1 Introduction DRAFT

Documents pareils
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Théorème du point fixe - Théorème de l inversion locale

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

3 Approximation de solutions d équations

Problème 1 : applications du plan affine

Limites finies en un point

Image d un intervalle par une fonction continue

Résolution d équations non linéaires

Correction de l examen de la première session

Chapitre 2 Le problème de l unicité des solutions

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Continuité en un point

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Chapitre 2. Matrices

Cours d Analyse. Fonctions de plusieurs variables

Fonctions de plusieurs variables. Sébastien Tordeux

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Fonctions de plusieurs variables

Cours d analyse numérique SMI-S4

I. Polynômes de Tchebychev

Capes Première épreuve

Calcul différentiel sur R n Première partie

Algorithmes pour la planification de mouvements en robotique non-holonome

Simulation de variables aléatoires

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Continuité d une fonction de plusieurs variables

aux différences est appelé équation aux différences d ordre n en forme normale.

La fonction exponentielle

Calcul fonctionnel holomorphe dans les algèbres de Banach

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Suites numériques 3. 1 Convergence et limite d une suite

Programmes des classes préparatoires aux Grandes Ecoles

Programmation linéaire et Optimisation. Didier Smets

Programmation linéaire

NOTATIONS PRÉLIMINAIRES

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Equations Différentielles

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Cours de mathématiques

Continuité et dérivabilité d une fonction

CCP PSI Mathématiques 1 : un corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé

Programmation linéaire

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Chapitre 1 Régime transitoire dans les systèmes physiques

Cours 02 : Problème général de la programmation linéaire

Calcul Différentiel. I Fonctions différentiables 3

Approximations variationelles des EDP Notes du Cours de M2

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

IV- Equations, inéquations dans R, Systèmes d équations

Oscillations libres des systèmes à deux degrés de liberté

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Calcul différentiel. Chapitre Différentiabilité

Equations différentielles linéaires à coefficients constants

Chapitre VI - Méthodes de factorisation

Complément d information concernant la fiche de concordance

Chapitre 0 Introduction à la cinématique

Probabilités sur un univers fini

Développement décimal d un réel

Rappels sur les suites - Algorithme

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Polynômes à plusieurs variables. Résultant

Représentation d un entier en base b

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Analyse en Composantes Principales

Les indices à surplus constant

Pour l épreuve d algèbre, les calculatrices sont interdites.

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Résolution de systèmes linéaires par des méthodes directes

Différentiabilité ; Fonctions de plusieurs variables réelles

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

3. Conditionnement P (B)

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Comparaison de fonctions Développements limités. Chapitre 10

Amphi 3: Espaces complets - Applications linéaires continues

Cours Fonctions de deux variables

Fonctions de plusieurs variables et applications pour l ingénieur

Déterminants. Marc SAGE 9 août Inverses et polynômes 3

Géométrie dans l espace Produit scalaire et équations

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

RO04/TI07 - Optimisation non-linéaire

Probabilités sur un univers fini

Optimisation des fonctions de plusieurs variables

Équations non linéaires

Chapitre VI Fonctions de plusieurs variables

Cours d Analyse 3 Fonctions de plusieurs variables

Le produit semi-direct

Fonctions homographiques

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Transcription:

1 Introduction 1

2 Équations différentielles scalaires du 1 er ordre 21 Équations du type «intégration» 22 Équations différentielles aux variables séparables remarque sur la notation différentielle 23 Équtions différentielles linéaires du 1 er ordre Définition 1 On appelle équation différentielle linéaire du 1 er ordre une équation du type x = p(t)x + q(t) où p et q sont des fonctions continues sur un intervalle I Les solutions cherchées sont des fonctions dérivables x : I R L intervalle I sera souvent R tout entier t x(t) Définition 2 Si la fonction q est identiquement égale à 0, on dit que l équaton différentielle est homogène Remarque 1 Soit x 1 et x 2 sont deux fonctions sur I solutions de l équation différentielle sur l intervalle I, alors pour tout t I, x = p(t)x + q(t) (E) (x 1 x 2 ) (t) = x 1(t) x 2(t) = p(t)(x 1 (t) x 2 (t)) La fonction x 1 x 2 est donc solution de (E 0 ) : x = p(t)x (E 0 ), dite équation différentielle homogène associée à (E) 2

