VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol ssocé oco de S ds les ombres réels ( R ) es ue vrble léore ; ( o ) es u ombre réel Eemle : lceme d ue èce de moe os = ombre de os «P I L E» =,,, F : Fce P : Ple S FFF FFP FPF PFF FPP PFP PPF PPP R Les robblés sur S se rsore sur R Foco de réro ue v,, ue vleur (réelle) rse r Évéeme : { } F ( ) = P ( ) : oco de réro roréés F ( ) - F () F () F () o décrosse dscrèe 4 F () coue à droe VARIABLE ALÉATOIRE DISCRÈTE es ue v,, dscrèe s elle red u ombre ou de vleurs dsces géérleme des eers,,,, 4, Eemles (comges) ombre de déus de surce ; ombre de versos d'u dess de déo ed ue ée; ombre de èces o coormes ds u lo de ; ombre de èces e ee dev ue mche; ombre de coes mbguës, Foco de msse () = P ( = ) () Foco de réro F ( u ) = () coue Dsrbuos mores Bomle - Posso - Hyergéomérque 4
VARIABLE ALÉATOIRE DISCRÈTE Bomle le ombre de succès ds ue sue de esss de Beroull vec ue robblé commue de succès de θ l vrble ssocée u -ème succès Eemle : = θ =, Br/Colum Plo (chs v*c) 8 msse,,,, déedes = es ue vrble bomle ~ b (, θ ) () = [! /! ( - )! ] θ ( θ ) 4 réro F ( ) = [! / k! ( - k )! ] θ k ( θ ) k k = 8 4 F E éude déllée - chre des los dscrèes 4 8 4 8 4 8 bom moyee - vrce - écr ye Moyee : E [ ] = µ = ( ) remer mome r ror à l orge cere de msse Eemle : ~ b om (, θ ) E [ ] = θ e géérl / = θ =, E [ ] = Vrce : Vr [ ] = σ = ( - µ ) ( ) = ( ) - µ Eemle : ~ b om (, θ ) σ = θ ( - θ ) e géérl = θ =, Vr [ ] = σ =, Écr ye : ET [ ] = σ = Vr [ ] Eemle : ~ b om ( =, θ =, ) ET [ ] = σ =, 7 Esérce mhémque v,, dscrèe () s oco de msse ssocée h oco de R ds R h : R R E [ h() ] = h() () : esérce mhémque de h Cs rculers E [ h( ) ] h( ) = moyee µ h ( ) = ème mome r ror è l orge h ( ) = ( - µ ) vrce h ( ) = k k - ème mome r ror à l orge h ( ) = ( µ) k k ème mome r ror à l moyee µ 8
Esérce mhémque Eemle : soumsso our l rélso d'u rvl d géere v «ombre de jours requs our le rvl», Vous esmez vos «robblés» = ro e = φ () < 4 ol () /8 4/8 /8 /8 déed du ombre de jours rs our rélser le rvl 4 = φ () K$ K$,7K$ -,K$ Pro e moye =? E( ) = K$ */8 + K$ * 4/8 +,7K$ * /8 + (-,K$) * /8 =,7K$ Eemle : - vous cheez des blles du seccle des «RS» à 4,$ ds l'esor de les revedre 7,$ le sor du seccle, - esmo de l demde blles ombre blles robblé (), 4,4,8, 7, 8,8,,8 Combe de blles S cheer our mmser les eres? -Vous erdez 4$/blle s vous sockez ro de blles: S -Vous $/blle (ro) s vous e sockez s ssez de blles: S+ Foco de ere L (, s): ere moyee E(L) L(, s) = 4 (s - ) s s sock ecess L(, s) = (7-4) ( s) s s+ sock mqu E[ L(, s)] = s 4( s ) ( ) + = = s+ Quelle vleur de S mmse E(L)? ( s) ( ) Eemle : sue S 4(s )() ( s)() E [ L(,s) ], 4, 4, 4,8 4,8,,,, 8,8 4,8 4, 7,8, 4, mmum 8 4,,, 77,, 77, 4,4, 4,4 ouvelle dsrbuo de robblé 4 7 8 rob,,,,,,8,4, VARIABLE ALÉATOIRE CONTINUE ( v,,c ) L'esce de l v,, es u ervlle sur les ombres réels s oco de réro F ( ) es dérvble L dérvée de F ( ) oée Eemles (mesures) es l desé de - emérure réelle d'u recu ; - logueur erudée v ere de corôle ; - volume réel du réservor - ems requs our lser ue coceo ; - eso d'u hub, soluo omle deve S = 4
