M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL



Documents pareils
Système formé de deux points

I - Quelques propriétés des étoiles à neutrons

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

TS Physique Satellite à la recherche de sa planète Exercice résolu

Oscillations libres des systèmes à deux degrés de liberté

Chapitre 5. Le ressort. F ext. F ressort

DYNAMIQUE DE FORMATION DES ÉTOILES

MATIE RE DU COURS DE PHYSIQUE

DISQUE DUR. Figure 1 Disque dur ouvert

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

Chap 8 - TEMPS & RELATIVITE RESTREINTE

Voyez la réponse à cette question dans ce chapitre.

Test : principe fondamental de la dynamique et aspect énergétique

Dimensionnement d une roue autonome pour une implantation sur un fauteuil roulant

Cours de Mécanique du point matériel

Chapitre 1: Facteurs d'échelle

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

Utilisation des intégrales premières en mécanique. Exemples et applications.

Quantité de mouvement et moment cinétique

Chapitre 2 : Caractéristiques du mouvement d un solide

La vie des étoiles. La vie des étoiles. Mardi 7 août

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

TD 9 Problème à deux corps

1 Problème 1 : L avion solaire autonome (durée 1h)

TD de Physique n o 1 : Mécanique du point

Les moments de force. Ci-contre, un schéma du submersible MIR où l on voit les bras articulés pour la récolte d échantillons [ 1 ]

Concours EPITA 2009 Epreuve de Sciences Industrielles pour l ingénieur La suspension anti-plongée de la motocyclette BMW K1200S

Mesure de la dépense énergétique

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

Le second nuage : questions autour de la lumière

TP 7 : oscillateur de torsion

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

Chapitre 1 Cinématique du point matériel

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Mécanique. 1 Forces. 1.1 Rappel. 1.2 Mesurer des forces. 3BC - AL Mécanique 1

La fonction exponentielle

NOTICE DOUBLE DIPLÔME

Michel Henry Nicolas Delorme

1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

PHYS-F-104_C) Physique I (mécanique, ondes et optiques) Solutions des questions d'examens ( )

VOITURE A REACTION. Kart à réaction réalisé par un bricoleur «fou» (Bruce Simpson)

1 Mise en application

SCIENCES INDUSTRIELLES (S.I.)

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Gymnastique Rythmique HELP DESK

3 Charges électriques

COTTAZ Céline DESVIGNES Emilie ANTHONIOZ-BLANC Clément VUILLERMET DIT DAVIGNON Nicolas. Quelle est la trajectoire de la Lune autour de la Terre?

Enseignement de la physique en Licence

Examen d informatique première session 2004

Chapitre 9 : Applications des lois de Newton et Kepler à l'étude du mouvement des planètes et des satellites

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

CHAPITRE. Le mouvement en deux dimensions CORRIGÉ DES EXERCICES

PHYSIQUE Discipline fondamentale

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Mécanique. Chapitre 4. Mécanique en référentiel non galiléen

document proposé sur le site «Sciences Physiques en BTS» : BTS AVA 2015

Cours d Analyse. Fonctions de plusieurs variables

Panorama de l astronomie

Angles orientés et trigonométrie

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

Les Conditions aux limites

Chapitre 0 Introduction à la cinématique

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Plan du cours : électricité 1

Premier principe : bilans d énergie

Cours IV Mise en orbite

Problèmes sur le chapitre 5

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Cinétique et dynamique des systèmes de solides

LES COLLISIONS FRONTALES ENTRE VÉHICULES

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Fonctions de plusieurs variables

Cours 1. Bases physiques de l électronique

PARTIE NUMERIQUE (18 points)

Premier principe de la thermodynamique - conservation de l énergie

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

Étude et modélisation des étoiles

Mécanique du Point Matériel

Les calculatrices sont autorisées

Athénée Royal d Evere

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

3.3. Techniques d installation. 3.3 Installation à bord du VSL. Quand Installation du patient à bord du Véhicule Sanitaire Léger.

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

PHYSIQUE 2 - Épreuve écrite

MESURE DE LA MASSE DE LA TERRE

SCIENCES INDUSTRIELLES POUR L INGÉNIEUR. Partie I - Analyse système

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

association adilca LE COUPLE MOTEUR

Représentation géométrique d un nombre complexe

en s entraînant avec le Stability Trainer Votre guide professionnel d entrainement journalier

Vis à billes de précision à filets rectifiés

Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?

