Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est une fonction continue en x = l, alors la suite fu n )) converge vers fl). Exemple 2. 1. lim n + e 1/n = 1, parce que 1/n 0, la fonction e x est continue et e 0 = 1. 2. lim n + log1 + 1/n) = 0, parce que 1 + 1/n 1, la fonction logx) est continue en x = 1 et log1) = 0. 3. lim n + 2n2 +1 n 2 5 )3 = 8, parce que 2n2 +1 2, la fonction n 2 5 x3 est continue et 2 3 = 8. Considérons maintenant un exemple très important qu il faut connaître puisqu il nous servira dans les applications en finance. Exemple 3. lim n 1 + 1 n )n = e. 1) Montrons cette propriété. Remarquons d abord que 1 + 1 n) n = e n log1+1/n). En appliquant la propriété 1, on trouve que log1 + 1/n) 0. Mais cela ne nous permet pas de trouver la limite de n log1 + 1/n) puisque n + et on ne peut rien dire sur le produit + 0. Il faut donc étudier plus en détail le comportement de log1 + 1/n). Pour cela, on utilise le développement limité de la fonction log1 + x) en x = 0 : log1 + x) = x + ox). 1
Rappelons que ox) désigne les termes qui tendent vers zéro plus vite que x. Plus exactement, ox) 0 quand x 0. x En remplaçant x par 1/n, on obtient n log1 + 1/n) = n1/n + o1/n)) = 1 + no1/n) = 1 + o1/n) 1/n n 1. En appliquant la propriété 1 avec la fonction continue e x, on arrive au résultat final : 1 + 1 n) n = e n log1+1/n) n e1 = e. La même démarche, l utilisation des développements limités, permet de calculer beaucoup d autres limites importantes. Par exemple, e n lim n n = + α on dit que l exponentielle tend vers l infini plus vite que tout polynôme). Pour α 0 ceci est évident puisque 1/n α + ou 1/n α 1 si α = 0) et e n, donc leur produit tend aussi vers l infini. Si α < 0, on obtient encore la situation indéfinie 0. Rappelons le développement limité de e x : e x = 1 + x + x2 2 + + xk k! + eξ x k+1 k + 1)!. Ici, k est un entier quelconque et ξ un nombre entre 0 et x. On peut en déduire que pour tout k N et tout x positif, e x xk k!. En choisissant k > α et en remplaçant x par n, on obtient e n n α nk k!n = nk α α k! n +. Comme la suite en est minorée par une suite qui converge vers +, elle n α converge aussi vers +. 2
2 Taux d intérêt équivalents Revenons maintenant aux applications en finance. Nous avons appris les notions d actualisation et de capitalisation de l argent qui permettent de comparer des sommes d argent disponibles aux différents instants du temps. Ces notions font intervenir les taux d intérêt. Jusqu à présent, nous avons supposé que les intérêts étaient versés annuellement. C est-à-dire, la somme d argent placée sur un compte était révisée une fois par an. En pratique, la capitalisation peut être plus fréquente. Par exemple, trimestrielle, mensuelle ou quotidienne. Le taux d intérêt est généralement exprimé sous forme d un taux nominal avec une certaine fréquence de versement des intérêts. Par exemple, supposons que votre argent rapporte un taux d intérêt de 6% annuel, capitalisé mensuellement. Cela signifie que les intérêts sont versés chaque mois et le montant de l intérêt est égal à 1/ e du taux annuel de 6%. Cela fait 0.5% par mois. Le tableau suivant représente l évolution de 1 euro sur ce compte pendant un an. t = 0 1 2 3 4 5 6 7 8 9 10 11 1 an 1 1.005 1.01 1.015 1.02 1.025 1.03 1.036 1.04 1.046 1.051 1.056 1.062 Notons que si la capitalisation était annuelle, on aurait obtenu 1.06 euros à la fin de l année au lieu de 1.062. Etant donné que la fréquence de versement peut varier, il est important de disposer d un moyen de comparaison des taux d intérêt. Par exemple, quel emprunt est plus intéressant : au taux nominal de 8% par an avec versements mensuelles des intérêts ou au taux de 8.1% par an avec versements semestriels? Le moyen de comparaison