Le théorème de Thalès et sa réciproque



Documents pareils
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Correction : E = Soit E = -1,6. F = 12 Soit F = y = 11. et G = -2z + 4y G = 2 6 = 3 G = G =

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Activités numériques [13 Points]

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

1S Modèles de rédaction Enoncés

PROBLEME(12) Première partie : Peinture des murs et du plafond.

Représentation géométrique d un nombre complexe

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Exercices de géométrie

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

Angles orientés et trigonométrie

DOCM Solutions officielles = n 2 10.

Géométrie dans l espace Produit scalaire et équations

Séquence 10. Géométrie dans l espace. Sommaire

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

LE PRODUIT SCALAIRE ( En première S )

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Priorités de calcul :

Correction du baccalauréat S Liban juin 2007

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Mathématiques et petites voitures

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.

Planche n o 22. Fonctions de plusieurs variables. Corrigé

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

6. Les différents types de démonstrations

Corrigé du baccalauréat S Asie 21 juin 2010

4G2. Triangles et parallèles

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

La médiatrice d un segment

5 ème Chapitre 4 Triangles

Le contexte. Le questionnement du P.E.R. :

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

Géométrie dans l espace

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

C f tracée ci- contre est la représentation graphique d une

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

Construction d un cercle tangent à deux cercles donnés.

Quelques contrôle de Première S

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

I. Ensemble de définition d'une fonction

Vecteurs. I Translation. 1. Définition :

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

Le seul ami de Batman

Problème 1 : applications du plan affine

UN TOURNOI A GAGNER ENSEMBLE

Proposition de programmes de calculs en mise en train

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Thème 17: Optimisation

Sommaire de la séquence 10

Cours d Analyse. Fonctions de plusieurs variables

EXERCICES DE REVISIONS MATHEMATIQUES CM2

EVALUATIONS FIN CM1. Mathématiques. Livret élève

2.4 Représentation graphique, tableau de Karnaugh

6 ème. Rallye mathématique de la Sarthe 2013/ ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Du Premier au Second Degré

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Chapitre 2 : Vecteurs

COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE

Sommaire de la séquence 8

Cours 02 : Problème général de la programmation linéaire

Trois personnes mangent dans un restaurant. Le serveur

TSTI 2D CH X : Exemples de lois à densité 1

Commun à tous les candidats

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE

cent mille NOMBRES RELATIFS ET REPÉRAGEȘ 1 Chapitre 3 Notion de nombre relatif Comparaison Repérage sur une droite et dans le plan Calcul littéral

Eté LIVRET de RÉVISIONS en MATHÉMATIQUES

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

point On obtient ainsi le ou les points d inter- entre deux objets».

Triangles isométriques Triangles semblables

Quels polygones sont formés par les milieux des côtés d un autre polygone?

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Fonctions homographiques

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Chapitre 2. Matrices

Chapitre 1 : Évolution COURS

Résolution de systèmes linéaires par des méthodes directes

Brevet 2007 L intégrale d avril 2007 à mars 2008

L ALGORITHMIQUE. Algorithme

Problèmes de dénombrement.

Exercice numéro 1 - L'escalier

Polynômes à plusieurs variables. Résultant

CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

Développer, factoriser pour résoudre

PARTIE NUMERIQUE (18 points)

EXAMEN : CAP ADAL SESSION 2011 N du sujet : SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)

Angles orientés et fonctions circulaires ( En première S )

Équations non linéaires

EXPLOITATIONS PEDAGOGIQUES DU TABLEUR EN STG

Transcription:

Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre figure F qui est : Une réduction de la figure F si : 0< k <1 Un agrandissement de la figure F si : k > 1 K est le facteur d agrandissement ou de réduction 2) Exemples : Exemple 1 : = = 0,6. et AM = AB, = 5 0,6 = 3 cm AN = AC, = 6 0,6 = 3,6 cm MN = BC, = 4 0,6 = 2,4 cm Comme 0,6 <1, Le triangle ANM est donc une réduction du triangle ABC. Pour obtenir les longueurs du triangle AMN on a multiplié celle du triangle ABC par 0,6. 0,6 est le facteur de réduction. Exemple 2 : = = 1,5. et AM = AB, = 2 1,5= 3 cm AN = AC, = 3 1,5= 4,5 cm MN = BC, = 4 1,5= 6 cm Comme 1,5 > 1, Le triangle ANM est donc un agrandissement du triangle ABC. Pour obtenir les longueurs du triangle AMN on a multiplié celle du triangle ABC par 1,5. 1,5 est le facteur d agrandissment.