Mesures et incertitudes

Transcription:

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL OBJECTIFS Jusqu à présent, nous avons rencontré deux méthodes pour obtenir l équation du mouvement d un point matériel : - l utilisation du P.F.D. - et celle du Théorème de l énergie cinétique ( Cf Cours M3), cette deuxième approche étant intéressante avant tout pour un système unidimensionnel (à un seul paramètre de position) et soumis à des forces dont on sait déterminer le travail. L objectif de cette leçon est d introduire une troisième méthode. Pour cela, on définit le moment cinétique, une des grandeurs fondamentales de la Mécanique, avec la quantité de mouvement ( Cf Cours M2) et l énergie mécanique ( Cf Cours M3). Le moment cinétique jour, pour la rotation, un rôle équivalent à la quantité de mouvement pour la translation. Il est alors plus intéressant de substituer à l association force/principe fondamental de la dynamique (P.F.D.) l ensemble moment d une force/théorème du moment cinétique (T.M.C.). Ce chapitre présente cette nouvelle méthode pour obtenir l équation du mouvement d un point matériel et son application au pendule simple ( III). De plus, sa conservation dans le cas d un système soumis à une force centrale newtonienne conduit aux lois de Kepler, fondement de l étude du mouvement des planètes ( Cf Cours M7). I Définitions I.1 Moment d une force par rapport à un point Cf Cours Supposons qu en utilisant une clé de taille moyenne, vous n arriveriez pas à dévisser un boulon grippé. Votre expérience vous souffle que vous avez de meilleures chances d y parvenir en utilisant une clé de taille supérieure (Cf. figure ci-contre). La force que vous appliquez sur les deux clés est pourtant la même. La seule chose qui change c est qu avec une poignée plus longue, vous pouvez exercer la force plus loin de la pince. Cette force est alors plus efficace. Il est plus facile d ouvrir une porte très lourde en poussant loin des gonds. Si vous poussez du mauvais côté, vous réussirez peut-être à ouvrir la porte, mais vous savez bien que ce sera beaucoup plus dur. Ces expériences montrent que pour faire tourner un objet, il faut non seulement appliquer une force, mais faire attention à l endroit où on l applique. Définition : Par définition, le moment évalué en un point O de la force F exercée en M est : M O ( F ) = OM F

M6 I. Moment d une force et moment cinétique 2008-2009 I.2 Moment d une force par rapport à un axe Cf Cours Définition : Soit ( ), un axe passant par O, orienté selon la direction de son vecteur unitaire e. On appelle moment de la force F par rapport à l axe (orienté) la projection scalaire de M O ( F ) selon e : M = M O ( F ) e Propriété : Cette grandeur est indépendante du choix du point O, point quelconque de l axe. I.3 Moment cinétique d un point matériel a Définition Cf Cours Définition : Par définition, le moment cinétique évalué en un point O, dans le référentiel R, du point matériel M de masse m est : L O/R (M) == OM p M/R = OM m OM en m v M/R p M/R en kg.m.s 1 L O/R (M) en kg.m 2.s 1 b Cas particuliers : mouvement plan et mouvement circulaire Cf Cours I.4 Moment cinétique par rapport à un axe Définition : Soit ( ), un axe passant par O, orienté selon la direction de son vecteur unitaire e. On appelle moment cinétique de M par rapport à l axe (orienté) la projection scalaire de L O/R (M) selon e : L = L O/R (M) e Propriété : Cette grandeur est indépendante du choix du point O, point quelconque de l axe. I.5 Interprétation et notion de moment d inertie (H.P.) Le Théorème du moment cinétique ( Cf II ) montre que le moment cinétique est analogue à la quantité de mouvement. Nous devons pouvoir l exprimer à l aide des grandeurs correspondantes. Nous avons défini la quantité de mouvement comme le produit de la masse par la vitesse, p = mv, où la masse mesure l inertie d un corps, c est-à-dire la résistance qu il oppose à toute modification de son état de mouvement. De la même façon, nous définirons le moment cinétique d un corps comme le produit de sa vitesse angulaire par une grandeur qui mesure son inertie de rotation, c est-à-dire sa résistance à toute modification de son état de rotation. Définition : (Hors Programme ; cf. Math Spé) On appelle moment d inertie d un corps, noté J, la grandeur qui mesure la résistance à toute modification de l état de rotation de ce corps. En général, le moment d inertie J = J d un objet dépend de l axe ( ) autour duquel on essaye de le faire tourner. Alors : L = J.ω 2 http ://pcsi-unautreregard.over-blog.com/ Qadri J.-Ph.