qui est utilisé dans ce genre de situation s appelle le taux équivalent. Il est défini comme le taux d intérêt si le versement des intérêts était fait tous les ans. Dans l exemple du tableau, 1 euro devient 1.062 à la fin de l année. Quel est le taux avec capitalisation annuelle qui permettrait d obtenir la même valeur? Notons-le r. Nous savons que 1 euro devient dans ce cas 1+r) euros dans un an. On peut donc déterminer r à partir de l égalité 1 + r = 1.062, d où r = 0.062 = 6.2%. C est le taux équivalent dans cet exemple. De manière générale, pour trouver le taux équivalent, nous calculons la valeur future à la fin de l année d un euro placé au début de l année. Le taux 3
d intérêt équivalent est égal à ce chiffre moins un : ) n taux nominal annuel taux équivalent = 1 + 1, n où n est le nombre de versements des intérêts par an. Pour le taux de 8% avec capitalisation mensuelle, on obtient taux équivalent = 1 + 0.08 ) 1 = 0.0830 = 8.3%. Pour le taux de 8.1% avec capitalisation semestrielle, le taux équivalent est taux équivalent = Le premier emprunt est donc plus intéressant. 1 + 0.081 ) 2 1 = 0.0826 = 8.26%. 2 Posons maintenant la question suivante : qu est-ce qui se passe si on augmente la fréquence de capitalisation pour le même taux nominal? Le tableau suivant représente le taux équivalent en fonction de la fréquence de capitalisation pour le taux annuel de 6% : Fréquence de capitalisation n Taux d intérêt équivalent Annuelle 1 6.00000% Semestrielle 2 6.09000% Trimestrielle 4 6.13614% Mensuelle 6.16778% Hebdomadaire 52 6.17998% Quotidienne 365 6.18313% On voit que le taux équivalent augmente avec la fréquence. Augmente-t-il infiniment ou jusqu à une certaine limite? Pour répondre à cette question, il faut étudier la convergence de la suite u n = 1 + n) a n 1 quand n tend vers l infini. C est ici qu on verra l utilité de l Exemple 3. En effet, notre suite ressemble beaucoup à celle de la formule 1). On va donc utiliser la même approche pour trouver sa limite : 1 + a n) n = e n log1+ a n ) = e n a n +o 1 n )) = e a+no 1 n ) n + ea. 4
Cela implique que taux équivalent = 1 + ) n taux annuel 1 n etaux annuel 1. n + La limite du taux d intérêt équivalent dans le tableau est donc égale à e 0.06 1 = 6.18365% on a arrondi tous les résultats dans cet exemple jusqu à la cinquième décimale). 3 Taux continu Nous avons vu qu il existe des taux d intérêt avec différentes fréquences de capitalisation : taux avec capitalisation semestrielle n = 2), mensuelle n = ), quotidienne n = 365) etc. Quand n =, on dit que le taux est à capitalisation continue ou le taux continu tout court). Nous avons montré que, dans ce cas, le taux équivalent est égal à taux équivalent = e taux continu 1. Cela veut dire que si on place X euros sur un compte rémunéré à un taux continu r c, on aura dans un an 1 + r e )X = e rc X euros, où r e est le taux équivalent. Par exemple, si le taux continu est égal à 5%, alors la valeur future de 100 euros dans un an est e 0.05 100 105.13 euros. Pour calculer la valeur future de X dans N ans, on passe également par le taux équivalent pour obtenir : VFX) = 1 + r e ) N X = e r cn X. Donc, la valeur future de 100 euros dans 4 ans est égale à VF100) = e 0.05 4 100 2.14. De manière générale, si le taux d intérêt est continu, alors la valeur future d une somme d argent X à un instant de temps t = T si t = 0 aujourd hui) s obtient par la formule suivante : VFX) = e r ct X. 5
En inversant cette formule, on obtient la règle pour calculer la valeur actuelle d une somme d argent X disponible en t = T dans le future : VAX) = e rct X. Par exemple, si on veut obtenir 7000 euros dans 10 ans et que le taux d intérêt continu est de 6%, il faut placer aujourd hui e 0.06 10 7000 3841.68. 6