Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Documents pareils
Limites finies en un point

INTRODUCTION. 1 k 2. k=1

3 Approximation de solutions d équations

I. Polynômes de Tchebychev

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Amphi 3: Espaces complets - Applications linéaires continues

Théorème du point fixe - Théorème de l inversion locale

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Capes Première épreuve

Calcul fonctionnel holomorphe dans les algèbres de Banach

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Continuité en un point

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Cours d Analyse. Fonctions de plusieurs variables

Equations différentielles linéaires à coefficients constants

Simulation de variables aléatoires

NOTATIONS PRÉLIMINAIRES

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Correction de l examen de la première session

NOMBRES COMPLEXES. Exercice 1 :

Résolution d équations non linéaires

Chapitre 7 : Intégration sur un intervalle quelconque

CCP PSI Mathématiques 1 : un corrigé

Introduction. aux équations différentielles. et aux dérivées partielles

Les travaux doivent être remis sous forme papier.

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables. Sébastien Tordeux

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Correction du baccalauréat S Liban juin 2007

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Chapitre VI Fonctions de plusieurs variables

Fonctions de plusieurs variables

Développements limités usuels en 0

Comparaison de fonctions Développements limités. Chapitre 10

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Polynômes à plusieurs variables. Résultant

Travaux dirigés d introduction aux Probabilités

I. Cas de l équiprobabilité

Quelques contrôle de Première S

Chapitre 2 Le problème de l unicité des solutions

Pour l épreuve d algèbre, les calculatrices sont interdites.

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Licence de Mathématiques 3

Calcul différentiel sur R n Première partie

Problème 1 : applications du plan affine

Différentiabilité ; Fonctions de plusieurs variables réelles

Image d un intervalle par une fonction continue

Équations non linéaires

[ édité le 30 avril 2015 Enoncés 1

Les devoirs en Première STMG

OM 1 Outils mathématiques : fonction de plusieurs variables

aux différences est appelé équation aux différences d ordre n en forme normale.

Logique. Plan du chapitre

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Dérivées d ordres supérieurs. Application à l étude d extrema.

C1 : Fonctions de plusieurs variables

Exercices sur le chapitre «Probabilités»

1 TD1 : rappels sur les ensembles et notion de probabilité

Coefficients binomiaux

Calcul Différentiel. I Fonctions différentiables 3

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Planche n o 22. Fonctions de plusieurs variables. Corrigé

LE PRODUIT SCALAIRE ( En première S )

Optimisation, traitement d image et éclipse de Soleil

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

Notes du cours MTH1101N Calcul I Partie II: fonctions de plusieurs variables

Continuité d une fonction de plusieurs variables

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Développements limités, équivalents et calculs de limites

Développements limités. Notion de développement limité

Fonctions de plusieurs variables

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles

Première partie. Introduction à la méthodes des différences finies

Exercices et corrigés Mathématique générale Version β

I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M

Intégration et probabilités TD1 Espaces mesurés Corrigé

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

Programmes des classes préparatoires aux Grandes Ecoles

Cours de mathématiques

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

Mathématiques I Section Architecture, EPFL

Corrigé des TD 1 à 5

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Commun à tous les candidats

3. Conditionnement P (B)

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Arbre de probabilité(afrique) Univers - Evénement

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Développements limités

Probabilités sur un univers fini

Cours d Analyse 3 Fonctions de plusieurs variables

Continuité et dérivabilité d une fonction

Cours d Analyse I et II

Calcul intégral élémentaire en plusieurs variables

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse

Transcription:

Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous propose de faire un tour d horizon des méthodes et thèmes les plus classiques du programme de première année. Les exercices qui suivent sont prévus pour être traités en une heure (probablement un peu plus). Il vous arrivera probablement de sécher sur l un de ces exercices, aussi (avant d abandonner) je vous conseille dans ce cas, d aller étudier la partie correspondante dans votre cours de première année (peut-être avez vous traité un exercice très proche en TD). Dans ces exercices, les calculs sont omniprésents sans être excessivement techniques. Chercher ces exercices n est en rien une obligation, cependant une inactivité totale durant les vacances risquerait de compromettre vos ambitions. Il est également important de SE REPOSER et de lire les oeuvres qui figurent programme de français. Nous aurons l occasion de reprendre ou d approfondir certains de ces thèmes ensemble l année prochaine, aussi, je vous saurais gré de me faire savoir quels exercices vous on posé le plus de difficultés. Par ailleurs, un corrigé de ces exercices est disponible en ligne sur le site internet de la PC. Marcotte Sébastien, seb.marcotte@yahoo.f r. Analyse Exercice. (trigonométrie) On considère l équation (E) et le polynôme P : (E) sin(4x) = sin(x), P = 8X 3 4X a) Trouver les x ], π[ solutions de (E). b) Soit x ], π[. Montrer que x est solution de (E) cos(x) est racine de P. c) En déduire la valeur de cos( π 5 ). Exercice. (fonctions trigonométriques inverse) Pour tout x [, ], on pose : f(x) = arcsin( x), g(x) = arcsin(x ) a) Prouver que pour tout x [, ], f(x) g(x) = π 4 b) Retrouver le développement limité de arcsin en, a l ordre 3. c) En déduire que au voisinage de - : arcsin(u) = π + + u + o( + u) Exercice 3. (fonctions ln) Soit a, b deux réels tels que < a < b, on pose pour tout x, t > : f(x) = ln( + ax) ln( + bx), g t x(t) = ( + tx) ln( + tx) a) Déterminer le sens de variation de g x sur ], + [. b) Montrer que f est croissante sur ], + [. c) Conclure que : ln( + a b ) ln( + b a ) (ln())