Théorème 1 Supposons que l on connaisse une solution particulière x i de (E) sur un intervalle I Alors toute solution de (E) sur I est de la forme x i + x h où x h est une solution quelconque de (E 0 ) sur I De manière ensembliste, si on note S l ensemble des solutions de (E) et S 0 celui des solutions de (E 0 ), on a S = x i + S 0 La résolution de l équation (E) se décompose en deux étapes : 1 la détermination de S 0, c est-à-dire la résolution de l équation homogène, 2 la détermination d une solution particulière Ces deux étapes sont traitées respectivement dans les sections 231 et 232 231 Résolution de l équation homogène Théorème 2 Soit I un intervalle ouvert et t 0 I Alors pour tout x 0 R il existe une unique solution x de l équation différentielle (E 0 ) telle que x(t 0 ) = x 0 Son expression est donnée par ( t ) t I, x(t) = x 0 exp p(u)du t 0 Démonstration La démonstration se fait en deux étapes : en vérifiant que la formule proposée répond bien au problème, puis en montrant que c est en fait la seule solution Existence Considérons x la fonction définie sur I par l expression proposée, et appelons P la primitive de p s annulant en t 0 : t I, P (t) = t t 0 p(u)du Par le lemme fondamental du calcul différentiel, et les théorème sur la composée de fonctions dérivables, on obtient que x est effectivement dérivable sur I (même de classe mathcalc 1 ) et pour tout t I, x (t) = x 0 P (t) exp(p (t)) = p(t)x(t) Donc cette fonction x est bien solution de (E 0 ) avec la condition initiale x(t 0 ) = x 0 Unicité Soit y une solution de (E 0 ) avec la condition initiale y(t 0 ) = x 0 sur l intervalle I On définit alors la fonction z = ye P sur I Par les théorèmes usuels de dérivation, z est dérivable en tout point de I et : z (t) = (y (t) p(t)y(t))e P (t) = 0 car y est solution de (E 0 ) Comme I est un intervalle, z est donc constante Or z(t 0 ) = y(t 0 )e P (t0) = y(t 0 ) = x 0 Donc z est constante, et égale à x 0 pour tout t On peut maintenant réexprimer y à partir de z t I, y(t) = z(t)e P (t) = x 0 exp(p (t)) = x(t), où x est la fonction proposée 3

Remarque 2 On a utilisé encore une fois le fait que I était un intervalle, donc connexe, pour en déduire que si une fonction a une dérivée nulle, alors elle est constante On vérifie sans peine que l espace S 0 des solutions de (E 0 ) est un sous-espace vectoriel des fonctions dérivables sur I : si x et y sont solutions, alors pour tout λ R, x + λy est aussi solution Le théorème ci-dessous peut alors se réinterpréter de la façon suivante : Corollaire 1 L ensemble S 0 des solutions de (E 0 ) sur I est un espace vectoriel de dimension 1, engendré par la fonction ( t ) t R exp p(u)du, t 0 et l application Ψ t0 : x S 0 x(t 0 ) R est un isomorphisme d espaces vectoriels Remarque 3 Changer la valeur de t 0 revient à multiplier par un scalaire, d après la relation de Chasles sur les intégrales : ( t ) ( t1 ) ( t ) exp p(u)du = exp p(u)du exp p(u)du t 0 t 1 232 Détermination d une solution particulière t 0 Nous présentons d abord quelques astuces pour essayer de deviner la forme d une solution particulière de l équation (E) avec une fonction q La forme obtenue dépendra de paramètres qui seront déterminés par des équations algébriques (linéaires) Ces formes utilise le fait que la dérivation préserve certaines familles de fonctions : la dérivée d une exponentielle est une exponentielle, la dérivée d un polynôme est un polynôme, etc Méthode par identification Si p est constant, et q est une fonction polynôme de degré d, on cherche x sous la forme d un polynôme de même degré Si p est constant et que q = ce λt Si λ p, on cherche x sous la forme ae λt Si λ = p, on cherche x sous la forme (a + bt)e λt Si p est constant et que q = c cos(ω) ou c sin(ωt), on cherche x sous la forme a cos(ωt) + b sin(ωt) Principe de superposition : si x i est solution sur I de l équation différentielle x = p(t)x + q i (t) pour i = 1, 2, alors x 1 + x 2 est solution sur I de l équation différentielle x = p(t)x + q 1 (t) + q 2 (t) La proposition de solution particulière lorsque q est un cosinus ou un sinus peut être vue comme une combinaison du principe de superposition et de la proposition lorsque q est une exponentielle (si on autorise les exponentielles complexes dans ce cas) 4

Cela donne dans des cas simples une solution particulière très rapidement Cependant, cela est loin de couvrir tous les cas qui peuvent se présenter Nous présentons maintenant une méthode systématique pour trouver une solution particulière : la méthode de la variation de la constante Il en existe une variante, appelée méthode du facteur intégrant, qui revient à faire les mêmes calculs mais présentés de manière légèrement différente Méthode de la variation de la constante Voici une méthode générale et systématique pour trouver une solution particulière On se souvient que d après la section précédente, la solution générale de (E 0 ) sécrit ( t ) x(t) = x 0 exp p(u)du t 0 Nous allons chercher notre solution particulière sous la même forme, sauf que l on remplacera x 0, qui était pour l instant une constante, par une fonction de t que l on veut déterminer, et qui donc varie avec t D où le nom de la méthode On suppose donc qu il existe une fonction dérivable v définie sur I telle la fonction y : I R définie par ( t ) t I, y(t) = v(t) exp p(u)du t 0 satisfait l équation differentielle x = p(t)x + q(t) L exponentielle n étant jamais nulle, on peut toujours définir v à partir de y, qui est automatiquement dérivable par produit, car y l est par hypothèse (solution de (E)) et l exponentielle aussi, par les théorèmes standard De plus, pour tout t I, v (t) = ( y (t) p(t)y(t) ) ( exp Donc y est solution de (E) si et seulement si (E) ) p(u)du t 0 t t I, ( v (t) = q(t) exp ) p(u)du t 0 La fonction v doit donc être solution d une équation différentielle de type «intégration» On a besoin d une solution particulière, c est à dire d une primitive particulière de q(t) exp( P (t)) Prenons par exemple celle qui s annule en t 0 XXX t 5

Résumé Toutes les solutions x : I R sur I de l équation x = p(t)x + q(t) (E) s écrivent t I, ( t x(t) = C exp p(s)ds t 0 ( = ) }{{} sol homogène générale t x 0 + e s t p(u)du 0 t0 t t + q(s)e s p(u)du ds t } 0 {{} ) e sol particulière t t p(u)du 0 avec des constantes C, ou x 0 arbitraire Sous la deuxième forme, c est l unique solution qui vaut x 0 à t = t 0 6

3 Système d équation différentielles linéaire 31 Prélude : réduction des équations différentielles à des EDO du 1 er ordre autonome de l ordre n à l ordre 1 Si x (n) = f(x (n 1), x (n 2), x, xt), alors on complète en ajoutant les équations triviales suivantes x (n 1) = x (n) x (n 2) = x (n 1) x = x On peut ainsi réécrire l équation différentielle sous la forme différentielle suivante X = F (X, t) avec x y 1 y 2 x y 2 X = et F = y n f(y 1,, y n, t) x (n 1) passage à une équation autonome : on rajoute une dimension au vecteur X qui est le temps Avec la variable ( ) X Z =, t y n le système { X = F (X, t) t = 1 ( ) ( ) X F (X, t) se réécrit Z = G(Z) avec G = t 1 On peut donc toujours se ramener, au moins théoriquement à une équation différentielle ordinaire X = F (X) du 1 er ordre autonome, avec une fonction inconnue X : I R n On va s intéresser dans la suite de ce chapitre au cas particulier où F est linéaire ou affine : X = AX + B(t), où A est une matrice n n à coefficients réels (qui vont sauf mention du contraire, ne pas dépendre de t) On utilise le même langage que pour les équations scalaires : 7

