Chapitre 5 GE0 3. Produit Vectoriel

Documents pareils
1S Modèles de rédaction Enoncés

LE PRODUIT SCALAIRE ( En première S )

Séquence 10. Géométrie dans l espace. Sommaire

Corrigé du baccalauréat S Asie 21 juin 2010

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Correction : E = Soit E = -1,6. F = 12 Soit F = y = 11. et G = -2z + 4y G = 2 6 = 3 G = G =

Représentation géométrique d un nombre complexe

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Cours d Analyse. Fonctions de plusieurs variables

Géométrie dans l espace Produit scalaire et équations

PROBLEME(12) Première partie : Peinture des murs et du plafond.

Quelques contrôle de Première S

Le théorème de Thalès et sa réciproque

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Angles orientés et trigonométrie

Corrigé du baccalauréat S Pondichéry 12 avril 2007

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Du Premier au Second Degré

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b

Géométrie dans l espace

Activités numériques [13 Points]

5 ème Chapitre 4 Triangles

Priorités de calcul :

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Deux disques dans un carré

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

C f tracée ci- contre est la représentation graphique d une

Calcul intégral élémentaire en plusieurs variables

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Vecteurs. I Translation. 1. Définition :

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

Correction du baccalauréat S Liban juin 2007

Chapitre 2 Le problème de l unicité des solutions

Angles orientés et fonctions circulaires ( En première S )

Brevet 2007 L intégrale d avril 2007 à mars 2008

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Corrigé du baccalauréat S Pondichéry 13 avril 2011

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Problème 1 : applications du plan affine

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Fonctions de plusieurs variables

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

L ALGORITHMIQUE. Algorithme

DOCM Solutions officielles = n 2 10.

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigés d exercices sections 3 à 6. Liste des exos recommandés :

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Exercices de géométrie

Fonctions de plusieurs variables

Chapitre. Conquérant est une toile de 1930 qui se trouve au Centre Paul Klee à Berne (Suisse). Paul Klee (1879-

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Continuité et dérivabilité d une fonction

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Livret de liaison Seconde - Première S

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Cours de Mécanique du point matériel

Commun à tous les candidats

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

cent mille NOMBRES RELATIFS ET REPÉRAGEȘ 1 Chapitre 3 Notion de nombre relatif Comparaison Repérage sur une droite et dans le plan Calcul littéral

Développements limités, équivalents et calculs de limites

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Lecture graphique. Table des matières

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Fonctions de deux variables. Mai 2011

Correction du Baccalauréat S Amérique du Nord mai 2007

Chapitre 2 : Vecteurs

Nombre dérivé et tangente

Le seul ami de Batman

Chapitre 2. Matrices

Complément d information concernant la fiche de concordance

Sommaire de la séquence 10

O, i, ) ln x. (ln x)2

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Développer, factoriser pour résoudre

Chapitre 6. Fonction réelle d une variable réelle

La fonction exponentielle

Equations cartésiennes d une droite

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

BACCALAUREAT GENERAL MATHÉMATIQUES

Fonctions homographiques

6. Les différents types de démonstrations

Mathématiques I Section Architecture, EPFL

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Chapitre VI Fonctions de plusieurs variables

Thème 17: Optimisation

Limites finies en un point

I. Polynômes de Tchebychev

Construction d un cercle tangent à deux cercles donnés.

PEUT-ON «VOIR» DANS L ESPACE À N DIMENSIONS?

Baccalauréat technique de la musique et de la danse Métropole septembre 2008

Transcription:

Chapitre 5 GE Produit Vectoriel À la fin de ce td, vous devez être capable de : Savoir tracer une courbe paramétrée définie par des fonctions polynomiales. Établir le tableau des variations conjointes d une courbe paramétrée. Tracer une courbe à partir des variations conjointes. Déterminer un vecteur directeur de la tangente en un point où le vecteur dérivé n est pas nul. Calcul de produit vectoriel en utilisant la définition. 5. Calculs algébriques de produit vectoriel. L espace est muni d un repère orthonormal (O; i, j, k) de sens direct.. En utilisant la définition du produit vectoriel, donner la valeur de chacun des produits vectoriels suivants : a. i i ; b. i j ; c. i k ; d. j i ; e. j j ; f. j k ;. Soient u et v deux vecteurs de l espace de coordonnées : u x y z et v x y z g. k i ; h. k j ; i. k k ; a. Développer et, en utilisant la question, simplifier l expression : (x i + y j + z k) (x i + y j + z k) b. Déduire de la question précédente les coordonnées de w = u v. Calcul de produit vectoriel avec les coordonnées. 5. Annales CPI 9. (O; i, j, k) est un repère orthonormal direct de l espace. On considère les vecteurs u et v Le produit vectoriel u v est : 6 réponse A : w réponse B : réponse C : w 4 8