Exercice 4. (récurrence) Soit n. Soit x,, x n des réels. a) Montrer par récurrence que b) En déduire la relation : k= ( x i ) = x k k i= n N, k= kk! n k Exercice 5. (somme téléscopique) Soit n N. On pose a) Déterminer des réels a, b tels que : S n = k= n ( x j ) j= k + 4k + 3 ( ) n = n k x, x + 4x + 3 = a x + + b x + 3 b) En déduire l expression de S n en fonction de n. Exercice 6. (développement limité, limite) Soit a, b >. On pose : a) Calculer la limite en + de f. f(x) = ( ax + b x b) Effectuer le développement limité à l ordre en de f. c) En déduire que f est prolongeable par continuité en, et que ce prolongement est dérivable en. Exercice 7. (théorème de la bijection, minimum) On pose : ) x f(x) = x + x + x 3 a) Montrer que f est une bijection de R vers R. b) Justifier l existence d un plus petit reél α > tel que pour tout y R, f (y) α y c) Dresser le tableau de variation de la fonction x βx +βx+β, puis conclure que α = 8 7. Exercice 8. (suite récurrente, accroissement finis) On considère la suite (u n ) n tel que : u =, u n+ = + u n a) Montrer que (u n ) n est bien définie et n, u n >. b) Montrer que pour tout x, y ], + [ : + x + y x y c) En déduire que (u n ) n converge et trouver sa limite. Exercice 9.(suites adjacentes, formules de Taylor) On considère les suites (u n ) n et (v n ) n tel que : n, u n = n+ k= ( ) k (k)! a) Montrer que ces deux suites sont adjacentes., v n = u n + (4n + 4)!

b) Montrer que leur limite commune est un irrationnel. c) En utilisant la formule de Taylor avec reste intégral, prouver que cette limite est cos() Exercice. (dérivées successives, formule de Leibniz) On note f la fonction définie sur R par : f(x) = + x a) Montrer que f est C sur R et qu il existe une suite (P n ) de polynômes telle que b) Prouver la relation : c) Que vaut P n ()? x R, n N, f (n) P n (x) (x) = ( + x ) n+ P n+ + (n + )XP n + n ( + X )P n = Exercice. (équation différentielle d ordre, théorème fondamentale de l analyse)... a) Calculer les intégrales : C(x) = x te t cos(t)dt, S(x) = b) Déterminer la solution du problème de Cauchy : x te t sin(t)dt y (x) y (x) + y(x) =, y() =, y () = c) En déduire toutes les fonctions f continues sur R telle que x R, f(x) = x cos(x t)f(t)dt + Exercice. (equation différentielle d ordre, primitive, limite) On considère l équation différentielle : (E), x( x)y (x) + ( x)y(x) = a) Résoudre cette équation sur chacun des intervalles ], [, ], [, ], + [. b) Montrer que (E) possède une seule solution sur ], [, expliciter cette solution. c) Montrer que (E) ne possède pas de solution sur ], + [. Exercice 3.(calcul d intégrales) Soit a,, a n des réels, on pose : a) Calculer pour tout (k, p) N : f(x) = I k,p = a k cos(kx) k= cos(kt) cos(pt)dt (On distinguera les cas k = p =, k = p, k p) b) En déduire la valeur de : c) En déduire que f(t) cos(pt)dt f = k {,, n} a k = Exercice 4. (changement de variable, primitive, somme de Riemann) Soit a >. Soit f une fonction continue sur [, ]. 3

a) Démontrer que : b) En déduire la valeur de : cos(x)f(sin(x))dx = I a = f(y)dy cos(x) sin (x) + a cos (x) dx c) Que vaut la limite de la suite (S n ) n S n = n k= cos( kπ n ) + cos ( kπ n ) Exercice 5.(intégration par parties, Cauchy-Schwarz) Soit f une fonction C pose : I = f (t) dt a) A l aide d intégrations par parties, prouver que : sur [, ]. On b) En déduire que f(t)dt = c) Montrer que l inégalité est optimale. Exercice 6. (suite d intégrales) On pose : f() + f() f(t)dt I n = + f() + f() e nx e x + dx t(t )f (t)dt I 3 a) Calculer I et I. On pourra commencer par trouver des réels a, b, c tels que : u >, u ( + u) = a + u + b u + c u b) Montrer que (I n ) n est convergente et calculer sa limite. c) Déterminer la limite de (ni n ) n. Exercice 7. (séries) On pose pour tout N : S = + n= a) Montrer que S est une série convergente. b) Montrer que : c) En déduire la valeur de S. Algèbre ln( n ), S N = N ln( n ) n= N, e S N = N + N Exercice 8. (Racines de l unité, équations du second degré) Soit a R \ πz et n N a) Résoudre l équation d inconnue z C : z cos(a)z + =. b) Résoudre l équation d inconnue z C : z n = e ia. c) En déduire les solutions de l équation : z n cos(a)z n + =. 4