2008-2009 II. Théorème du moment cinétique M6 Propriété : Le moment d inertie d un corps change si l on modifie la façon dont sa masse est répartie autour de l axe de rotation. Ce phénomène est bien illustré par une patineuse qui tournerait sur elle-même les bras écartés avant de les ramener le long du corps (Cf. figures). Lorsqu elle a les bras écartés, son moment d inertie est plus grand, parce qu une partie de sa masse est située plus loin de l axe de rotation. Interprétation du Moment cinétique : Nous pouvons considérer que le moment cinétique caractérise la tendance d un objet à continuer à tourner, du fait de son inertie. II II.1 Théorème du moment cinétique dans un référentiel galiléen Énoncé Méthode 1. Comment établir le Théorème du Moment Cinétique? - choisir un point O fixe de R (si possible ; alors : v O/R = 0 ) - dériver la définition du moment cinétique de M évalué en O dans le référentiel galiléen R = - exprimer, dans cette expression de la dérivée, l accélération du point M dans R à partir du P.F.D. : F ext a M/Rg = m - reconnaître la définition du moment des forces extérieures Ainsi, à partir de L O/Rg (M) = OM m v M/Rg, on établit : ( ) = (d ) ( OM m v M/Rg + d ) v M/Rg (M) OM m (d ) OM dans le cas le plus général : = v M/Rg v O/Rg Hyp : On se place dans le cas particulier où O est fixe dans : ( ) = v M/Rg m v M/Rg + OM m a M/Rg = OM F ext = M O ( F ext ) Théorème du Moment Cinétique (T.C.M.) : Pour un point matériel M soumis à la résultante des forces F ext dans un référentiel galiléen, observé depuis un point O fixe dans : ( ) { = M O ( L F ext ) avec O/Rg (M) = OM m v M/Rg M R O ( F ext ) = OM F ext g Rq : Il y a donc bien analogie entre le T.C.M. et le P.F.D. : T.C.M. Moment cinétique Moment d une force d L O/Rg (M) L O/Rg (M) M O ( F ext ) = M O ( F ext ) d p M/Rg = F ext p M/Rg F ext P.F.D. Quantité de mouvement Force Qadri J.-Ph. http ://pcsi-unautreregard.over-blog.com/ 3

M6 II. Théorème du moment cinétique 2008-2009 Théorème du moment cinétique en projection selon un axe ( ) passant par O : Hyp : on suppose l axe fixe dans. alors e = ( d ) e Cte, soit : = 0 ( ) on peut alors écrire : d L O/Rg (M) e e = = dl M O ( F ext ) e M Théorème du Moment Cinétique selon un axe fixe de : Pour un point matériel M soumis à la résultante des forces F ext dans un référentiel galiléen : { dl L = M avec = L O/Rg (M) e M = M O ( F ext ) e II.2 a Intérêt du théorème du moment cinétique Conservation du moment cinétique Cf Cours L O/Rg (M) = Cte M O ( F ext ) = F ext = 0 0 ou bien F ext // OM : M est (pseudo-)isolé : M soumis à une force centrale b Expérience de cours et patinage artistique Cf Cours Commentaire de l expérience : On choisit comme système S = {masse dans la main de l élève assis sur le tabouret d inertie}. On établit en cours, par application du Théorème Scalaire du Moment Cinétique : L = Cte L (t i ) = L (t f ) mr 2 i ω i = mr 2 f ω f comme R i > R f, on a ω i < ω f Ainsi, lorsqu on rapproche la masse de l axe de rotation, son moment cinétique selon = Oz étant constant, sa vitesse angulaire augmente. Rq : La grandeur J = mr 2 est le moment d inertie de la masse m tournant autour de l axe. Conséquence : L expérience du tabouret d inertie vue en cours permet de comprendre les effets de la conservation du moment cinétique lorsqu on regarde une patineuse tournant sur la pointe de ses patins. Si elle commence à tourner avec les bras écartés et qu elle les rapproche ensuite de sons corps, son moment d inertie diminue. Les frottements n ont que peu d influence dans cette situation et le moment des forces extérieures est donc nul : le moment cinétique doit donc rester constant. Puisque le moment cinétique est égal au produit du moment d inertie par la vitesse angulaire, la diminution du moment d inertie est compensée par une augmentation de la vitesse angulaire : la patineuse tourne plus vite. Réciproquement, en écartant une jambe et les bras de l axe de rotation, la vitesse angulaire de rotation diminue et la patineuse ralentit ainsi son mouvement. 4 http ://pcsi-unautreregard.over-blog.com/ Qadri J.-Ph.