si B = 0, on parle d équation homogène, si B 0, on parle d équation non homogène Si on veut appliquer la même méthode que dans le cas scalaire, il nous faut l exponentielle d une primitive des coefficients devant X : il nous faut donc définir l exponentielle de matrices 32 Exponentielles de matrices Nous introduisons dans cette section l exponentielle de matrices à coefficients complexes (la définition aurait un sens pour toute algèbre unitaire normée complète) Elle sera utilisée dans la suite pour des matrices à coefficients réels, en lien avec les systèmes d équations différentielles dont les coefficients seront réels M n (C) est un espace vectoriel de dimension finie (n 2 si le corps de base est C) Toutes les normes sur cet espace sont équivalentes, au sens où elles définissent toutes la même topologie et donc la même notion de convergence de suite On en choisira une qui nous rendra la vie un peu plus facile : notre norme sera sous-multiplicative : (A, B) M n (C), AB A B Remarque 4 La multiplication étant bilinéaire, il s agit d une application continue (en dimension finie) Donc quelque soit la norme choisie sur les matrices, il existe une constante C > 0 telle que AB C A B En multipliant la norme par une constante appropriée (C 1 ), on obtient une norme sous-multiplicative La sous-multiplicativité de la norme n est en rien essentielle, mais facilite l écriture car évite de promener ces constantes C dès qu on veut borner la norme d un produit Exemple 1 Des exemples explicites de normes sous-multiplicatives la norme infinie renormalisée A = 1 n max i,j a i,j la norme opérateur associée à une norme N sur C n N(Ax) A op = sup N(x) x 0 321 Définition et propriétés algébriques Théorème 3 La série est une série converge Sa limite 1 k! Ak k 0 k=0 1 k! Ak est appelée exponentielle de A, et est notée e A ou exp(a) 8

Démonstration En tant qu espace vectoriel de dimension finie, M n (C) est complet Pour montrer que la série converge, il suffit de montrer qu elle est normalement convergente, c est à dire que la norme du terme général de cette série est le terme général (réel positif) d une série convergente 1 Grâce à la sous-multiplicativité, on peut écrire 1 k! Ak = 1 k! Ak 1 k! A k qui est le terme général de la série exponentielle (réelle) de A La série exponentielle est donc convergente, et exp(a) exp A Proposition 1 L exponentielle des matrices vérifie les propriétés suivantes : 1 exp(0 n ) = I n 2 Pour toute matrice A, A exp(a) = exp(a)a Mieux : pour tout polynôme P, P (A) exp(a) = exp(a)p (A) 3 Pour toute matrice A et tous scalaires complexes λ, µ exp(λa) exp(µa) = exp((λ + µ)a) = exp(µa) exp(λa) En particulier, pour λ = µ = 1, on obtient que exp(a) est inversible et exp(a) 1 = exp( A) 4 Pour toute matrice A, exp( t A) = t (exp A) Démonstration On notera E n (A) = n 1 k=0 1 k! AK la somme partielle à n termes de la série exponentielle de A 1 Toutes les puissances de la matrice nulle sont nulles sauf la puissance 0, qui vaut l identité 2 A commute avec tous les polynômes en A en particulier les sommes partielles de la série exponentielle de A On obtient la commutation avec l exponentielle en passant à la limite 3 TODO 4 La transposition est linéaire sur un espace de dimension finie, donc continue, et t (A k ) = (t A ) k Ainsi, pour tout n, En ( t A) = t E n (A) Par continuité, en passant à la limite lorsque n tend vers l infini, on obtient le résultat voulu 1 En effet, on aura alors que la suite des sommes partielles est de Cauchy, donc converge, par complétude de l espace 9

Remarque 5 En général, lorsque A et B ne commutent pas, nous n avons pas l identité e A e B = e A+B à laquelle nous sommes habitués pour l exponentielle réelle ou complexe Il existe une formule, dite formule de Baker-Campbell-Hausdorff, qui exprime le produit e A e B comme l exponentielle d une somme infinie de termes, faisant intervenir le commutateur de A et B, [A, B] = AB BA, et ses commutateurs avec A et B, etc exp(a) exp(b) = exp(a + B + 1 2 [A, B] + 1 ([A, [A, B]] + [B, [B, A]]) + ) 12 pour laquelle une expression combinatoire exacte a été démontrée par Dynkin en 1947 Tous les termes après les pointillés font intervenir [A, B] En revanche, si A et B commutent, alors tous les termes après A + B dans l exponentielle de droite sont nuls, et on a bien e A e B = e A+B, ce qui peut se vérifier directement en regartand le coefficient de A k B l dans les deux expressions, comme dans la démonstration du point 3 de la proposition précédente 322 Exemple de calculs effectifs Il n y a pas de formule simple pour les coefficients de e A en fonction de ceux de A en toute généralité Cependant, dans certains cas, l exponentielle de A s exprime simplement On essaiera de s y ramener par des techniques de réduction A diagonale Si la matrice A est de la forme a 1 0 0 A = 0 a 2 0 0 0 a n Alors, A k est diagonale et ses coefficients diagonaux sont les a k i, de sorte que exp(a) est elle aussi diagonale et e a 1 0 0 e A = 0 e a 2 0 0 0 e an Plus généralement, si A est diagonale par blocs, alors son exponentielle est aussi diagonale par bloc, et ses blocs diagonaux sont les exponentielles des blocs diagonaux de A 10