3) Propriétés Si F est une réduction ou un agrandissement de facteur k d une figure F alors : Le périmètre de la figure F obtenue est égal au produit du périmètre de la figure F par le facteur k L aire de la figure F obtenue est égal au produit de l aire de la figure F par le facteur k² Le triangle AMN est un agrandissement du triangle ABC 1) Quel est le facteur d agrandissement? 2) Quel est le périmètre et l aire du triangle ABC? 3) En déduire le périmètre et l aire du triangle AMN. Réponse : 1) =, = 1,5. Le facteur d agrandissement est 1,5. 2) Périmètre du triangle ABC : p = AB + AC + BC = 3 + 4 + 5= 12 cm. Le périmètre du triangle ABC est 12 cm Aire du triangle ABC : A = = =6 L aire du triangle ABC est de 6 cm² 3) Le triangle AMN est un agrandissement du triangle ABC dont le facteur est 1,5. Le périmètre du triangle AMN est donc le produit du périmètre du triangle ABC par 1,5 P = 12 1,5 = 18 cm.le périmètre du triangle AMN est 18cm L aire du triangle AMN est donc le produit de l aire du triangle ABC par 1,5² P =6 1,5² = 6 2,25 =13,5 cm².l aire du triangle AMN est 13,5 cm²

II) Le théorème de Thalès 1) Le théorème : Si les droites (BM) et (CN) sont sécantes en A Si les droites (BC) et (MN) sont parallèles AM AN MN alors : = = AB AC BC Remarque : Dans la figure 1, le triangle AMN est une réduction du triangle ABC et le facteur de réduction k est :k = = =. Dans la figure 3, le triangle AMN est un agrandissement du triangle ABC et le facteur d agrandissement k est :k = = =. 2)Application : a) Le théorème de Thalès sert à calculer une longueur On sait que les droites (AC) et (DB) sont parallèles. On donne OA= 2,5 cm ;OB = 3 cm ; OC = 2 cm et DB = 4,8 cm Calculer OD et AC

1 re étape : Les droites (AB) et (CD) sont sécantes en O, Les droites (AC) et (BD) sont parallèles, On peut donc appliquer le théorème de Thalès : On écrit l égalité des rapports : OB = OD = BD OA OC AC 2 e étape : On utilise les données numériques : 3 OD 4,8 = = 2,5 2 AC 3 e étape : On résout les équations qui permettent de calculer OD et AC : 3 OD 3 2 6 = on déduit OD= = =2,4 donc OD = 2,4 cm 2,5 2 2,5 2,5 3 4,8 4,8 2,5 12 = on en déduit AC= = = 4 donc AC= 4 cm 2,5 AC 3 3 b) Partage d un segment Soit [AB] un segment. Tracer à l aide de la règle et du compas le point M tel que AM AB 5 = 6 1) On trace une demi-droite [Ax) 2) On choisit une ouverture du compas et on trace sur [Ax) 6 segments consécutifs de même longueur à partir du point A. On note chaque point de [Ax) C,D,E,F,G et H 3) On trace la parallèle à la droite (HB) passant par le point G (cinquième point en partant de la gauche) qui coupe le segment [AB] en M. et on a bien AM = 5 6 AB

III) Réciproque du théorème de Thalès si les droites (BM) et (CN) sont sécantes en A si les points A ; B ; M d une part et les points A ;C ; N d autre part sont alignés dans le même ordre AM AN si = AB AC alors les droites (BC) et (MN) sont parallèles Remarque : La réciproque du théorème de Thalès sert à démontrer que deux droites sont parallèles EL = 10 cm ; ER = 4 cm ES = 5,8 cm et EK = 14,5 cm. Montrer que les droites (RS) et (LK) sont parallèles

1 ère étape : On vérifie d abord que les points E, R, L et E,S, K sont alignés dans le même ordre et que les droites (RL ) et (SK) sont sécantes en E 2 ème étape : On calcule Donc = et puis on les compare. 4 10 0,4 5,8 14,5 0,4 D après la réciproque du théorème de Thalès, les droites (SR) et (KL) sont parallèles IV) Comment prouver que des droites ne sont pas parallèles TF = 3cm, TP = 9 cm TG = 1,8 cm et TL = 6.cm Les droites (LP) et (FG) sont elles parallèles? Justifier TF TG On calcule et, puis on les compare. TP TL TP 9 = = 3 TF 3 TP TL donc TL 6 60 20 TF TG = = = 3,3333... TG 1, 8 18 6 Conclusion : Les droites (FG) et (LP) ne sont pas parallèles. TP TL Car si les droites (FG) et (LP) étaient parallèles alors on aurait =, TF TG ce qui n est pas le cas (Ce type de raisonnement s appelle la contraposée du théorème) Remarque : A vue d œil les droites semblent parallèles car la différence des rapports n est que de 0,333