2008-2009 II. Théorème du moment cinétique M6 c Autres manifestation de la conservation du moment cinétique Le même mécanisme qui permet à la patineuse de pirouetter gouverne un ouragan ou une étoile en rotation. Une étoile, qui a consommé toutes ses réserves d énergie, meurt en s effondrant sous l effet de sa gravité. Le résidu minuscule de cette compression cosmique est une étoile à neutron de densité énorme. Si l étoile est en rotation au moment de s effondrer, son moment d inertie J diminue et sa vitesse angulaire ω augmente. Le résultat final est une source de rayonnement qui tourne rapidement sur elle-même, et que l on appelle un pulsar. La nébuleuse du Crabe, résultant de l explosion d une supernova historique (SN 1054) observée par plusieurs astronomes en 1054 et 1055. Située à une distance d environ 2 kiloparsecs (6 300 annéeslumière) de la Terre, dans la constellation du Taureau, la nébuleuse a un diamètre de 11 années-lumière (3, 4 pc). Elle contient en son centre le pulsar du Crabe (ou PSR B0531+21) qui tourne sur lui-même environ trente fois par seconde. Il s agit du pulsar le plus énergétique connu. Il joue un rôle important dans la structure de la nébuleuse, étant entre autres responsable de son éclairement central. Un plongeur sautant dans une piscine peut exercer un moment de forces autour de son centre de masse pendant qu il est encore en contact avec la planche et commencer ainsi à tourner. Pendant qu il est en l air, il n est soumis à aucun moment de force extérieur autour de son centre de masse : son moment cinétique évalué en son centre de masse est donc constant. Ainsi, de la même façon qu un corps se déplace en conservant sa quantité de mouvement s il est soumis à une résultante de forces extérieures nulle, un corps tournant continue de tourner en conservant son moment cinétique lorsqu il n est soumis à aucun moment de forces extérieures. d Exercice On fait tourner une sphère assimilable à un point matériel de masse m = 200 g sur un cercle horizontal au bout d un fil de longueur l 0 = 2 m à une vitesse constante v = 1 m.s 1. 1) Déterminer son moment cinétique autour de l axe de rotation. 2) On tire brusquement le fil, de manière à réduire son rayon à l 1 = 1 m : que devient la vitesse de la sphère? Rép : 1) L = 0, 40 kg.m 2.s 1 ; 2) v 1 = 2 m.s 1. e Pourquoi les chats retombent-ils (parfois) sur leurs pattes? Rq : aucun chat n a été physiquement maltraité lors de cette expérience. Il est erroné de croire que les chats retombent toujours sur leurs pattes. Mais revenons sur les raisons qui ont fait naître cette légende. Qadri J.-Ph. http ://pcsi-unautreregard.over-blog.com/ 5

M6 III. Exemple du pendule simple 2008-2009 Quand un chat est lâché, son corps ne pivote pas. La loi de conservation du moment cinétique affirme qu à moins qu une force extérieure n exerce un moment sur lui, il devrait tomber sans tourner. Deux forces agissent sur le chat au cours de sa chute : la pesanteur et le frottement de l air. La force de pesanteur n exerce pas de moment : comme Newton l a montré, on peut considérer que la force de pesanteur agit au centre de masse du chat, ce qui ne produit aucun moment. Les forces de frottement ont bien un moment, mais elles sont trop faibles pour provoquer le retournement. Comment le chat arrive-t-il à se retourner? Un examen attentif des photos, prises en stroboscopie, permet de le comprendre. Sur la deuxième photo, on remarque que le chat a rapproché ses pattes avant de son corps, et que ses pattes arrière sont étirées. Cette position réduit le moment d inertie de l avant du corps, et l augmente à l arrière. Le corps étant plié au milieu, l avant et l arrière ne tournent pas autour du même axe. Cette deuxième photo révèle que le haut du corps a tourné vers nous, d environ 90, et le bas vers l arrière de la photo, d environ 10. Le moment d inertie de la partie postérieure du corps est plus grand que celui de la partie antérieure et les rotations se produisent en sens contraire, les moments cinétiques des deux parties du corps se compensent donc. La situation que l on observe sur la troisième photo est inversée : les pattes avant sont tendues, ce qui augmente le moment d inertie de l avant du corps, et les pattes arrières sont repliées. L arrière du corps a pivoté d un angle important, pendant que l avant tournait dans l autre sens d un angle plus petit. Les trois dernières photos montrent le chat qui ne pivote plus et atterrit sans dommage. Rq : Après cette explication, nous serions bien tentés de croire que les chats retombent toujours sur leurs pattes. Mais précisons que les chutes des balcons sont la première cause de mortalité des chats de famille. C est tellement courant que les vétérinaires ont baptisé le phénomène le syndrome du chat parachute. Le chat a plus de risque s il ne tombe pas de très haut, enfin disons plutôt qu il a moins de temps pour se retourner. S il chute de très haut, il ne va pas mieux s en sortir car le choc de l impact au sol est alors bien plus fort. Dans ce cas même s il retombe sur ses pattes, le pauvre chat peut souffrir d importantes fractures osseuses. Pour que le dicton soit valide, le chat doit tomber d une hauteur comprise entre 1, 5 mètres et un étage d immeuble. III Exemple du pendule simple 6 http ://pcsi-unautreregard.over-blog.com/ Qadri J.-Ph.