Représentation d un application linéaire par une matrice

Documents pareils
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Chapitre 2. Matrices

Résolution de systèmes linéaires par des méthodes directes

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

[ édité le 30 avril 2015 Enoncés 1

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Programmes des classes préparatoires aux Grandes Ecoles

Fonctions de plusieurs variables

Correction de l examen de la première session

Structures algébriques

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Capes Première épreuve

NOTATIONS PRÉLIMINAIRES

Introduction à l étude des Corps Finis

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Programme de la classe de première année MPSI

Limites finies en un point

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Problème 1 : applications du plan affine

Exercices Corrigés Premières notions sur les espaces vectoriels

Cours d Analyse. Fonctions de plusieurs variables

Continuité et dérivabilité d une fonction

Cours d analyse numérique SMI-S4

3 Approximation de solutions d équations

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Chapitre 1 : Évolution COURS

F411 - Courbes Paramétrées, Polaires

Le produit semi-direct

Correction du Baccalauréat S Amérique du Nord mai 2007

Représentation géométrique d un nombre complexe

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Calcul différentiel sur R n Première partie

Continuité en un point

Simulation de variables aléatoires

Résolution d équations non linéaires

Programmation linéaire et Optimisation. Didier Smets

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

Polynômes à plusieurs variables. Résultant

Angles orientés et trigonométrie

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2

Fonctions homographiques

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Cours 02 : Problème général de la programmation linéaire

Calcul intégral élémentaire en plusieurs variables

1 Complément sur la projection du nuage des individus

Théorème du point fixe - Théorème de l inversion locale

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Chapitre 6. Fonction réelle d une variable réelle

Programmation linéaire

Cours 7 : Utilisation de modules sous python

Cours de mathématiques

Calcul différentiel. Chapitre Différentiabilité

I. Polynômes de Tchebychev

I. Ensemble de définition d'une fonction

Fonctions de plusieurs variables. Sébastien Tordeux

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Dérivées d ordres supérieurs. Application à l étude d extrema.

Analyse fonctionnelle Théorie des représentations du groupe quantique compact libre O(n) Teodor Banica Résumé - On trouve, pour chaque n 2, la classe

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Déterminants. Marc SAGE 9 août Inverses et polynômes 3

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

Logique. Plan du chapitre

aux différences est appelé équation aux différences d ordre n en forme normale.

Journées Télécom-UPS «Le numérique pour tous» David A. Madore. 29 mai 2015

Image d un intervalle par une fonction continue

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Partie 1 - Séquence 3 Original d une fonction

Extrait du poly de Stage de Grésillon 1, août 2010

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

3. Conditionnement P (B)

Fonctions de plusieurs variables et applications pour l ingénieur

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

CCP PSI Mathématiques 1 : un corrigé

IV- Equations, inéquations dans R, Systèmes d équations

Géométrie dans l espace Produit scalaire et équations

Les indices à surplus constant

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

Cryptographie et fonctions à sens unique

Chapitre 2 Le problème de l unicité des solutions

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Oscillations libres des systèmes à deux degrés de liberté

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Différentiabilité ; Fonctions de plusieurs variables réelles

Chapitre 0 Introduction à la cinématique

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles

Activités numériques [13 Points]

Cours Fonctions de deux variables

Mathématiques appliquées à l'économie et à la Gestion

Cours de Mécanique du point matériel

Transcription:

Arnaud de Saint Julien - MPSI Lycée La Merci 2017-2018 1 Matrices et applications linéaires Introduction Un hommage à René Descartes (17ième siècle) : en fixant un repère (resp. une base) un point M (resp. un vecteur) objet géométrique est «numérisé» et devient alors un couple de nombres, ses coordonnées (x, y), donc un objet numérique. De même une droite est alors représentée par une équation cartésienne par exemple y = 2x 3 ou une équation paramétrée (x(t), y(t)) = (t, 2t 3), c est-à-dire une relation vérifiée par les coordonnées. Tout objet géométrique admet ainsi une représentation numérique plus ou moins simple. Le cercle unité a par exemple pour équation cartésienne x 2 +y 2 = 1, ou pour paramétrage (x(t), y(t)) = (cos t, sin t), le demi-plan supérieur a pour équation y 0... De même, les transformations géométriques classiques, translations, rotations, symétries, homothéties (on dit «zoom» en infographie), seront codées par des matrices. Cette numérisation, permet de faire de la géométrie en faisant des calculs dans le monde numérique. Il est intéressant à ce titre de regarder avec votre moteur de recherche favori les mathématiques utilisées en infographie... Si l on change de repère ou de base, les coordonnées et les équations sont modifiées. Certaines bases permettent d avoir des calculs plus simples. La problématique du changement de base est donc un enjeu majeur de l Algèbre Linéaire, qui est en quelque sorte «la géométrie dans des espaces de dimension quelconque». La morale de ce chapitre pourrait se résumer à ceci : je veux étudier un endomorphisme u de E. Pour cela je cherche une «bonne» base dans laquelle la matrice de u est «sympatique», l idéal étant qu elle soit diagonale (car faire des calculs avec une matrice diagonale, c est très simple). Pour trouver de bonnes bases, très souvent, on décompose E en somme directe de «bons» sous-espaces, et on recolle les bases des sous-espaces pour obtenir une base de E. L année prochaine, vous apprendrez des techniques qui permettent d obtenir ces bonnes bases, les polynômes annulateurs de matrices joueront un rôle majeur. I Représentation d un application linéaire par une matrice I.1 Application linéaire canoniquement associée à une matrice On considère la matrice A de M 3,2 (K) et l application linéaire u : K 2 K 3 définies par : 2 3 A = 4 5 et u(x, y) = (2x + 3y, 4x + 5y, 3x + 7y). 3 7 Observons le produit matriciel 2 3 ( ) 2x + 3y x 4 5 = 4x + 5y. y 3 7 3x + 7y

Arnaud de Saint Julien - MPSI Lycée La Merci 2017-2018 2 On dit que u L(K 2,K 3 ) est l application linéaire canoniquement associée à la matrice A. On peut l indentifier à l application linéaire ũ : M 2,1 (K) M 3,1 (K) définie par ũ(x) = AX. Grâce à cette identification, on pourra parler de noyau et d image de la matrice A, qui s identifieront au noyau et à l image de l application linéaire ũ. On remarque alors que : les colonnes de A engendrent l image les lignes de A donnent un système d équations cartésiennes du noyau. a : Remarquons enfin que si (e 1, e 2 ) est la base canonique de K 2 et (f 1, f 2, f 3 ) celle de K 3, on u(e 1 ) = f(1, 0) = (2, 4, 3) = 2f 1 + 4f 2 3f 3 et u(e 2 ) = 3f 1 + 5f 2 + 7f 3. