFICATEURS 19 Exercice 1 Exprimer S et R à l aide de N 1, N 2 et N 3 et d opérateurs logiques. 2 Donner un circuit électronique simulant l addition de deux entiers quelconques dont la représentation binaire nécéssite au plus trois chiffres.

20 CHAPITRE 1. LOGIQUE Exercices du chapitre I 1. Compléter par l un des symboles logiques ou les assertions suivantes de manière à ce que l assertion obtenue soit vraie : - Pour un réel x : x 3 = 8...... x = 2 - Pour un réel x : x 2 = 9...... x = 3 2. Pour f une fonction réelle de la variable réelle définie sur R. Ecrire formellement (avec quantificateur si nécessaire - f est croissante sur R. - f est monotone sur R. - f est bornée sur R. - f est paire. Ecrire formellement les négations. 3. Parmi les déductions suivantes lesquelles respectent les règles logiques? - Si les vaches volaient les poules auraient des dents! - Si les vaches volaient, les poules pondraient des oeufs! - Si les vaches ne volent pas alors les poules ont des dents. - Si les vaches ne volent pas alors les poules pondent des oeufs. (On rappelle qu il est faux de dire que les vaches volent, que les poules n ont pas de dents mais qu elles pondent des oeufs! 4. A(x et B(x étant deux assertions dépendant de la donnée du terme x. 1Comparez du point de vue de l implication les assertions suivantes a x, A(x B(x et x, A(x x, B(x b x/a(x B(x et x/a(x x/b(x Pour chaque implication, on donnera soit une démonstration soit un contre exemple. 2 A-t on [ x, A(x B(x] [ x, A(x x, B(x]?

Chapitre 2 Ensembles Les ensembles, relations binaires et applications sont les notions de base de toutes les mathématiques. On présente ici l essentiel des notions et du vocabulaire les concernant. 2.1 Ensembles Il est très difficile de définir exactement ce qu est un ensemble. On se contentera d une approximation, un ensemble est une collection d objet cette collection doit être décrite de manière à ce que l on puisse dire sans aucune équivoque si un objet donné fait partie ou non de cette collection. Définition 1 Soit E un ensemble. Soit x un terme. Lorsque x est un membre de la collection représentée par E, on dit que x est un élément de E. On note x E, ce qui se lit x appartient à E ou encore x est un élément de E. Lorsque x n est pas un membre de la collection on note x / E qui se lit x n appartient pas à E. Le symbole est le symbole d appartenance. La négation de l assertion x E, NON(x E peut donc s écrire x / E. Exemples - π R se lit π appartient à R (cette assertion est vraie. - π N se lit π appartient à N (cette assertion est fausse. 21

22 CHAPITRE 2. ENSEMBLES Comment écrire un ensemble? 1 Ecriture extensive, ensembles donnés par liste Si la liste des éléments d un ensemble E peut être écrite (c est le cas uniquement si la collection est finie une manière d écrire l ensemble en question est d écrire la liste, sans répétition, entre deux accolades. Exemple - P S = {Homer, Marge} est l ensemble des Parents Simpson donné par liste. Les limitations d une écriture de ce type sont immédiates : si la liste est infinie il est impossible de l écrire, donc, en toute rigueur, une écriture de la forme 2N = {0, 2, 4, 6, 8, 10,...} pour l ensemble des entiers naturels pairs n est pas licite. 2 Ensembles donnés par une propriété collectivisante Il est aussi possible, très classique et commode, de se donner un ensemble par une assertion A(x dont la valeur de vérité dépend de la valeur donnée au terme x. Alors x E si et seulement si A(x est vraie. On écrit alors E = {x/a(x} ce qui se lit E est l ensemble des x tels que la propriété A(x est vraie. Exemple - 2N = {x/x N et le reste de la division de x par 2 vaut 0} est l ensemble des entiers naturels pairs donné par propriété collectivisante. Exemples fondamentaux d ensembles - Il existe un ensemble ne possédant aucun élément c est l ensemble vide il est noté. - Les entiers naturels 0, 1, 2, 3,... forment un ensemble noté N. - A partir de l ensemble des entiers naturels, on construit d autres ensembles de nombres : Z l ensemble des entiers relatifs ou entiers signés, Q l ensemble des nombres rationnels, R l ensemble de nombres réels, C l ensemble des nombres complexes. Nous verrons comment Z et Q sont construits dans un chapitre ultérieur, la construction de R est plus délicate elle sera donnée en annexe, l ensemble C sera étudié au cours du chapitre III.

2.2. ENSEMBLE DES PARTIES D UN ENSEMBLE 23 2.2 Ensemble des parties d un ensemble Définition 2 Soit E et F deux ensembles. Lorque tout élément de F est un élément de E on dit que F est inclus dans E ou F est une partie de E ou encore E contient F. On note alors F E. Le symbole est le symbole d inclusion. Autrement dit (F E ( x, x F x E On peut visualiser cette situation grâce à un diagramme de patate : E F Exemple - Soit E = {a, b, c} alors, {b, c} sont des parties de E : E et {b, c} E. - N est une partie de Z. Remarque : Lorsqu une inclusion est fausse on utilise aussi le symbole. Propriété 1 Soit E, F et G trois ensembles. i (E F et F G E G. ii (E F et F E E = F. Démonstration Soit E,F et G trois ensembles. i Si E F et F G alors x E, x F et x F, x G donc x E, x G ce qui signifie que E G. ii Si E F et F E alors x E, x F et x F, x E donc x E x F ce qui signifie que E = F. Définition 3 Soit E un ensemble. Les parties de E forment un ensemble appelé ensemble des parties de E et noté P(E. Exemple - P( = { }, attention : c est l ensemble contenant un seul élément égal à. - P({ } = {, { }} : c est un ensemble contenant deux éléments. -Si E = {a, b, c} alors P(E = {, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. Remarque : Le fait que l ensemble des partie d un ensemble est un ensemble est un axiome.

24 CHAPITRE 2. ENSEMBLES Opérations sur les parties d un ensemble Dans tous ce paragraphe E est un ensemble et P(E est l ensemble de ses parties. 1 Complémentation Définition 4 Soit A P(E, on pose C E A = {x E/x / A}. L ensemble C E A est une partie de E appelée complémentaire dans E de A, on le note également A c. On peut visualiser cette situation grâce à un diagramme de patate : A A c Exemple - Soit E = {a, b, c} alors C E = E, C E E =, C E {a, b} = {c}. Propriété 2 Soit A P(E on a C E (C E A = A. Démonstration Soit A P(E. Soit x E, on a x C E (C E A x / C E A et x C E A x / A, donc x / C E A x A. 2 Intersection Définition 5 Soit A et B des parties de E, on pose A B = {x E/x A et x B}. L ensemble A B est appelé intersection de A et de B. On peut visualiser cette situation grâce à un diagramme de patate : A A B B

2.2. ENSEMBLE DES PARTIES D UN ENSEMBLE 25 Propriété 3 Soit A, B et C trois parties de E. i A B = B A ii A (B C = (A B C. iii A =. iv A E = A. v A B A B = A Démonstration i On a (x A et (x B (x B et (x A. ii ( On a ( (x A et [(x B et (x C] [(x A et (x B] et (x C. iii et iv De manière plus générale on a A B A. En particulier on a donc A donc A =. Et aussi A E A v Si A B alors x A x B donc (x A (x A et (x B, autrement dit A = A B. Réciproquement, si A = A B alors x A (x A et (x B donc x A x B et donc A B. 3 Réunion Définition 6 Soit A et B des parties de E, on pose A B = {x E/x A ou x B}. L ensemble A B est appelé réunion de A et de B. On peut visualiser cette situation grâce à un diagramme de patate : A B A B Propriété 4 Soit A, B et C trois parties de E i A B = B A ii A (B C = (A B C. iii A = A. iv A E = E. v A B A B = B

26 CHAPITRE 2. ENSEMBLES Exercice 1. Démontrer ces propriétés. 4 Comportements relatifs de la complémentation, de l intersection et de la réunion Propriété 5 Soit A, B et C trois parties de E. i C E (A B = C E A C E B, C E (A B = C E A C E B. ii A (B C = (A B (A C. iii A (B C = (A B (A C. Exercice 2. Démontrer ces résultats. Exercice 3. Montrer que pour deux parties A et B de E on a A B = A B A = B. Exercice 4. Soient A, B et C trois parties d un ensemble donné E. Parmi les assertions suivantes lesquelles sont vraies en toutes circonstances? Pour celles qui ne seraient pas toujours vraies pouvez-vous donner une condition nécessaire et suffisante sur la partie A pour qu elles le deviennent? a (C C E A = et C C E B = (C A B. b (A B et A C A (B C. c C A ( (B C A = CE (B C. Exercice 5. Soit A, B et C trois parties d un ensemble E donné. Comparer pour l inclusion C A (A B C A (A C et C E (C E A B C.

2.3. PRODUIT CARTÉSIEN 27 2.3 Produit cartésien Soit a et b deux termes, le couple (a, b est un nouveau terme. Attention (a, b n est pas un ensemble, il s agit d un objet consistant en la donnée des deux termes a et b dans cet ordre. En particulier le couple (a, b n est pas égal (sauf si a = b au couple (b, a. Exemples - (, N est un couple d ensemble. - (2.36, π est un couple de réel. - (4, 156 est un couple d entiers naturels. Définition 7 - Soit E et F deux ensembles. Les couples (e, f où e est un élément de E et f est un élément de F forment un ensemble que l on note E F et appelé produit cartésien de E par F. E F = {(e, f/e E, f F } -Dans un couple (e, f, e est appelé premier terme, et f est le second terme. Exemple - Soit E = {a, b, c} et F = {x, y}. On a E F = {(a, x, (a, y, (b, x, (b, y, (c, x, (c, y}. Exercice 6. Soit E et F deux ensembles. Soit A une partie de E et B une partie de F. Comparer a E C F B et C E F E B. b C E A C F B et C E F (A B. Graphe Définition 8 Soit E et F deux ensembles. Un graphe de E vers F est une partie du produit cartésien E F. Exemple - Les deux schémas suivants représentent des graphes. Le premier shéma représente le graphe G = {(a, x, (a, z, (c, y} de E = {a, b, c, d} vers F = {x, y, z}. Exercice 7. Quel est le graphe représenté par le second shéma?

28 CHAPITRE 2. ENSEMBLES Les graphes peuvent s interpreter essentiellement de deux manières. La première est d interpréter un graphe de E vers E comme une relation binaire sur E. La seconde, est d interpréter un graphe comme celui d une application. Relations binaires Définition 9 Soit E un ensemble. Une relation binaire sur E consiste en la donnée d un graphe R de E vers E. Pour (a, b E E si (a, b R on note arb sinon on note a Rb. Les relations binaires sont omniprésentes. Par exemple est une relation binaire sur l ensemble des parties d un ensemble, est une relation binaire sur R, sur l ensemble des triangles du plan est semblable est une relation binaire, sur l ensemble des applications réelles de la variable réelle est une primitive de est une relation binaire. Lorsqu on a une relation binaire sur un ensemble fini une manière agréable de visualisation est un diagramme sagittal. Exemple Pour E = {a, b, c, d, e} et R = {(a, a, (a, c, (b, a, (b, d, (d, b} on a ara, arc, bra, brd et drb, le diagramme sagittal correspondant consiste à tracer dessiner une patate représentant E et une flèche entre deux éléments x et y lorsque xry. Exercice 8. Soit E = {a, b, c, d}, donner le diagramme saggital de la relation binaire sur E, R = {(a, a, (b, d, (d, c} Fonctions et applications Définition 10 Soit E et F deux ensembles (il peut arriver que ce soit deux fois le même ensemble. Une correspondance f de E vers F consiste en la donnée d un graphe G f de E vers F. - Parmi les correspondances de E vers F celles qui satisfont si pour tout élément x de E il existe au plus un élément y de F tel que (x, y est dans le graphe sont appelées des fonctions. - Parmi les correspondances de E vers F celles qui satisfont si pour tout élément x de E il existe exactement un élément y de F tel que (x, y est dans le graphe sont appelées des applications.

2.4. RELATIONS BINAIRES 29 L usage est de noter les fonctions et les applications par f : E F x f(x où f(x est l unique élément de F (s il existe tel que (x, f(x est dans le graphe. Les fonctions et les applications sont aussi des objets très courants en mathématique. Par exemple, les fonctions classiques de terminale sont des fonctions de R dans R, il existe aussi des exemples plus exotiques : la dérivation peut être vue comme une fonction de l ensemble des fonctions réelles de la variable réelle vers lui même, la complémentation peut être vue comme une application de l ensemble P(E dans lui-même. Dans les deux paragraphes suivants on étudiera plus en détail les notions concernant les relations binaires et les applications. 2.4 Relations binaires Définition 11 Soit R une relation binaire sur un ensemble E. On dit que R est i Réflexive lorsque x E, xrx. ii Symétrique lorsque x, y E, xry yrx. iii Transitive lorsque x, y, z E, (xry et yrz xrz. iv Antisymétrique lorsque x, y E, (xry et yrx x = y. Exemple - On muni N (l ensemble des entiers naturels non nuls de la relation a b lorsque a est un diviseur de b, autrement dit le graphe de cette relation est G = {(a, b N N / k N/b = ka}. - Soit a N, on a a = 1.a donc a a, ceci est vrai pour n importe quel entier a donc est une relation refléxive. - Soit a et b dans N si on a a b on n a pas forcément b a comme le montre l exemple 2 4 et 4 2, donc la relation n est pas symétrique. - Soit a, b et c dans N si on a a b et b c alors a c, donc la relation est transitive. - Soit a et b dans N si on a a b et b a alors on a a = b, en effet comme a b on trouve un entier k tel que b = k.a et comme b a on trouve un entier l tel que a = l.b donc a = l.(k.b = (l.k.a, donc l.k = 1 comme l et k sont des entiers positifs on a l = k = 1 donc a = b, la relation est antisymétrique.

30 CHAPITRE 2. ENSEMBLES Exercice 9. mais sur Z? Que ce passe-t il si on considère la relation non pas sur N - Soit E un ensemble. La relation binaire sur P(E est reflexive, transitive, antisymétrique, mais n est pas symétrique. Exercice 10. Pour E = {a, b, c} donner le graphe de la relation sur P(E. Exercice 11. Quelles sont les propriétés des relations binaires sur R définies par a xry sin(x sin(y = 0? b xqy x.y 0? Relations d équivalence Définition 12 Soit E un ensemble. Une relation binaire sur E est une relation d équivalencelorsque elle est reflexive, symétrique et transitive. La notion de relation d équivalence est extrémement importante. C est un outil utilisé pour la fabrication d objets nouveaux, nous rencontrerons de nombreuses relations d équivalence dans les développements ultérieurs. Définition 13 Soit E un ensemble et une relation d équivalence sur E. - Soit x E, la classe d équivalence de x est l ensemble des éléments de E qui sont en relation avec x, il est fréquent de noter x la classe d équivalence de x, x = {y E/x x}. - Soit x E, un élément de la classe d équivalence de x est appelé un représentant de cette classe, autrement dit y est un représentant de x signifie simplement que y x. - Les classes d équivalences sont des parties de E, elles forment un ensemble (qui est une partie de P(E appelé ensemble quotient de E par et noté E/. Exemple - Soit E = {Homer, Marge, Lisa, Bart}. Soit la relation binaire définie sur E par x y x et y sont du même sexe. Cette relation est une relation d équivalence (cela est facile a vérifier. On a Homer = {Homer, Bart}(= Bart et Marge = {Marge, Lisa}(= Lisa, Il y a deux classes d équivalence : Homer et Lisa. L ensemble quotient est E/ = {Homer, Marge}.

2.4. RELATIONS BINAIRES 31 - Soit la relation binaire sur R définie par x y xy > 0. C est une relation d équivalence. En effet, - Soit x R on a xx = x 2 > 0 donc x x : la relation est donc réflexive. - Soit x, y R si on suppose que x y alors x.y > 0 donc on a y.x > 0 c est-à-dire y x : la relation est donc symétrique. - Soit x, y et z dans R, si on suppose que x y et que y z alors x.y > 0 et y.z > 0 alors x.y.y.z > 0 mais y.y > 0 quelle que soit la valeur donnée à y donc x.z > 0 c est-à- dire x z : La relation est donc transitive. Soit x R la classe de x est x = {y R /y x}. - Si x > 0 on a y x x.y > 0 y > 0, - Si x < 0 alors y x x.y > 0 y < 0. Donc finalement x = { R + si x > 0 R si x < 0. Il y a deux éléments dans l ensemble quotient, R / = {R +, R }. Sur les deux exemples on remarque que deux classes d équivalences distinctes sont disjointes (c est-à-dire d intersection vide et que la réunion des classes d équivalence vaut E. C est un fait général que nous allons montrer. Définition 14 Soit E un ensemble. Soit (A i ı I une famille de partie de E. On dit que cette famille forme une partition de E lorsque i aucune des parties A i n est vide, ii deux parties distinctes A i et A j sont disjointes, iii la réunion de ces parties vaut E. Exemple - Soit E = {Homer, Marge, Lisa, Bart}. A 1 = {Homer, Bart}, A 2 = {Marge, Lisa} est une partition de E (en deux parties. - Les parties de R, A 1 = R + et A 2 = R forment une partition de R. (en deux parties également. - Il peut y avoir plus d une partie dans une partition et même une infinité. Par exemple, si pour k Z on pose A k = [k, k + 1[, on obtient une partition de R puisque aucune des parties A k n est vide, si elles sont distinctes les deux parties A k et A l sont disjointes et que leur réunion vaut R.

32 CHAPITRE 2. ENSEMBLES Propriété 6 Soit E un ensemble et une relation d équivalence sur E. Les classes d équivalences forment une partition de E. Démonstration Soit C une classe d équivalence, c est la classe d un élément x de E donc C = x comme est refléxive x x donc x x = C et C est donc non vide. Soit C et D deux classes d équivalence, soit x et y des représentants de ces classes. Si elles ne sont pas dijointes, alors on trouve z C D = x y donc on a z x et z y. Soit t C = x, on a t x, compte tenu du fait que est symétrique et transitive on a x z donc t z et comme z y on a t y donc t y = D : donc C D. On montre de même que D C. Finalement, C = D. On a montré que si elles ne sont pas disjointes alors les classes d équivalence C et D sont égales. (ceci est un exemple de raisonnement par contraposition. Soit x E, alors x x donc x est dans la réunion des classes d équivalence, autrement dit E C E/ C. Propriété 7 Soit (A i i I une partition d un ensemble E. Alors il existe une unique relation d équivalence sur E dont les A i sont les classes d équivalence. Démonstration Soit (A i i I une partition d un ensemble E. Pour x et y dans E, posons x y lorsqu il existe i I tel que x A i et y A i. Cela définit une relation binaire sur E. Soit x E, comme les A i forment une partition de E, leur réunion vaut E, donc x est au moins dans l une des parties A i, disons dans la partie A i0. On a x A i0 ( et x A i0 donc x x : La relation est donc reflexive. Soit x et y dans E. Si on suppose que x y alors on trouve i dans I tel que x A i et y A i, donc on a y A i et x A i c est-à-dire y x : La relation est symétrique. Soit x, y et z dans E si on suppose que x y et y z alors on trouve i I tel que x A i et y A i et on trouve j I tel que y A j et z A j (ce n est pas a priori la même partie A qui contient x et y et qui contient y et z. On a alors y A i A j donc les parties A i et A j ne sont pas disjointes, elles sont donc égales donc x z : la relation est donc transitive. Finalement est une relation d équivalence sur E. Soit x E, comme les A i forment une partition de E il existe un et un seul i I tel que x A i disons A i0, alors x = {y E/y x} = {y E/ i I/x A i et y A i } = A i0. La classe d équivalence de x est l unique partie A i0 qui le contient!

2.4. RELATIONS BINAIRES 33 Exercice 12. Soit R la relation binaire sur E = {a, b, c, d, e} représentée par le diagramme saggital Quel est le graphe de cette relation? est-ce une relation d équivalence? si oui quelles sont les classes d équivalence? Donner l ensemble quotient. Exercice 13. Soit une relation d équivalence sur un ensemble E. Soit F une partie de E, pour x, y F on pose x F y lorsque x y. a Montrer que F est une relation d équivalence sur F b Soit x F donner en fonction de la classe d équivalence de x pour et de F la classe d équivalence de x pour F. c Donner une condition nécessaire et suffisante sur F pour que les classes d équivalence pour F soient toutes des classes d équivalence pour. Exercice 14. Soit et deux relations déquivalence sur un même ensemble E. On suppose que x, y E, x y x y. a Comparer les graphes de et de b Montrer que toute classe d équivalence relative à est contenue dans une classe d équivalence relative à. c Montrer que toute classe d équivalence relative à est une réunion de classes d équivalence relatives à. Relations d ordre Définition 15 - Soit E un ensemble. Une relation binaire sur E est une relation d ordre sur E lorsqu elle est reflexive, transitive et antisymétrique. - Un ensemble E muni d une relation d ordre est un ensemble ordonné. Les exemples de relation d ordre sont également très nombreux. est une relation d ordre sur N ( mais aussi sur Z, Q et R. l inclusion est une relation d ordre sur l ensemble des parties d un ensemble.

34 CHAPITRE 2. ENSEMBLES Définition 16 - Soit (E, un ensemble ordonné, soit {x, y} une paire d élément de E on dit qu ils sont une paire d éléments comparables pour si on a x y ou y x. - Si toute paire d éléments de E est une paire d éléments comparables on dit que est un ordre total sur E. Définition 17 Soit (E, un ensemble ordonné. Soit A une partie de E et x un élément de E. - x est un majorant de A si a A, a x x est un minorant de A si a A, x a. - x est un plus grand élémentde A si x A et a A, si a x alors x a, x est un plus petit élément de A si x A et a A, si a x alors a x. - Une borne supérieure de A est un plus petit majorant de A, une borne inférieure est un plus grand minorant de A. Exercice 15. a Pour chacune des parties suivantes de R muni de l ordre naturel, donner si cela existe un exemple de majorant, de minorant, de plus grand élément, de plus petit élément, de borne supérieure, de borne inférieure. A = [0, 1[, B = [0, 1], C =]0, + [, D = N, E = Z. b Soit E = {a, b, c, d, e}, on muni P(E de l inclusion. Est-ce un ensemble totalement ordonné? Pour chacune des parties suivantes de P(E donner si cela existe un exemple de majorant, de minorant, de plus grand élément de plus petit élément, de borne supérieure, de borne inférieure. A = {, {a, c}, {b, c, d}} B = {{a}, {a, c}, {a, c, f}}. Exercice 16. Soit (E, un ensemble totalement ordonné. Soit A une partie non vide de E. Montrer que A possède au plus un plus grand élément et que s il existe ce plus grand élément est également l unique borne supérieure de A.

2.4. RELATIONS BINAIRES 35 Un exemple extrémement important d ensemble totalement ordonné est (N,. Axiome de récurrence. Soit P n une assertion dont la valeur de vérité dépend de la valeur donnée à l entier naturel n. Si - P 0 est vraie. - n N, P n P n+1 Alors n N, P n est vraie. Exemple On veut montrer que n N, 1 + 2 + 3 +... n = n(n+1 2 Notons P n l assertion 1 + 2 + + n = n(n+1. 2 - L assertion P 1 signifie 1 = 1 2 qui est manifestement vraie. 2 - Supposons que pour n N donné P n soit vraie, alors on a Alors, on a 1 + 2 + + n = n(n + 1. 2 1 + 2 + + (n + 1 = (1 + 2 + + n + (n + 1 n(n+1 = + (n + 1 2 n(n+1+2(n+1 = 2 = (n+1(n+2 2 donc P n+1 est vraie. Une application de l axiome de récurrence donne n N, P n est vraie. Exercice 17. Trouver et démontrer une formule similaire à la formule précédente donnant l expression de la somme 1 2 + 2 2 + 3 2 + + n 2.

36 CHAPITRE 2. ENSEMBLES 2.5 Fonctions et applications Définition 18 1. Soit E et F deux ensembles et G f un graphe de E vers F. On dit qu il s agit d un graphe fonctionnel lorsque x E Il existe au plus un élément y F/(x, y G f Dans ce cas on dit aussi que G f est le graphe d une fonction f de E vers F que l on note f : E F x y = f(x Où y est l unique élément, si il existe, de F tel que (x, y G f 2. Soit E et F deux ensembles et G f un graphe de E vers F. On dit qu il s agit du graphe d une application lorsque x E Il existe exactement un élément y F/(x, y G f Dans ce cas on dit aussi que G f est le graphe d une application f que l on note f : E F x y = f(x Où y est l unique élément de F tel que (x, y G f 3. Si f est une fonction (ou une application de E vers F on dit que E est l ensemble de départ de f et que F est son ensemble d arrivée. 4. Soit f : E F une fonction. La partie de E formée des éléments pour lesquels f(x existe est appelé l ensemble de définition de f. On note cette partie Def f ou Def(f. Exemple - cos : R R est une application de R dans R. - f : R R; x 1 est une fonction dont l ensemble de définition x est R. - g : R R; x 1 est une application. x Il faut remarquer que f et g ne sont pas le même objet!!

2.5. FONCTIONS ET APPLICATIONS 37 Injections, surjections et bijections Dans tout ce paragraphe on considère des applications f, g, h,... d un ensemble E vers un ensemble F. Définition 19 Soit y F, un antécédant de y pour f est un élément x de E tel que f(x = y. Il y a trois cas de figure : L élément y de F peut admettre plusieurs antécédants, un unique antécédant ou aucun antécédant. Définition 20 On dit que f est une - Injection de E vers F lorsque tout élément de F admet au plus un antécédant. - Surjection de E vers F lorsque tout élément de F admet au moins un antécédant. - Bijection de E vers F lorsque tout élément de F admet exactement un antécédant, autrement dit une bijection est une application qui est simultanément injective et surjective. Exemple -Le graphe représenté par le premier diagramme est une application qui n est ni injective ni surjective, le diagramme 2 représente une injection qui n est pas surjective, le diagramme 3 une surjection qui n est pas injective, le diagramme 4 une bijection. Les applications représentées par les diagrammes ci-dessus peuvent aussi être représentées par les diagrammes sagitaux suivants

38 CHAPITRE 2. ENSEMBLES - Soit E un ensemble et R une relation d équivalence sur E l application Π R de E vers E/ R définie par x x est une surjection appelée surjection canonique de E sur son quotient E/ R. - Soit A une partie d un ensemble E. L application i A : A E : x x est une injection appelée injection canonique de A dans E. Composition des applications Définition 21 Soit f et g deux applications respectivement, d un ensemble E vers un ensemble F et de F vers un ensemble G. On appelle composée de f et de g l application notée g f de E vers G définie par g f(x = g(f(x pour tout élément de E. Attention à la notation : Si on voit les applications f et g comme des transformations la transformation g f consiste en la transformation f suivie de la transformation g. Définition 22 Soit E un ensemble on appelle identité de E et on note Id E l application Id E : E E x Id E (x = x Pour tout ensemble E l identité de E est de manière évidente une bijection de E dans E. Propriété 8 a La composée de deux surjections est une surjection. b La composée de deux injections est une injection. c La composée de deux bijections est une bijection. Démonstration Soit E f F g G deux applications. a Si f et g sont surjectives alors ( z G, y F/g(y = z et ( y F, x E/f(x = y donc z G, x E/g(f(x = z. Autrement dit g f est surjective. b Si f et g sont injectives alors soit x et x deux éléments de E si on suppose que g f(x = g f(x alors g(f(x = g(f(x, comme g est une injection on a donc f(x = f(x et comme f est aussi une injection on a x = x donc g f est une injection. c est une conséquence directe de a et b.

2.5. FONCTIONS ET APPLICATIONS 39 Propriété 9 Soit E f F g G deux applications. a Si g f est injective alors f est injective. b Si g f est surjective alors g est surjective. Démonstration a Supposons que f ne soit pas une injection alors on trouve un élément de F qui possède plus d un antécédant par f : donc deux éléments distincts dans E, x et x tels que f(x = f(x, on a alors g f(x = g f(x donc g f n est pas injective. b Supposons que g f soit surjective, soit z G, z admet un antécédant par g f autrement dit on trouve x E tel que g f(x = z alors on a g(f(x = z donc f(x est un antécédant de z pour g, g est donc surjective. Exercice 18. Pour chacune des correspondances suivantes déterminer si ce sont des fonctions (dans ce cas en donner le domaine de définition, si ce sont des applications et dans ce cas déterminer si ce sont des injections, des surjections, des bijections. a cos : R R; x cos(x b cos : R [ 1, +1]; x cos(x c tg : R R; x tg(x [ R; x tg(x d cos :] π, π 2 2 e f : R R; x 1 x+1 f g : R \ { 2} R; x x x+2 g h : R + R + ; x 1 x Exercice 19. Soit E et F deux ensembles et f une application de E vers F. a Donner une condition nécessaire et suffisante sur f pour qu il existe une application g de F vers E telle que f g = Id F. b Donner une condition nécessaire et suffisante sur f pour qu il existe une application g de F vers E telle que g f = Id E.

40 CHAPITRE 2. ENSEMBLES Applications et relations d équivalence Soit f une application d un ensemble E vers un ensemble F et R une relation d équivalence sur E, soit Π la projection canonique de E sur l ensemble quotient E/ R. On a un diagramme d application E Π f F E/ R Le problème que l on se propose de résoudre est celui de l existence d une application f de l ensemble quotient vers f telle que f Π = f, autrement dit de pouvoir compléter le diagramme précédent en un triangle : E Π f f F E/ R Supposons que l application f existe alors on a nécessairement x E, f(x = f(π(x = f(x. Par conséquent, si x, x E sont tels que xrx on a x = x donc f(x = f(x. Donc on doit avoir x, x E, xrx = f(x = f(x. Réciproquement, si x, x E, xrx = f(x = f(x alors la formule f(x = f(x définit une application (et non une correspondance dont on vérifie facilement qu elle répond au problème posé. Définition 23 Une relation d équivalence R sur un ensemble E et une application d ensemble de départ E sont dits compatibles lorsque x, x E, xrx = f(x = f(x. On a démontré la propriété suivante Si une relation d équivalence R et une application f définies sur E sont compatibles alors il existe une application f définie sur E/ R telle que f Π = f.

2.6. BIJECTIONS, CARDINALITÉ 41 2.6 Bijections, cardinalité Définition 24 Soit E et F deux ensembles. On dit qu ils ont même cardinalité lorsqu il existe une bijection de E vers F. Propriété 10 S il existe une bijection f d un ensemble E vers un ensemble F alors il existe aussi une bijection de F vers E. Précisément, il existe une unique bijection que l on note usuellement f 1 et appelée bijection réciproque de f de F vers E telle que f f 1 = Id F et f 1 f = Id E. Réciproquement, une application f de E vers F étant donnée, s il existe une application g de F vers E telle que f g = Id F et g f = Id E alors l application g est unique, f est une bijection et g est la bijection réciproque de f. Démonstration Soit E et F deux ensembles et f : E F une bijection. Alors la formule y x y où x y est l unique antécédant de y pour f définit une application de F vers E, cette application est une bijection satisfaisant les conditions imposées. Une application f de E vers F étant donnée, supposons qu il existe une application g de F vers E telle que f g = Id F et g f = Id E. - L application Id F est injective et surjective (puisqu elle est bijective donc si f g = Id F alors d une part g est surjective et d autre part f est injective. - L application Id E est injective et surjective (puisqu elle est bijective donc si g f = Id E alors d une part g est injective et d autre part f est surjective. Donc f et g sont bijectives et g est la bijection réciproque de f. Terminologie : - Lorsqu un ensemble a même cardinalité que l ensemble N n = {1, 2,..., n} on dit qu il est fini de cardinal n. - Lorsqu un ensemble n est pas de cardinal fini (c est-à-dire n est en bijection avec aucun des ensembles N n pour n N on dit que c est un ensemble infini. - Parmi les ensemble infini ceux qui ont même cardinalité que N sont dit infinis dénombrables. - Il existe des ensembles infinis non dénombrables.

42 CHAPITRE 2. ENSEMBLES Exemple - L ensemble Z est infini dénombrable : Une bijection de N vers Z est par exemple { n si n est pair f : N Z : n 2 n+1 si n est impair 2 - L ensemble R est infini non dénombrable : Il est manifeste que R n est pas fini puisqu il contient N. Supposons que ce soit un ensemble dénombrable, alors on trouverait une bijection f de N vers R. Supposons que la partie après la virgule du développement décimal de f(n soit 0, d n 1d n 2d n 3... d n k... (les d n k sont donc des chiffres considérons alors le réel de développement décimal 0, c 1 c 2... c k... où c j = 5 si d j j 5 et c j = 0 sinon. Ce réel n est pas dans la suite des réels f(n! Donc l application f ne peut être une bijection. Principe des tiroirs : Soit E et F deux ensembles finis de même cardinal et soit f une application de E vers F alors f injective f surjective f bijective Attention si on n a pas l hypothèse que E et F sont finis (même s ils sont de même cardinal les équivalences deviennent fausses par exemple il est évident que f : N N; n n + 1 est injective mais ce n est pas une surjection puisque 0 n admet pas d antécédant. 2.7 Applications image réciproque et image directe Application image directe Définition 25 Soit f : E F une application, soit A une partie de E. On pose f(a = {y F/ x A/f(x = y}, f(a est la partie de F formée des images par f des éléments de A et s appelle image directe de A par f.

2.7. APPLICATIONS IMAGE RÉCIPROQUE ET IMAGE DIRECTE 43 Cela définit une application de P(E vers P(F que l on note f, cette notation a priori ambiguë, puisque f note à la fois l application initiale de E vers F et l application image directe associée de P(E vers P(F, ne l est pas en pratique puisque si A est une partie de E, dans l expression f(a, f note nécessairement l application image directe et si x est un élément de E dans l expression f(x, f note l application initiale. Propriété 11 Soit f : E F une application. Soit A 1 et A 2 deux parties de E. a f(a 1 A 2 f(a 1 f(a 2. b f(a 1 A 2 = f(a 1 f(a 2. Démonstration a Soit y f(a 1 A 2, alors on trouve x A 1 A 2 tel que y = f(x cet élément x de E est dans A 1 donc f(x f(a 1 il est également dans A 2 donc f(x f(a 2 finalement y = f(x f(a 1 f(a 2. L inclusion réciproque est fausse de manière générale comme on peut le constater sur le diagramme ( b Soit y F on a ( y f(a 1 A 2 x A 1 A 2 /f(x = y ( x A 1 ou x A 2 /y = f(x ( y f(a 1 ou y f(a 2 y f(a 1 f(a 2 Application image réciproque Définition 26 Soit f : E F une application, soit B une partie de F. On pose f 1 (B = {x E/ f(x B}, f 1 (B est la partie de E formée des antécédants par f des éléments de B et s appelle image réciproque de B par f. Cela définit une application de P(F vers P(E que l on note f 1, cette notation a priori ambiguë, puisque dans le cas où f est une bijection f 1 note à la fois la bijection réciproque de f (de F vers E et l application image image réciproque associée à f de P(F vers P(E, ne l est pas en pratique puisque si B est une partie de F, dans l expression f 1 (B, f 1

44 CHAPITRE 2. ENSEMBLES note nécessairement l application image réciproque et si y est un élément de F dans l expression f 1 (y, f 1 note la bijection réciproque de f (qui n existe que si f est bijective. Propriété 12 Soit f : E F une application. Soit B 1 et B 2 deux parties de F. a f 1 (B 1 B 2 = f 1 (B 1 f 1 (B 2. b f 1 (B 1 B 2 = f 1 (B 1 f 1 (B 2. Démonstration a Soit x E, on a x f 1 (B 1 B 2 f(x B 1 B 2 (f(x B 1 et f(x B 2 ( x f 1 (B 1 et x f 1 (B 2 x f 1 (B 1 f 1 (B 2. b Soit x E on a x f 1 (B 1 B 2 f(x B 1 B 2 (f(x B 1 ou f(x B 2 ( x f 1 (B 1 ou x f 1 (B 2 x f 1 (B 1 f 1 (B 2. Exercice 20. Soit f : E F une application. a Soit A une partie de E comparer f 1 (f(a et A. Pouvez vous donner une condition nécessaire sur f et suffisante pour que ces deux parties de E soient toujours égales? a Soit B une partie de F comparer f(f 1 (B et B. Pouvez vous donner une condition nécessaire sur f et suffisante pour que ces deux parties de F soient toujours égales? Exercice 21. Soit E un ensemble. L application C : P(E P(E; A C E A est elle injective? surjective? bijective? Exercice 22. Soit E un ensemble, soit {0, 1} E l ensemble des applications de E vers {0, 1}. On pose 1 : P(E {0, 1} E ; A 1 A où { 0 si x / A 1 A est définie par 1 A : E {0, 1}; x 1 si x A. L application 1 A est la fonction indicatrice de A. a Montrer que 1 est une bijection. b Soit A et B deux parties de E exprimer 1 A B et 1 A B à l aide de 1 A et 1 B.

2.7. APPLICATIONS IMAGE RÉCIPROQUE ET IMAGE DIRECTE 45 Exercices du chapitre II 1. Dans tout l exercice E et F sont des ensembles, A et B sont des assertions. a Ecrire une assertion équivalente sans utiliser le symbole N ON les négations des assertions x E, y F/NONA(x = B(y x, y E/ z F, A(x B(y, z b Les assertions suivantes sont elles équivalentes? x E, y E/A(x = B(y et y E, x E/A(y = B(x x E, y E/A(x = B(y et y E, x E/A(x = B(y x E, y E/A(x = B(y et y E, x E/NONB(y = NONA(x 2. Soit E, F et G trois ensembles et f : E F, g : F G et h : G E trois applications. On suppose que h g f est surjective et que g f h et f h g sont injectives. a Montrer que h est bijective. b Montrer f et g sont bijectives. 3. Soit f : R 2 R 2 ; (x, y (2x + 3y, x + y L application f est elle injective? surjective? bijective? 4. Soit f : E F une application. Soit A une partie de E. Comparer f(f 1 (f(a et A. 5. a Soit A(x et B(x deux assertions quelconques dont la valeur de vérité dépend de la valeur du terme x. Montrer que l implication [ ] [ ] x, (A(x = B(x = ( x, A(x = ( x, B(x est vraie. b Donner un exemple explicite d assertions A(x et B(x montrant que l implication réciproque est fausse.

46 CHAPITRE 2. ENSEMBLES 6. a Soit E un ensemble de cardinal fini n, Soit {A, B} une paire de parties de E formant une partition de E. On pose ϕ : P(A P(B P(E (X, Y X Y Montrer que ϕ est une bijection. b Soit p r q trois entiers naturels. Montrer la formule ( p + q = k p ( p j j=0 ( q. k j (On pourra utiliser la question a même si cette question n a pas été traitée. 7. a Soit A(x et B(x deux assertions quelconques dont la véracité dépend de la valeur du terme x. Montrer que l implication [ ] [ ] ( x, A(x = ( x, B(x = x, (A(x = B(x est vraie. b Donner un exemple explicite d assertions A(x et B(x montrant que l implication réciproque est fausse.

Chapitre 3 Anneaux 3.1 Définitions et propriétés élémentaires Définition 27 Une loi de composition interne sur un ensemble E est une application du produit cartésien E E vers E. L usage est de noter les lois de composition internes comme des opérations c est-à-dire que, par exemple, l addition des réels est une loi de composition interne sur R que l on note : + : R R R; (x, y x + y ( et non (x, y +(x, y. Définition 28 Soit une loi de composition interne sur un ensemble E. On dit que - est associative lorsque x, y, z E, (x y z = x (y z. - e E est neutre pour lorsque x E, e x = x e = x. - Si admet un élément neutre e, un élément x E admet un symétrique x lorsque x x = x x = e. - est commutative lorsque x, y E, x y = y x. Exercice 1. Quelles sont les propriétés de la loi de composition interne sur R définie par x x = x + y xy Exercice 2. Montrer qu une loi de composition interne sur un ensemble E admet au plus un élément neutre. 47

48 CHAPITRE 3. ANNEAUX Définition 29 Un anneau est un ensemble muni de deux lois de composition internes (notées en général + et, satisfaisant les trois propriétés suivantes : 1 (A, + est un groupe commutatif ; C est-à-dire que la loi + est associative, commutative, admet un élément neutre (noté 0 A. Tout élément de A admet un symétrique. (Le symétrique de l élément a de A est appelé son opposé il est noté a. 2 La loi est associative, admet un élément neutre (noté 1 A. 3 La loi est distributive par rapport à la loi + ; c est-à-dire a, b, c A, (a + b c = a c + b c et a (b + c = a b + a c. Lorsque la loi est de plus commutative, (A, +, est un anneau commutatif. Notation : Lorsque (A, +, est un anneau, on note A l ensemble A privé de 0 A. Exercice 3. (N,, +, (Z,, +, (Z, +,, (P(E,, et (P(E,, sontils des anneaux? Nous n étudierons en détail que trois exemples d anneaux : L anneau des entiers relatifs Z, les anneaux des polynômes réels et complexes R[X], et C[X]. Propriété 13 Soit (A, +, un anneau. L élément neutre de l addition 0 A est absorbant pour la multiplication. c est-à-dire a A, A 0 A = 0 A a = 0 A. Démonstration : Soit a A, on a 0 A + a = a = 1 A a = (0 A + 1 A a = 0 A a + 1 A a = 0 A a + a. Donc 0 A + a = 0 A a + a en rajoutant l opposé de a aux deux membres de cette égalité il vient, 0 A = 0 A a. - Une conséquence importante est que a A, on a ( 1 A a = a. En effet, 0 A a = 0 A donc 0 A a = (1 A + ( 1 A a = 1 A a + ( 1 A a = a + ( 1 A a = 0 A.

3.1. DÉFINITIONS ET PROPRIÉTÉS ÉLÉMENTAIRES 49 Définition 30 Soit (A, +, un anneau. Soit u A on dit que u est inversible s il admet un symétrique pour la multiplication. Le symétrique de u pour la multiplication est noté u 1 et appelé inverse de u. L ensemble des inversibles de A est noté A. Définition 31 Soit (A, +, un anneau. On dit que c est un corps lorsque tous ses éléments excepté 0 A sont des inversibles, autrement dit lorsque A = A. Propriété 14 Soit (A, +, un anneau. La multiplication détermine une loi de composition interne sur A et (A, est un groupe. Démonstration - La multiplication est une loi de composition interne sur A : Soit u et u deux inversibles de l anneau (A, +,.. On a (u.u.(u 1.u 1 = u.(u.u 1.u 1 = u.1 A.u 1 = u.u 1 = 1 A. Le produit u.u est donc inversible et son inverse est (u.u 1 = u 1.u 1. - A. En effet, 1 A est toujours un inversible. - La loi est associative sur A donc a fortiori sur A. - L élément 1 A est neutre pour la loi sur A donc a fortiori sur A. - Tout élément u de A posséde un symétrique pour la loi. (A, est donc un groupe. Notons que si A est un anneau commutatif le groupe des inversibles de A est un groupe commutatif. Propriété 15 (formule du binôme de Newton : Soit (A, +, un anneau commutatif. Soient a, b deux éléments de A alors pour tout entier n supérieur ou égal à 2, on a (a + b n = a n + ( n a n 1 b + 1 = n k=0 ( n k a n k b k. ( n où on a posé = ( k n ( n et = = 1. 0 n ( ( n a n 2 b 2 + + n a 1 b n 1 + b n 2 n 1 n! (n k!k! pour k différent de 0 et de n

50 CHAPITRE 3. ANNEAUX Démonstration : On se donne a et b dans un anneau commutatif A. Pour un entier naturel n 2 on pose (P n : la formule proposée est vraie. - Montrons que (P 2 est vraie : (a + b 2 = (a + b.(a + b = a.a + a.b + b.a + b.b = a 2 + 2a.b + b 2 = a 2 + ab + b 2. ( 2 0 ( 2 1 ( 2 2 - Soit n 2 un entier naturel donné. Supposons que (P n soit vraie. n ( n Alors (a + b n = a n k b k k On a k=0 (a + b n+1 = (a + b n.(a + b = = = = = n k=0 n k=0 n k=0 n k=0 n k=0 ( n k a n k b k a + ( n k a n k+1 b k + ( n k a (n+1 k b k + ( n k a (n+1 k b k + ( n k a n k b k (a + b n k=0 n k=0 ( n + a n (n+1 (n+1 b n+1 n k=0 n 1 k=0 ( n k a n k b k b ( n k a n k b k+1 ( n k a (n+1 (k+1 b k+1 ( n k a (n+1 (k+1 b k+1 Dans la seconde somme posons l = k +1 (donc k = l 1 et quand k parcourt 0, 1,..., n 1, l parcourt 1, 2,..., n. Il vient n ( n n ( n (a + b n+1 = a (n+1 k b k + a (n+1 l b l k l 1 k=0( l=1 n + a n (n+1 (n+1 b n+1 ( n n ( n = a (n+1 0 b 0 + a (n+1 k b k 0 k k=1 n ( n + a (n+1 l b l + l 1 l=1 On réunit les deux sommes, ( on utilise les relations n ( n + 1 ( n = et = 0 0 n ( n n a (n+1 (n+1 b n+1 ( n + 1 n + 1

3.2. L ANNEAU Z 51 pour obtenir : ( n + 1 n (( n ( n (a + b n+1 = a (n+1 0 b 0 + + a (n+1 k b k 0 k k 1 k=1 ( n + 1 + a (n+1 (n+1 b n+1 n + 1( n ( n ( n + 1 Enfin on a la relation + = k k 1 k Donc finalement, ( n + 1 n ( n + 1 ( n + 1 (a+b n+1 = a (n+1 0 b 0 + a (n+1 k b k + a (n+1 (n+1 b n+1 0 k n + 1 k=1 Donc (P n+1 est vraie. Exercice 4. a On pose Z[i] = {a + ib, a, b Z} montrer que muni de l addition et de la multiplication des entiers c est un anneau commutatif (anneau des entiers de Gauss. Calculer son groupe des inversibles. b Pour n un entier naturel non nul, on pose Q[ n] = {a + b n, a, b Q} montrer que muni de l addition et de la multiplication des réel c est un anneau. Calculer son groupe des inversibles, est-ce un corps? Exercice 5. a Calculer n k=0 ( n k b Soit E un ensemble de cardinal égal à n. Quel est le nombre de parties de E de cardinal k ( 0 k n? c En déduire le nombre de parties de E. 3.2 L anneau Z (Z, +, est un anneau commutatif, son élément neutre pour + est 0 ; son élément neutre pour est 1. Tous les éléments différents de 0 sont simplifiables pour la multiplication. Les inversibles sont 1 et -1. Z = {1, 1}. Division Euclidienne de Z Propriété 16 Soit a Z et b N\{0}, il existe un unique couple d entier (q, r tel que a = bq + r et 0 r < b.

52 CHAPITRE 3. ANNEAUX Démonstration - Unicité du couple (q, r : Soit a Z et b N \ {0}. Supposons que (q, r et (q, r soient deux couples d entier satisfaisant Alors on a a = bq + r, a = bq + r et 0 r, r < b. b(q q = r r et si q q on a q q 1 donc r r b. Comme r, r {0, 1,...b 1} on a r r { (b 1,..., 1, 0, 1,..., (b 1} ce qui est en contradiction avec la condition précédente, donc l hypothèse q q doit être rejetée, par conséquent q = q et r = r. - Existence du couple (q, r : Soit a Z et b N \ {0}. - Si a = 0 le couple (0, 0 convient. - Si a > 0 la suite u n = b n est strictement croissante et tend vers + donc il existe un entier q tel que u q = b q a < u q+1 = b (q + 1. On a alors a = b q + (a b q et le couple (q, a b q convient. - Si a < 0 alors a > 0 on trouve un couple (q, r tel que a = b q + r et 0 r < b. On constate que a = b( q 1 + (b r : Le couple ( q 1, b r convient. L existence de cette division euclidienne est une des propriétés de Z les plus importantes, nous verrons dans le chapitre suivant certaines de ses conséquences.

3.3. L ANNEAU DES POLYNÔMES 53 3.3 L anneau des polynômes Construction de l anneau des polynômes Soit (a n n N une suite réelle ou complexe, on dit qu elle est nulle à partir d un certain rang s il existe N N tel que si n > N, alors a n = 0. La suite dont les premiers termes sont a 0, a 1,..., a N et dont les termes suivants valent tous 0 sera notée (a 0, a 1,..., a N, 0. On note R[X] l ensemble des suites réelles nulles à partir d un certain rang et C[X] l ensemble des suites complexes nulles à partir d un certain rang. Dans toute la suite de ce chapitre K désignera R ou C Remarque : On a vu que le corps des réels R est inclus dans celui des complexes C, donc on a R[X] C[X]. Définition 32 Si P = (a 0,..., a n, 0 K[X], a k est appelé le k-ième coefficient de P. La suite (a n n N est aussi appelée la suite des coefficients de P, le coefficient a 0 est aussi appelé coefficient constantde P. - Structures algébriques sur l ensemble des polynômes : On muni maintenant K[X] de deux lois de compositions internes : 1 Soit P et Q K[X]. Si P = (a n n N et Q = (b n n N, on pose P + Q = (s n n N où n N, s n = a n + b n. Comme les deux suites (a n n N et (b n n N sont nulles à partir d un certain rang la suite (s n n N également, plus précisément, si (a n n N est nulle à partir du rang N et (b n n N à partir du rang M, la suite (s n n N est nulle au moins à partir du rang Max(N, M (car il peut y avoir des annulations de la somme a k + b k avant le rang Max(N, M. La loi + est donc une loi de composition interne sur K[X]. On déduit des propriétés de l addition des réels et des complexes que + est associative, commutative, que la suite constante égale à 0 est élément neutre (on notera ce polynôme 0, que tout polynôme P admet un symétrique, la suite des coefficients du symétrique de P est la suite des opposés des coefficients de P, il est noté P. Finalement, (K[X], + est un groupe commutatif.

54 CHAPITRE 3. ANNEAUX 2 Soit P et Q K[X]. Si P = (a n n N et Q = (b n n N, on pose P Q = (p n n N où n N, p n = a n b 0 + a n 1 b 1 + a n 2 b 2 +... + a 0 b n = n k=0 a n k b k = n k=0 a k b n k. Soit P = (a n n N et Q = (b n n N. Supposons que la suite des coefficients de P, (a n n N soit nulle à partir du rang N et que la suite des coefficients de Q, (b n n N soit nulle à partir du rang M. Autrement dit, a k = 0 dès que k > N et b l = 0 dès que l > M. Alors pour n N + M + 1 on a p n = n a n k b k = k=0 M n a n k b k + a n k b k. k=0 k=m+1 - Dans la deuxième somme l indice k court de M + 1 à n, donc reste toujours plus grand que M donc b k = 0. Cette somme est donc nulle. - Dans la première somme l indice k court de 0 à M, donc n k court de n à n M comme n > N +M on a n M+ > N,donc n k donc en permanence plus grand que N donc a n k = 0. Cette somme est nulle. Finalement, p n = 0. La suite (p n est nulle à partir du rang N + M donc P Q est un polynôme. Donc, i La loi est une loi de composition interne sur K[X]. ii Le polynôme 1 = (1, 0,..., 0 est élément neutre de (K[X], : En effet, Soit Q = (b n n N un polynôme, 1 Q = (p n n N avec p n = 1 b n + 0 b n 1 +... + 0 b 0 = b n donc les suites (p n n N et (b n n N sont les mêmes. Donc 1 Q = Q, de même Q 1 = Q. iii La loi est associative : Nous avons besoin d un résultat de technique de calcul sur l échange de deux signes. Soit u k,l une quantité réelle ou complexe dépendant de deux indices entiers k et l. Soit n un entier naturel fixé. On a n n l u k,l = l=0 k=0 n n l u k,l. k=0 k=0 On peut visualiser ce résultat en imaginant que les réels u k,l sont posés aux points de coordonnées (k, l, les deux doubles-sommes correspondent à la somme des réels déposés dans un triangle : elle peut être obtenue en sommant

3.3. L ANNEAU DES POLYNÔMES 55 d abord selon les verticales puis en sommant ces résultats, ou en sommant d abord selon les horizontales et en sommant ensuite ces résultats. Soit P = (a n n N, Q = (b n n N et R = (c n n N trois polynômes. On a P Q = (p n n N avec p n = n k=0 a k b n k. Donc (P Q R = (s n n N avec s n = n p n l c l = l=0 n n l (a k b n l k c l. l=0 k=0 Par ailleurs, Q R = (q n n N avec q n = n l=0 b n l c l. et P (Q R = (t n n N avec t n = n a k q n k = k=0 n n k a k (b n l k c l. Donc n, s n = t n, d où (P Q R = P (Q R. - La distributivité ne présente aucune difficulté particulière. - On peut aussi remarquer que la multiplication est commutative. Finalement : k=0 l=0 (K[X], +, est un anneau commutatif. 3 On considère également la loi à opérateur externe : Soit λ K et P K[X], si P = (a n n N on pose λ P = (λ a n n N. On vérifie facilement que - P K[X], 1.P = P. - λ, µ K, P, Q K[X], (λ + µ.p = λ.p + µ.p En résumé : on dit que (λ.µ.p = λ.(µ.p λ.(p + Q = λ.p + λ.q (K[X], +,. est un espace vectoriel sur le corps K. Les polynômes sont un exemple important d espace vectoriel, la notion d espace vectoriel sera étudiée dans d autres modules. On a de plus, λ K, P, Q K[X], λ.(p Q = (λ.p Q. On dit que (K[X], +,,. est une algèbre réelle ou complexe

56 CHAPITRE 3. ANNEAUX - Qui est X? Soit P = (a n n N = (a 0, a 1,..., a N, 0 un polynôme. On a P = (a 0, 0, 0 + (0, a 1, 0, 0 +... + (0,..., a N, 0, 0 = a 0.(1, 0, 0 + a 1.(0, 1, 0, 0 +... + a N.(0,..., 1, 0, 0. Notons X = (0, 1, 0, 0. Montrons que pour n entier on a X n = X } X {{... X} = (0, 0,...0, 1, 0, 0 n-fois le 1 est en position correspondant à l indice n Pour n = 1 ceci est vrai par définition de X. Supposons avoir montré cela pour un n donné. Alors, X n+1 = X X n = (0, 1, 0, 0 (0,..., 0, 1, 0, 0 a 0, a 1, a 2 b 0,..., b n 1, b n, b n+1,... On a donc X n+1 = (c 0,..., c k,... avec c k = a 0.b k + a 1.b k 1 + a 2.b k 2 +... + a k.b 0 - Tous les a i sont nuls sauf a 1 qui vaut 1 donc dans cette somme ne subsiste que le terme a 1.b k 1 = b k 1, - b k 1 vaut toujours 0 sauf lorsque k 1 = n. Finalement, c k vaut toujours 0 sauf lorsque k = n + 1. Donc X n+1 = (0,..., 0, 1, 0,... avec le 1 à la position qui correspond à l indice n + 1. Par conséquent, avec cette nouvelle notation on a P = (a 0, 0,... + (0, a 1, 0... +... + (0,..., a N, 0,... = a 0.(1, 0,... + a 1.(0, 1, 0... +... + a N.(0,..., 1, 0,... = a 0.1 + a 1.X +... + a N.X N. Très souvent on omet d écrire 1, et on écrit plutôt P = a 0 +a 1.X+...+a N.X N. Mais en aucun cas la lettre X ne représente une variable, nous allons maintenant voir comment les polynômes peuvent s interpreter comme des fonctions.

3.3. L ANNEAU DES POLYNÔMES 57 Fonctions polynomiales Dans le secondaire les polynômes sont seulement abordés du point de vue des fonctions polynômiales, la construction que nous vennons d étudier en fait des objets algébriques, les polynômes sont un type d objet en eux-même et non un type particulier de fonction. Il n y a plus de confusions possibles entre x qui désigne dans le secondaire la variable réelle et X qui désigne un polynôme. Ce point de vue abstrait sera fondamental dans toutes sorte de problème : problèmes arithmétiques, géométriques, algébriques, mais bien sur aussi en analyse. Le fait qu à un polynôme est associée une fonction se généralise à d autre type de fonction que les fonctions réelles de la variable réelle. - Soit (A, +,,. une algèbre réelle ou complexe. c est-à-dire que (A, +, est un anneau commutatif, (A, +,. est un K-espace vectoriel (avec K = R ou C et λ K, a, b A, λ.(a b = (λ.a b. - Soit P K[X], P = c 0 + c 1 X +... + c n X n. On pose f P,A : A A; a c 0.1 A + c 1.a +... + c n.a n où a k = a a... a (k-fois. L application f P,A est appelée Application polynômiale de A vers A associée au polynôme P. Exemples : - L exemple le plus connu est celui des fonctions polynômiales réelles ou complexes : (R, +,,. est une algèbre réelle. Soit P = c 0 + c 1 X +... + c n X n R[X]. On a f P,R : R R; x c 0 + c 1 x +... + c n x n (C, +,,. est aussi une algèbre réelle, on peut donc associer à un polynôme réel une fonction complexe de la variable complexe : f P,C : C C; z c 0 + c 1 z +... + c n z n - (C, +,,. est aussi une algèbre complexe, on peut donc associer à un polynôme complexe une fonction complexe de la variable complexe.

58 CHAPITRE 3. ANNEAUX - Fonctions polynômiales de fonctions : Soit C(R, R l ensemble des fonctions réelles de la variable réelle, on pose - + l addition des fonctions définie comme suit : Si f et g sont deux fonctions réelles de la variables réelles on pose f +g le fonction qui associe f(x + g(x au réel x. - la multiplication des fonctions définie comme suit : Si f et g sont deux fonctions réelles de la variables réelles on pose f g la fonction qui associe f(x.g(x au réel x. - la multiplication des fonctions par un scalaire réel : Si f est une fonction réelle de la variable réelle et λ un réel, on pose λ f la fonction qui associe λ.f(x au réel x. Il est facile de vérifier que (C(R, R, +,, est une algèbre réelle. Soit P = c 0 + c 1 X +... + c n X n un polynôme à coefficient réel, on a f P,C(R,R : C(R, R C(R, R; f c 0 + c 1.f +...c n.f n. Propriété 17 Soit P et Q deux polynômes à coefficients réels. Alors P = Q f P,R = f Q,R. Démonstration : L implication directe est évidente. Réciproquement, soit P = a 0 +... + a n X n avec a n 0, Q = b 0 +... + b p X p avec b p 0 deux polynômes. Supposons que f P,R = f Q,R, alors x R si x est non nul on a 1 f x n P,R (x = 1 f x n Q,R (x. Donc lim x + 1 x n f P,R(x = lim x + 1 x n f Q,R(x. 1 1 Or lim x + f x n P,R (x = a n donc lim x + f x n Q,R (x = a n ce qui impose que n = p et a n = b p. On applique le même raisonement aux polynômes P 1 = a 0 +... + a n 1 X n 1 et Q 1 = b 0 +... + b n 1 X n 1, jusqu à épuisement. Remarque : Contrairement à ce qu on peut penser ce résultat n est nullement une évidence, on utilise très fortement des propriétés de R. Il existe des cas où l égalité des fonctions polynômiales n entraine pas l égalité des polynômes. Nous verrons un exemple en exercice.

3.3. L ANNEAU DES POLYNÔMES 59 Propriété 18 Soit P et Q deux polynômes à coefficients complexes. Alors P = Q f P,C = f Q,C. Exercice 5. Démontrer cette propriété. Définition 33 Soit P, Q K[X], on pose P Q = f P,K[X] (Q, autrement dit si P = a 0 + a 1 X + + a n X n, on a Degré et valuation P Q = a 0 + a 1 Q + + a n Q n. Définition 34 Soit P un polynôme non nul à coefficients réels (ou complexes. - On appelle degré de P et on note d P le plus grand indice correspondant à un coefficient non nul dans la suite des coefficients de P. Pour un polynôme non nul, le coefficient du terme de plus haut degré est appelé coefficient dominant. Lorsque le coefficient dominant du polynôme P vaut 1, on dit que P est un polynôme unitaire. - On appelle 0-valuation de P et on note V al 0 P le plus petit indice correspondant à un coefficient non nul dans la suite des coefficients de P. Par convention d 0 = et V al 0 0 = +. Exemples - Soient P = 3X + 5X 4 + 6X 7 et Q = 1 + X + X 2. On a d P = 7 et d Q = 2. Le coefficient dominant de P est 6 celui de Q est 1,donc Q est unitaire. Enfin V al 0 P = 1 et V al 0 Q = 0. Exercice 6. Calculer le degré et la 0-valuation des polynômes P Q, P Q et P + Q.

60 CHAPITRE 3. ANNEAUX Propriété 19 (Comportement du degré relativement aux lois de composition a Soient P et Q deux polynômes réels ou complexes, on a d (P + Q Max(d P, d Q. - Lorsque d P d Q on a une égalité. - Lorsque d circp = d Q il peut arriver qu on ait une égalité mais aussi que l inégalité soit stricte. b Soient P et Q deux polynômes réels ou complexes, on a d (P Q = d P + d Q. (avec la convention + n = c Soit P un polynôme réel ou complexe et λ un réel ou un complexe. On a si λ 0 alors d (λ.p = d P si λ = 0 alors d (λ.p =. d Soient P et Q deux polynômes réels ou complexes. On a d (P Q = d P.d Q. Démonstration : Soit P = a 0 +... + a n X n avec a n 0 Q = b 0 +... + b p X p avec b p 0 deux polynômes réels ou complexes. a Alors - Si n < p (le cas p < n se traite de la même manière, on a P + Q = (a 0 + b 0 +... + (a n + b n X n + b n+1 x n+1 +... + b p X p est de degré p(= Max(n, p ; - Si on a n = p alors P + Q = (a 0 + b 0 +... + (a n + b n X n alors il est possible que a n +b n = 0 donc que d (P +Q n(= Max(n, p. b On a P Q = a 0 b 0 + (a 0 b 1 + a 1 b 0 X +... + a n b p X n+p, comme ni a n ni b p ne sont nuls a n b p est non nul donc P Q est de degré n + p. c est une évidence.

3.3. L ANNEAU DES POLYNÔMES 61 d On a P Q = a 0 + a 1 Q + + a n Q n. Par application de b on a d Q k = kd Q, par application de c on a d a k Q k = 0 ou d q k selon que a k est nul ou non. Donc finalement, une application de a donne d P Q = nd Q. Le cas non traité P = 0 est trivial. Exemples - Si P = X + X 2, Q = 1 + X X 2, on a P + Q = 1 + 2X et P Q = X + 2X 2 X 4 donc d (P + Q = 1 < Max(d P, d Q = Max(2, 2 = 2 et d (P Q = 4 = d P + d Q = 2 + 2. On a aussi P Q = Q+Q 2 = (1+X X 2 +(1+X X 2 2 = 2+3X 2X 2 2X 3 +X 4 donc d (P Q = 4 = d P.d Q. - Si P = X + X2, Q = X2, on a P + Q = X + 2X 2 et P Q = X 3 + X 4 donc d (P + Q = 2 = Max(d P, d Q = Max(2, 2 = 2 et d (P Q = 4 = d P + d Q = 2 + 2. Corollaire 20 Les inversibles de K[X] sont les polynômes constants non nuls. Autrement dit K[X] = { polynômes de degré 0}. Démonstration : Soit P un polynôme, si P est inversible on trouve un polynôme Q tel que P Q = 1. On a donc d P + d Q = d 1 = 0 donc d P = d Q = 0. Exercice 7. Soit P et Q deux polynômes réels. a Montrer que parmi les deux inégalités d (P + Q Max(d P, d Q d (P Q Max(d P, d Q l une au moins est une égalité. b Montrer que si P + Q et P Q sont des polynômes constants non nuls alors P et Q sont des polynômes constants non nuls.

62 CHAPITRE 3. ANNEAUX Propriété 21 (Comportement de la 0-valuation relativement aux lois de composition a Soient P et Q deux polynômes réels ou complexes, on a V al 0 (P + Q Min(V al 0 P, V al 0 Q. - Lorsque V al 0 P V al 0 Q On a une égalité. - Lorsque V al 0 P = V al 0 Q il peut arriver qu on ait une égalité mais aussi que l inégalité soit stricte. b Soient P et Q deux polynômes réels ou complexes, on a V al 0 (P Q = V al 0 P + V al 0 Q. (avec la convention + + n = + c Soit P un polynôme réel ou complexe et λ un réel ou un complexe. On a si λ 0 alors V al 0 (λ.p = V al 0 P si λ = 0 alors V al 0 (λ.p = + Exercice 8. Démontrer de ces trois propriétés. Exercice 9. Trouver et démontrer une formule donnant la valuation en 0 de la composée de deux polynômes. Exemples - P = X + X 2, Q = 1 + X X 2 on a P + Q = 1 + 2X et P Q = X + 2X 2 X 4 Donc V al 0 (P + Q = 0 = Min(V al 0 P, V al 0 Q = Min(1, 0 = 0 et V al 0 (P Q = 1 = V al 0 P + V al 0 Q = 1 + 0. - P = X + X2, Q = X, on a P + Q = 2X + X 2 et P Q = X 2 + X 3 donc V al 0 (P + Q = 1 = Min(V al 0 P, V al 0 Q = Min(1, 1 = 1 et V al 0 (P Q = 2 = V al 0 P + V al 0 Q = 1 + 1.

3.3. L ANNEAU DES POLYNÔMES 63 Exercice 10. Soit P = a 0 + a 1 X + + a n x n un polynôme réel. Soit r un réel. a Montrer qu il existe un unique n + 1-uplet (c 0, c 1,..., c n de réels tels que P = c 0 + c 1 (X r + + c n (X r n. b Montrer que le degré du polynôme Q = c 0 + c 1 X + + c n X n est le même que celui de P. c Peut-on lier la valuation en zero de Q et celle de P? La valuation en 0 de Q s appelle la valuation en r de P. Division Euclidienne des polynômes Propriété 22 Soient A et B K[X], on suppose que B n est pas le polynôme nul. Alors, il existe un unique couple (Q, R de polynômes dans K[X] tels que (1 A = BQ + R (2 d R < d B Le polynôme Q est appelé quotient euclidien de A par B. Le polynôme R est le reste de la division Euclidienne. La relation (1 est la division euclidienne de A par B. Démonstration Soient A et B deux polynômes avec B 0. Unicité : Supposons que (Q 1, R 1 et (Q 2, R 2 soient deux couples de polynômes satisfaisant A = BQ 1 + R 1, d R 1 < d B et A = BQ 2 + R 2, d R 2 < d B Alors on a BQ 1 + R 1 = BQ 2 + R 2, donc B(Q 1 Q 2 = R 2 R 1. Si on avait Q 1 Q 2 alors Q 1 Q 2 0 donc d (Q 1 Q 2 0 et d (B(Q 1 Q 2 d B. D autre part d (B(Q 1 Q 2 = d (R 2 R 1 donc d (R 2 R 1 d B. Or, d R 1 < d B et d R 2 < d B, donc d (R 2 R 1 < d B. On obtient donc une contradiction : l hypothèse Q 1 Q 2 doit être rejettée : On a Q 1 = Q 2 et par suite R 1 = R 2.

64 CHAPITRE 3. ANNEAUX Existence : - Si A = 0 le couple (Q, R = (0, 0 convient. - Si A 0 alors d A = n N. On va procéder par récurrence sur le degré de A : - Soit P n la propriété : Soit A un polynôme de degré au plus n et B un polynôme non nul, alors il existe un couple de polynômes (Q, R tel que (1 A = BQ + R (2 d R < d B Montrons P 0 : Si d A = 0, alors A = a 0 0. - Si B = b 0 0 : Alors B est aussi de degré 0 alors on a A = a 0 = b 0. a 0 b 0 + 0 donc le couple (Q, R = ( a 0 b 0, 0 convient. - Si B est de degré au moins égal à 1 : Alors A = a 0 = B.0 + a 0 donc le couple (Q, R = (0, a 0 convient. Supposons que pour une valeur donnée de l entier n on ait montré P n 1. Soit A un polynôme de degré n. Soit B un polynôme non nul. Soit p le degré de B. - Si p > n : Alors A = B.0 + A et le couple (Q, R = (0, A convient. - Si p n : Soit a n X n et b p X p les termes de plus haut degré de A et de B (on a b p 0 et a n 0. On a A = a n X n + A avec A de degré au plus n 1. Et, B = b p X p + B avec B de degré au plus p 1. On a a n X n = (b p X p.( a n b p X n p = (b p X p + B ( a n b p X n p B.( a n b p X n p = B.( a n X n p B.( a n X n p. b p b p Le degré de B.( an b p X n p vaut au plus n 1, on peut donc appliquer à ce polynôme l hypothèse de récurrence.