5. Annales CPI. (O; i, j, k) est un repère orthonormal direct de l espace. On considère les vecteurs u La norme du produit vectoriel u v est et v réponse A : réponse B : réponse C : 4 5.4 Vérification sur un exemple de quelques propriétés du produit vectoriel. On donne les vecteurs u v w. Soit a = u v. Déterminer les coordonnées de a.. En utilisant le produit scalaire : a. Vérifier que a est orthogonale à u et à v. b. Déterminer l angle ( u; v). c. Vérifier que l on a bien a = u v sin( u; v).. a. Calculer v u. b. A-t-on u v = v u? Si oui, prouvez le, sinon rectifier l égalité. 4. a. Calculer ( u + v) w. b. Calculer u w + v w. c. Quelle propriété est illustrée par les deux questions précédentes? 5. a. Calculer u ( v w). b. Calculer ( u v) w. c. Quelle propriété usuelle n est pas respectée par le produit vectoriel? 6. Vérifier que l on a bien l égalité de Lie, à savoir : u ( v w) + w ( u v) + v ( w u) = Calcul d aire et de volume. 5.5 Calcul de l aire d un triangle. Dans l espace rapporté à une repère orthonormal de sens direct (O; i, j, k) et d unité le centimètre, on considère les points A(; ; ) ; B(4; 6; ) et C(; ; 5). Déterminer les coordonnées des vecteurs AB et AC.. Calculer les coordonnées du vecteur AB AC.. Déterminer la valeur approchée à près de l aire en cm du triangle ABC.

5.6 Calcul de l aire d un parallélogramme. Dans l espace rapporté à une repère orthonormal de sens direct (O; i, j, k) et d unité le centimètre, on considère les points A(4; 5; ) ; B(6; 8; ) ; C(; 7; 4) et D(; 4; ). a. Démontrer que le quadrilatère ABCD est un parallélogramme. b. Calculer le produit scalaire AB AD et les longueurs AB et AD. En déduire la mesure en degré, à. près, de l angle géométrique BAD.. a. Calculer les coordonnées du vecteur AB AD. b. En déduire l aire du parallélogramme ABCD. 5.7 Calcul de distances et d aires dans l espace. Le plan est muni d un repère orthonormal (O; i, j, k) de sens direct. On considère les points A(,, ), B(,, ) et C(,, ).. Faire une figure en perspective cavalière.. Calculer les coordonnées des vecteurs AB, AC et BC.. Calculer les distances AB, AC et BC. 4. Calculer le produit scalaire AB AC. 5. Déduire de ce qui précède une valeur approchée arrondie à près de l angle BAC. 6. a. Calculer le produit vectoriel AB AC. b. En déduire l aire S du triangle ABC. c. Donner une valeur approchée à de S. 5.8 Volume d une pyramide. L espace est muni d un repère orthonormal (O; i, j, k) de sens direct. On considère les points A(,, ), B(,, ) et C(,, ).. Faire une figure en perspective cavalière.. Écrire les coordonnées des vecteurs AB, AC et BC.. a. Donner les valeurs exactes des distances AB, AC et BC. b. Quelle est la nature du triangle ABC? 4. a. Calculer le produit scalaire AB AC. b. En déduire une valeur approchée arrondie à près de l angle BAC. 5. a. Calculer le produit vectoriel AB AC. b. En déduire l aire S du triangle ABC. c. Donner une valeur approchée à de S. d. On note D le point tel que AD = AB AC. Démontrer que les coordonnées du point D sont (,, 5) e. Placer le point D sur la figure. 6. On désigne par V le volume de la pyramide DABC. Démontrer que V = 4.

5.9 Étude d un tétraèdre. On considère un cube AMBONP QC que l on munit du repère orthonormal de sens direct (O; OA; OB; OC). C Q N P O B A M. a. Donner les coordonnées des points O, A, B, M, C, N, P et Q. b. Déterminer les coordonnées des vecteurs AB, AC et AP.. a. Calculer les coordonnées du produit vectoriel u = AB AC. b. Calculer le produit scalaire s = AP u. c. on admet que le volume V du tétraèdre ABCP est V = 6 s. Calculer le volume V.. Soit I(x; y; z) le pied de la hauteur [IP ] du tétraèdre ABCP. a. On admet que les vecteurs IP et AB sont orthogonaux. En déduire que x = y. b. On admet que les vecteurs IP et AC sont orthogonaux. En déduire que x = z. c. On admet que le point I étant dans le plan (ABC), ses coordonnées vérifient x + y + z =. Déduire des questions précédentes les coordonnées du point I. d. Montrer que IA + IB + IC =. e. Que représente le point I pour le triangle ABC? 5. Aire d un hexagone. L esapce étant muni d un repère orthonormal (O; i, j, k) d unit cm, on considère les points : A(4; ; ) ; B(; ; ) ; C(; ; ) ; D(; ; ) ; E(; ; ) ; F(4; ; ) et S(6; 5; 5). Montrer que les segments [AD], [BE] et [CF] ont même milieu I.. a. Calculer le produit vectoriel u = IA IB. b. Montrer que ce vecteur u est colinéaire à IS.