A nilpotente Supposons que A est nilpotente, c est à dire qu il existe un k 0 0 tel que A k 0 = 0 Alors toutes les puissances de A de degré supérieur à k 0 sont nulles, et exp(a) = k 0 1 k=0 1 k! Ak Un cas particulier important pour la suite est le cas où A est triangulaire supérieure stricte avec que des 1 juste au dessus de la diagonale Alors Comportement vis-à-vis de la similitude t 1 t 2 t 2! n 1 (n 1)! e ta 0 1 = 0 1 t 0 1 (31) On dit que A et B sont semblables s il existe une matrice inversible P telle que A = P BP 1 Si Alors, pour tout k, on a A k = P B k P 1 Par combinaison linéaire, on a la similitude entre les sommes partielles E n (A) et E n (B), avec la même matrice P Puis par passage à la limite, e A = P e B P 1 En particulier, si A est diagonalisable, on peut prendre pour B une matrice diagonale dont les coefficients diagonaux sont les valeurs propres, et pour P une matrice de vecteurs propres associés Par le point précédent, on peut donc calculer Malheureusement (ou heureusement), toutes les matrices ne sont pas diagonalisables Mais il existe une forme réduite pour toute matrice, appelée forme de Jordan Définition 3 Un bloc de Jordan de taille k associé à un scalaire λ est une matrice carrée J k (λ) de la forme suivante : λ 1 0 0 0 λ J k (λ) = 0 0 0 = λi k + J k (0) λ 1 0 0 λ On sait calculer l exponentielle d un multiple du bloc de Jordan tj k (0) : c est l exemple (31) Comme l identité commute avec toutes les matrices, on sait calculer celle de tj k (λ) : il suffit de multiplier 11

Théorème 4 (Réduction de Jordan) Pour toute matrice A, il existe une matrice inversible P telle que P 1 AP a la forme suivante J k1 (λ 1 ) 0 0 0 J k2 (λ 2 ) 0 0 J kp (λ p ) Avec λ 1,, λ p les valeurs propres de A, et k 1 + + k p = n Deux λ j peuvent être égaux Le nombre de blocs correspondant à un même λ est la dimension de l espace propre Ker(λI A) associé La somme des tailles des blocs associés au même λ est la dimension de l espace caractéristique associé, c est-à-dire la multiplicité de λ dans le polynôme caractéristique de A Si tous les blocs sont de taille 1, alors la matrice est diagonalisable 323 Propriétés analytiques Proposition 2 Soit A M n (R) Soit e A la fonction définie sur R à valeurs dans M n (R) définie par t R, e A (t) = exp(ta) Alors e A est dérivable en tout point de R et sa dérivée est e A = Ae A = e A A Démonstration Remarque 6 L identité e A = A e A permet de montrer par réccurrence que e A est n fois dérivable pour tout n 1, c est à dire de classe C Remarque 7 Au lieu de le faire à la main comme dans la démonstration que l on a donnée, on peut utiliser le théorème de dérivation pour les séries de fonctions (ou pour les séries entières) que l on doit juste adapter légèrement car les coefficients ne sont plus complexes, mais à valeurs dans M n (R) 33 Résolution de l équation vectorielle différentielle à coefficients constants Commençons par énoncer les résultats pour les équations homogènes (E 0 ) X = AX Soit S 0 l ensemble des solutions sur R de cette équation Théorème 5 Soit X 0 R n Soit f X0 : t e A (t)x 0, définie sur R à valeurs dans R n Alors f X0 est solution de E 0 sur R De plus c est l unique solution qui vaut X 0 en t = 0 L application ψ : X 0 f X0 est un isomorphisme d espace vectoriel entre R n et S 0 En particulier, S 0 est de dimension n 12