3.3. L ANNEAU DES POLYNÔMES 65 Il existe un couple (Q 1, R 1 tel que B.( an b p X n p = BQ 1 + R 1 et d R 1 < d B. On obtient finalement : a n X n = B.( a n X n p (BQ 1 + R 1 = B.( a n X n p Q 1 R 1. b p b p A est aussi de degré au plus n 1 donc l hypothèse de récurrence s applique aussi à A : Il existe un couple (Q 2, R 2 tel que A = BQ 2 + R 2 et d R 2 < d B. Donc ( A = a n X n + A = B.( a n X n p Q 1 R 1 + (BQ 2 + R 2 b p = B.( a n X n p Q 1 + Q 2 + (R 2 R 1. b p On a d (R 2 R 1 Max(d R 2, d R 1 < d B. Donc le couple (Q, R = ( an b p X n p Q 1 + Q 2, R 2 R 1 convient. Donc P n est vraie. Une application du principe de récurrence montre que P n est vraie pour toute valeur de l entier n. Exercice 11. Effectuer les divisions euclidiennes de A par B pour 1 A = X 5 + X + 1, B = X 2 + X + 1. 2 A = X 4 + 4X 3 + X 2 16, B = X 3 + 3X 2 3X + 4. Une application de la notion de division euclidienne : Racines d un polynôme Soit P = a 0 + a 1 X +... + a n X n K[X]. Que K vaille R ou C il est toujours possible de considérer la fonction polynômiale complexe associée : f P,C : C C; z a 0 + a 1 z +... + a n z n. Soit z 0 un complexe, on dit que z 0 est une racine de P lorsque f P,C (z 0 = 0. Lorsque z 0 est un complexe non réel on dit que z 0 est une racine imaginaire, s il se trouve que z 0 est réel on dit que c est une racine réelle. Propriété 23 Soit r K et P K[X]. Les deux propriétés suivantes sont équivalentes (a r est une racine dans K de P. (b Il existe un polyôme Q à coefficients dans K tel que P = (X rq.

66 CHAPITRE 3. ANNEAUX Démonstration (a = (b : Supposons que r soit une racine dans K du polynôme P à coefficients dans K. Ecrivons la division euclidienne de P par (X r : P = (X rq + R avec d R < d (X r = 1. Donc R est un polynôme constant (nul ou non. - Si R était une constante non nulle on aurait f P,C (r = (r rf Q,C (r + f R,C (r = f R,C (r 0 ce qui contredirait r racine de P. - Donc R est nul et P = (X rq. (b = (a : Supposons qu il existe un polynôme Q tel que P = (X rq alors f P,C (r = (r rf Q,C (r = 0 donc r est une racine de P. Racines multiples d un polynôme. Définition 35 Soit P = a 0 + a 1 X +... + a k X k +... + a n X n K[X]. On pose P = a 1 + 2a 2 X +... + ka k X k 1 +... + na n X n 1. Le polynôme P est appelé polynôme dérivé de P. Remarquons que la fonction polynômiale réelle associée au polynôme dérivé d un polynôme réel coïncide avec la fonction dérivée de la fonction polyômiale réelle associée au polynôme. Autrement dit f P,R = (f P,R. Propriété 24 Soit P, Q deux polynômes à coefficients dans K et λ K. Alors (a (P + Q = P + Q (b (P.Q = P.Q + P.Q (c (λp = λp Démonstration Les propriétés (a et (c sont quasiment immédiates. (b Commençons par traiter le cas d un produit de deux monômes : Soit P = a n X n et Q = b p X p alors on a (P.Q = (a n b p X n+p = a n b p (n + px n+p 1

3.3. L ANNEAU DES POLYNÔMES 67 P = na n X n 1 et Q = pb p X p 1. Donc P.Q + P.Q = na n X n 1 b p X p + pb p X p 1.a n X n = (na n b p + pb p a n X n+p 1 = (n + pa n b p x n+p 1 = (P.Q Passons maintenant au cas général : Soit P = n k=1 a kx k et Q = p l=1 b lx l. Notons P k = a k X k et Q l = b l X l. p k=0 l=0 P k.q l. On a P = n k=0 P k et Q = n l=0 Q l, donc P.Q = n On a donc (P.Q = = n ( n k=0 = n k=0 k=0 p l=0 P kq l p l=0 (P kq l = n p k=0 l=0 P k.q l + P k.q l p l=0 P k.ql + n p k=0 l=0 P k.q l = P.Q + P.Q. Propriété 25 (Formule de Leibniz Soient P et Q deux polynômes à coefficients dans K. Alors (P.Q (n = n i=0 (n P (i.q (n i. i Ici P (k désigne la dérivée k-ième de P et ( n i = n!. i!(n i! Démonstration On montre cela par récurrence sur l ordre de dérivation : Soit P n : n (n P, Q K[X], (P.Q (n = P (i.q (n i. i - La propriété P 1 est satisfaite : (P.Q = 1 i=0 ( 1 i P (i Q (1 i = P.Q + P.Q. - Supposons que P n soit vraie pour un n entier donné. Alors (P.Q (n+1 = ((P.Q (n = (P.Q + P.Q (n = (P.Q (n + (P.Q (n. On applique P n, il vient : n (n n (n (P.Q (n+1 = P (i+1.q (n i + P (i.q (n i+1 i i i=0 i=0 Dans la première somme on fait le changement d indice l = i + 1 il vient (P.Q (n+1 = n+1 ( n l=1 l 1 P (l.q (n+1 l + n ( n i=0 i P (i.q (n i+1 = n ( n l=1 l 1 P (l.q (n+1 l + ( n n P (n+1 Q (0 + ( n 0 P (0 Q (n+1 + n ( n i=1 i P (i.q (n i+1 = n+1 ( n+1 i=0 i P (i.q (n+1 i. Donc P n+1 est satisfaite. Une application du principe de récurrence donne la conclusion. i=0

68 CHAPITRE 3. ANNEAUX Propriété 26 Soit P un polynôme. Alors - Si P n est pas une constante d P = d P 1. - Si P est une constante (nulle ou non alors P = 0 est de degré. Définition 36 Soit P K[X], on dit que le complexe z 0 est une racine d ordre exactement k de P lorsque on a f P,C (z 0 = f P,C(z 0 =... = f P (k 1,C(z 0 = 0 et f P (k,c(z 0 0. Propriété 27 Soit r K, P K[X] et k N avec k d P. Alors les deux propositions suivantes sont équivalentes. (a r est une racine d ordre exactement k de P. (b Il existe un polynôme Q K[X] tel que P = (X r k.q et r n est pas racine de Q. Démonstration Soit r C, P K[X] et k N avec k d P. (a = (b : On montre par récurrence sur k que P k : - Si r est racine d ordre au moins k d un polynôme P alors le polynôme P se factorise sous la forme P = (X r k.h. - Si r est d ordre exatement k alors P se factorise sous la forme P = (X r k.q avec Q un polynôme dont r n est pas racine - P 1 est satisfaite : On a déjà vu que si r est racine de P alors P se factorise sous la forme P = (X r.q reste à vérifier que si r est d ordre exactement 1 alors r n est pas racine de Q. On a P = Q + (X rq donc f P (r = f Q (r. Par conséquent si r n est pas racine de P alors r n est pas non plus racine de Q. - Supposons pour un entier k donné que P k soit vraie. Supposons que r soit racine d ordre exactement k + 1 d un polynôme P. Alors r est une racine d ordre au moins k donc P se factorise sous la forme P = (X r k.h. Appliquons la formule de Leibniz pour le calcul de la dérivée k-ième : P (k = k i=0 On a [(X r k ] (i = k! (k i! (X rk i. (k [(X r k ] (i H (k i. i

3.3. L ANNEAU DES POLYNÔMES 69 Donc P (k = k i=0 (k k! i (k i! (X rk i H (k i. Pour i = 0,..., k 1 on a f (X r k i,k(r = 0 et f (X r k k,k(r = 1. Donc 0 = f P (k,k(r = f H,K (r. Par conséquent r est une racine de H. Le polynôme H se factorise donc H = (X rq. Donc P = (X r k+1.q. Comme plus haut on a k+1 (k P (k+1 + 1 (k + 1! = i (k + 1 i! (X rk+1 i Q (k+1 i. i=0 Donc 0 = f P k+1,k(r = f Q,K (r, r n est donc pas racine de Q. La propriété k+1 est donc vraie. On conclut par une application du principe de récurrence. (b = (a : Supposons qu il existe un polynôme Q R[X] tel que r ne soit pas racine de Q et P = (X r k.q. Soit l {0, 1,..., k 1}, on a P (l = l ( l k! i=0 (X i (k i! rk i.q (l i. Lorsque i parcourt {0, 1,..., l}, k i parcourt {k, k 1,...k l} donc reste supérieur à 1 donc r est une racine de (X r k i et donc de P (l. On a P (k = k ( k k! i=0 (X i (k i! rk i Q (k i. Donc f P,K(r = f (k Q,K (r = 0. Donc r est racine d ordre exactement k de P. Exercice 12. Soit P et Q deux polynômes. On suppose que r est une racine commune de P et Q. Montrer qu alors r est une racine du reste de la Division Euclidienne de P par Q. Que pensez vous de la réciproque? Exercice 13. Soit a et b deux entiers relatifs non nuls. On suppose que le reste de la division euclidienne de a par b vaut 1. Soit k un entier naturel différent de 1 on suppose que k est un diviseur de a c est-à-dire que a = k.l pour un certain entier relatif l, k peut-il être un diviseur de b? Exercice 14. Quelles sont les racines réelles et les racines complexes du polynôme P = X 4 + X 2 + 1?