c. En déduire que la droite (IS) est perpendiculaire au plan déterminé par les droites (AD) et (BE).. a. Calculer le produit scalaire IS CF. b. En déduire que les points A, B, C, D, E et F sont coplanaires. 4. Montrer que les points A, B, C, D, E et F sont les sommets d un hexagone régulier. 5. Calculer l aire de cet hexagone. 5. Aire d un triangle variable. Le plan P est rapporté à un repère orthornormal (O; i, j), d unité graphique cm. On considère les points A(, ) ; B(; ) et M(m; m) où m un réel quelconque.. Montrer que l ensemble des points M quand m varie est une droite dont on déterminera un point et un vecteur directeur.. Déterminer les valeurs de m pour lesquelles le triangle ABM est rectangle en M.. Vérifier que l un des ces triangles est isocèle. 4. L espace est rapporté à un repère orthonormal direct (O; i, j, k) ; le plan (O; i, j) étant le plan P précédemment défini. Les points A, B, et M ont donc pour coordonnées dans le repère (O; i, j, k) : A(; ; ) ; B(; ; ) et M(m; m; ) Soit f la fonction qui à tout réel m associe l aire en cm du triangle ABM. On rappelle que f(m) = AB AM. a. Cacluler f(m) en fonction de m. b. Déterminer les valeurs de m pour lesquelles l aire du triangle ABM est égale à 4cm. 5. Calcul vectoriel et calcul intégral : Volume d un tronc de pyramide. Les deux parties de l exerice sont indépendantes et peuvent être traitées de façon séparées. L espace est rapporté à un repère orthonormal (O; i, j, k) de sens direct et d unité graphique cm. On considère les points A(,, ) B(,, ) C(4, 4, ) et S(4, 4, ). Partie A Calcul du volume d une pyramide.. a. Déterminer les coordonnées du point D tel que ABCD soit un parallélogramme. b. Déterminer les longueurs BC et BA ainsi que la valeur approchée arrondie à l unité de la mesure en dégré de l angle BAC.. a. Déterminer le vecteur N = BC BA. b. Montrer que la droite (SC) est une hauteur de la pyramide SABCD. c. Calculer la norme du vecteur N. Quelle est l aire du parallélogramme ABCD? d. Déduire des questions précédentes le volume de la pyramide SABCD.

Partie B Calcul du volume d un tronc de pyramide. On considère un plan horizontal qui coupe les arêtes [SA], [SB], [SC] et [SD] de la pyramide respectivement aux points A, B, C, et D. On note z la côte des quatres points A, B, C, et D. ( z ).. En écrivant que les vecteurs SA et SA sont colinéaires, montrer que les coordonnées du points A sont ( + z ; 6 + z ) ; z On admet que les coordonnées des points B et C peuvent respectivement s écrire : ( 6 + z B ; + z ) ; z et C (4; 4; z). a. Déterminer, en fonction de z, les coordonnées du vecteur B C B A. b. En déduire que l aire de la section plane A B C D de la pyramide est S (z) = ( z).. On note T(h) le volume du tronc de la pyramide limité par les plans d équation z = et z = h. On admet que T(h) = a. Montrer que T(h) = 6 ( h). h S (z)dz b. Que représente T() pour la pyramide SABCD? D autres applications du produit vectoriel. 5. Équation d un plan. L espace est muni d un repère orthonormal (O; i, j, k) de sens direct. On considère les points A(,, ), B(4,, ) et C(,, ).. En utilisant le produit vectoriel : a. Justifier que les points A, B et C ne sont pas alignés. b. Déterminer un vecteur N orthogonal aux vecteurs AB et à AC.. On considère le plan (ABC) (bien défini puisque les trois points ne sont pas alignés). Soit M(x; y; z) un point du plan (ABC). a. Que peut-on dire des vecteurs N et AM? b. En utilisant le produit scalaire, en déduire une équation du plan (ABC). c. En procédant de même, déterminer une équation du plan (DEF) passant par D(; 7; 4) E(; 7; 6) et F(7; ; 9). d. Proposez un algorithme permettant d obtenir l équation d un plan à partir des coordonnées de trois points de ce plan.

5.4 Pot pourri. Soient les points A(,, ), B(,, ) et C(,, ).. Déterminer les coordonnées du vecteur AB AC.. En déduire une équation du plan (ABC).. Calculer l aire du triangle ABC. 4. Calculer, en degré, les mesures des angles du triangle ABC. 5. Calculer les coordonnées du centre de gravité du triangle ABC. 6. On admet que la distance δ d un point M(x, y, z ) au plan d équation ax + by + cz + d = est donnée par Calculer le volume du tétraèdre OABC. δ = ax + by + cz + d a + b + c 5.5 Moment d une force. On considère un point O de coordonnées O(; ; ). Dans chacun des cas suivants, déterminer le moment en A de la force F par rapport au pivot O.. A(; ; ) et F. A(; ; ) et F. A(; 4; ) et F 4. A(a, b, c) et F α β γ 5.6 Xcas et le calcul vectoriel. On donne ci-dessous les principales instructions concernant le calcul vectoriel sous Xcas : Définir un vecteur par ses coordonnées u :=[,,] Produit vectoriel : cross(u,v) Produit scalaire : u*v Norme d un vecteur : norm(u). En utilisant Xcas, résoudre à nouveau les exercices à de ce livret.. En utilisant Xcas, automatiser le calcul de l équation d un plan passant par trois points donnés.