Démonstration On vérifie que f X0 est bien dérivable (comme produit de e A dérivable par une constante X 0 ), et sa dérivée, d après la proposition 2 est : f X 0 = e AX 0 = Ae A X 0 = Af X0 Pour l unicité de la solution valant X 0 en t = 0, on suit la même démonstration que dans le cas scalaire Soit Y une telle solution On introduit Z = e A ( t)y = e ( A) (t)y Alors Z est dérivable et sa dérivée est nulle Comme on est sur un intervalle, Z est donc constante égale à Z(0) = e 0A Y (0) = X 0 En inversant la relation entre Y et Z, on obtient que Y (t) = e ta Z(t) = e ta X 0 = f X0 (t) On vérifie que S 0 est un espace vectoriel (sous-espace vectoriel des fonctions dérivables), et que l application ψ est linéaire L énoncé précédent montre que c est une bijection, donc un isomorphisme Pour résoudre l équation avec second membre X = AX + B, on utilise la même technique que dans le cas scalaire : toute solution de cette equation s écrit comme la somme d une solution particulière et d une solution générale arbitraire de l équation homogène associée Pour trouver une solution particulière, on utilise : la méthode d identification, avec des coefficients indéterminés qui devront satisfaire des équations algébriques (en général linéaires) une fois injectée dans l équation, la méthode de variation de la constante qui s adapte directement (attention à l ordre des produits, car on a affaire à des matrices et des vecteurs) On cherche une solution sous la forme X(t) = exp(ta)v (t) Alors X est solution sur I si et seulement si V (t) = exp( ta)b(t) pour tout t I C est donc une équation de type «intégration»(à valeurs vectorielles) Il suffit donc de déterminer n primitives (une par composante) 34 Cas particulier de l équation différentielle scalaire linéaire d ordre n à coefficients constants On considère maintenant une équation différentielle de la forme suivante (E) x (n) = a n 1 x (n 1) + a 1 x + a 0 x + b(t) Nous voulons la résoudre en appliquant le programme présenté ci-dessus, à savoir : conversion en une equation différentielle linéaire du 1 er ordre vectorielle à coefficients constants résolution de l équation vectorielle homogène associée détermination d une solution particulière de l équation inhomogène vectorielle retour aux solutions de l équation scalaire En utilisant la technique présentée dans la section??, on transforme cette équation différentielle en équation différentielle vectorielle du premier ordre 13

En posant X = x x x (n 1), l équation (E complétée par les équations x (j) = x (j+1) pour j = 0,, n 1 peut se réécrire (E) X = AX + B(t) avec 0 1 0 0 0 0 1 A = 0 0 1 a 0 a 1 a n 2 a n 1 0 et B(t) = 0 b(t) La fonction x est solution de (E) si et seulement si X est solution de (E) Une première étape dans la résolution de (E), et donc de (E) est la résolution de l équation homogène associée qui passe par le calcul de exp(ta), ce qui pourra se faire aisément si on connaît la forme réduite de A Commençons par déterminer le polynôme caractéristique de A, χ A (r) = det(ri n A) Lemme 1 Le polynôme caractéristique de A est χ A (r) = r n a n 1 r n 1 a 1 r a 0 Démonstration On calcule le déterminant en développant le long de la dernière ligne Définition 4 L équation χ A (r) = 0 pour déterminer les valeurs propres de A est appelée équation caractéristique de l équation différentielle (E) Remarque 8 Soit à = t A Alors le vecteur e 1 et ses images itérées Ãe 1 = e 2, à 2 e 1 = e 3,, Ãn 1 e 1 = e n sont linéairement indépendants Cela signifie que le seul polynôme annulateur de à (donc de A) de degré inférieur ou égal à n 1 est le polynôme nul S il y en avait, en appliquant ce polynôme de matrices au vecteur e 1, on aurait une combinaison linéaire nulle non triviale des vecteurs e 1,, t Ae 1,, t A n 1 e 1, ce qui est impossible Par le théorème de Cayley-Hamilton, le polynôme minimal µ A de A divise son polynôme caractéristique χ A Pour des considérations de degrés, µ A et χ A sont égaux Cela signifie que dans la réduction de Jordan, chaque valeur propre sera associée à un seul bloc de Jordan, dont la taille sera exactement sa multiplicité dans χ A Si on a été amené à calculer la matrice de passage P de A à sa forme réduite, alors comme on connaît l exponentielle d un bloc de Jordan, on peut calculer par produit matriciel exp(ta) 14

D après le théorème 5, on sait que l ensemble des solutions de (E 0 ), et donc de l équation différentielle scalaire d ordre n (E 0 ) associée à (E) (celle où b 0) est un espace vectoriel de dimension n On peut déterminer cette ensemble par deux approches : 1 2 15

4 Le pendule simple 16

5 Un modèle proie/prédateur 17

6 Un peu de théorie qualitative Théorème de Cauchy Lipschitz explosion en temps fini 18