VARIABLE ALÉATOIRE CONTINUE ( v,,c ) P lm ( = ) = = [ F ( + ) F ( ) ] d ( ) = F ( ) ( ) = d P ( b ) = ( ) d F ( ) d ( ) d = R E ( ) = ( ) d = µ VAR [ ] = ( µ ) ( ) d + b + = ( ) d µ Eemle : lo uorme (équrobblé) ( ) = s ou b b = k s b k =? k = / ( b ), E ( ) = ( + b ) /, Vr ( ) = ( b ) / F ( ) = s = ( ) / ( b ) s b = s b b Alco gééreurs de ombres (seudo) léores de l lo uorme méhode lére cogruee : I + = ( I + b ) mod m =,,, À chosr :, b, m, I ( semece ) ; u = I /m emloyé our l SIMULATION : Ssc oco Rd 4 Foco d ue vrble léore v,, sur S e d esce mge R ( réels ) = φ ( ) ue rsormo ( oco ) es ue v,, l esce mge es R ; E évéeme ds R Alors P ( E ) = P ( { ds R : φ ( ) ds E } ) Eemle: dmère d u l - dsrbuo uorme ervlle (, à, ) ( ) =,, = ureme = re de l seco = π ( / ) =, π vre ds l ervlle (, π,, π ) Quelle es l robblé que vre ere, π e,4 π? réose : P (, π,4 π ) = P (,,77 ) = (,8) =,8 Foco d ue vrble léore dscrèe R = φ () R j ( y ) = P ( = y ) = P ( ) j j Ω k j k
Eemle : r de Beroull sur lo eoeelle ( ) = λ e λ = < Eemle : r de Beroull sur lo eoeelle (sue) robblés de E Vr, [ ] = λ e d = e + [ ] = λ λ e d λ = / λ e d = λ Le ems jusqu'à l déllce (e, ube à ryos chodques) durée ve su ue lo eoeelle, λ u de déllce / λ / λ ( ) = λ e d = e = e () = = = λ e d e e / λ / λ 7 Posos : vrble Beroull dée r le que ecède ou o s durée moyee / λ = s / λ = s > / λ 7 8 Foco coue d ue V,A, coue Foco coue d ue V,A, coue (sue) vc desé φ oco coue = φ () es ue vc Desé =? Pour l rouver l desé l u : Ober F (y) = P( y ) r l'évéeme de R équvle à ( y) ds R y Dérver F (y) r ror à y our ober l oco de desé y Trouver l'esce mge de cee vc THÉORÈME S es ue vc de desé elle que > our < < b e y = φ ( ) es ue oco coue srceme moooe, lors l vc = φ ( ) ossède ue desé vec = φ - (y ) d dy ( y) = ( ) ermé e erme de y Eemle: dmère d u l - dsrbuo uorme ervlle, à, ( ) =,, = ureme,, = re de l seco = π ( / ) =, π vre ds l ervlle, π =,784 qud =, à, π =,88 qud =, rsormo verse ( y ) = ( ) =, /, π d / dy = / ( y,, π ) = ( /, π ) y -, =, y -, d dy y (y ) = (, y -, ) =, y -, 7,8 7,8,784,88
Combso lére de vrbles léores déedes,,, coses,,, vrbles léores dscrèes ou coues déedes eemle Combso lére de vrbles léores déedes modèle j : j vrbles déedes PROBABILITÉES CONJOINTES P ( = ; = y ) vr bles robblés cojoes (,y) 4 W = combso lére Théorème E ( ) = µ moyee de Vr( ) = σ vrce de (=, = 4) = (=) * (=4) =,*, rob,,,,,,,,,7,,4,,,,,,,,,,,,,,,,,,,,,,,, lors E Vr = = µ σ =, 4,,7,,,4,,,,,,,4,,,,,,,,4,,,,,,,,,,,, Moyee e vrce de W = 4 +?,,, Combso lére de vrbles léores déedes CALCUL DES MOENNES Eemle sue vleurs de W = 4 + 4 Eemle sue b= y= =4 4,8, =,,7,7,7,,7,7,8,,,,7 4,4, E()= 8, 4 4 4 j,,,,,,4,8, 7 4,,,,8 4,,47,8, 8 4 4 8 4,,8,7,8,,78,, 4 4,,,7,,,4,,8,,4,,,4,4,4,48 4 48 4 8 E() =, E(W) = 4,8 7 7 7 Clcul vec l ormule : E(W) = 4*E() + *E() = 4*8, + *, = 4,8 8 8 8 4 4 8 7 74 j = (4 + y j )* (, y j ) Clcul drec : E(W) = j 4
Eemle sue CALCUL DES VARIANCES =4 4 V() = b= 78,8,,88,,7,,,,,4,7,,,74,4,4,8,8,878,,4,44,,47,8 Combso lére de vrbles léores déedes Alco more : rocessus échlloge léore d ue oulo Déo d u échllo léore: vrbles (),,,, déedes (b) oues les vrbles o l même dsrbuo que,7,,777,7,,8,88, b j 4,,8 4,,,8,7 4,4 7,,,,,877,,74 8,4,,84,,84,,8,,4,848 V() =,48 V(W) = 78,8 Clcul vec l ormule : Vr(W) = 4 *, + *,48 b j = [w j E( W ) ] (, y j ) Clcul drec : Vr(W) = b j L vrble léore moyee, oée, es ue combso lére des Proréés de = E [ ] = E [ ] = E [ ] = µ Vr[ ] = = = / Vr[ ] σ Vr[ ] = =