Exercice 9.(Théorème de Rolle,racines, formule de Taylor) Soit P R[X] un polynôme scindé à racines simples. On note x,, x n les racines de P et : P = a k x k k= a) Montrer que P est également scindé à racines simples. b) Montrer que pour tout x R \ {x,, x n } P (x) P (x) = n k= x x k c) En déduire que x R, P (x)p (x) P (x), puis que k {,, n } a k+ a k a k Exercice.(Solutions polynômiales d une équation différentielle) Soit E l ensemble des fonctions f C sur R telles que : x R, x f (x) 4xf (x) + 6f(x) = a) Montrer que E est un sous espace vectoriel de l ensemble des fonctions C sur R. b) Déterminer les solutions polynômiales de E. c) Déterminer une base de E. On pourra poser g(x) = f(x) x Exercice. (matrice d une application linéaire, noyau, image, changement de base, puissance) Soit f l endomorphisme de R 3 dont la matrice dans la base canonique est : A = 3 a) Déterminer une base de Ker(f id) et de Ker(f 3id). b) Montrer que Ker(f id) et Ker(f 3id) sont supplémentaires dans R 3, en déduire une base dans laquelle la matrice de f est : 3 T = 3 c) Calculer T n puis A n pour tout n. Exercice. (matrices, applications linéaires) Soit n. Soit f n l application linéaire de R n [X] dans R n [X] qui à P associe (X + )P. On note M n la matrice de f n relativement aux bases canoniques a) Ecrire M, M, M 3. b) Calculer le produit matriciel : M n M n M. c) Calculer t M n M n. Exercice 3.(endomorphisme, rang, dimension) Soit E un R-espace vectoriel de dimension n. Soit u L(E) tel que u 3 + u = a) Montrer que E = Ker(u) Ker(u + id). b) Montrer que Ker(u + id) = Im(u). c) Montrer que rg(u ) = rg(u). 5

Exercice 4. (base, noyau, image) Pour tout k N, on pose : f k (x) = x k e x+, E k = V ect(f,, f k ) a) Montrer que (f,, f k ) est une base de E k. b) Montrer que l application qui à φ k définie sur E k qui à f associe f f + f est un endomorphisme de E k et donner sa matrice dans cette base. c) Pour quelles valeurs de k a -t-on Ker(φ k ) = Im(φ k )? Exercice 5. (Déterminant) Pour tout n N et x R, on pose : cos(x) cos(x) D n (x) = cos(x) cos(x) cos(x) a) Calculer D n (x) pour n =,, 3. Proposer une conjecture quant à la valeur de D n (x). b) Justifier la relation : n N, x R, D n+ (x) = cos(x)d n+ (x) D n (x) c) Démontrer votre conjecture. Exercice 6.(produit scalaire, bases orthonormée, distance) On munit R 3 [X] du produit scalaire : 3 3 3 < a k X k, b k X k >= a k b k On note : k= k= k= H = {P R 3 [X], P () = } a) Montrer que <.,. > est effectivement un produit scalaire sur R 3 [X]. b) Déterminer une base orthonormée de H. c) Montrer que H = V ect(a) où A = X 3 + X + X +. d) Calculer la distance de X à l espace H. 3 Probabilités Exercice 7. (Formule des probabilités totales, formule de Bayes) Deux urnes A et B contiennent respectivement 6 boules et 5 boules noires d une part, 4 blanches et 8 noires d autre part. On pioche au hasard deux boules dans l urne B que l on transfère dans l urne A. Puis on pioche une boule dans l urne A. Calculer la probabilité que l une au moins des deux boules transférées soit blanche sachant que la boule tirée était blanche. Exercice 8. (Formule des probabilités composées, indépendance) Un joueur lance deux dès non truqués. Il est considéré comme gagnant si la somme des deux dès donne 6, sinon il rejoue. Soit n N. Calculer la probabilité que le joueur gagne en moins de n coups. Exercice 9. (variables aléatoires, espérance, couple) Soit n. Une urne contient n boules numérotées de à n. On y tire successivement et sans remise deux boules. On note X le plus grand des deux numéros obtenus. Déterminer la loi de la variable aléatoire X, puis son espérance. Exercice 3. (variables aléatoires, indépendance) Soit N. On tire au hasard un nombre entre et N, et on recommence une infinité de fois. On considère les variables aléatoires (X i ) i N définie par X = et pour i, X i = si le numéro obtenu au tirage i n est pas sorti dans les tirages précédents, sinon. Pour i j, les variables aléatoires X i et X j sont-elles indépendantes? 6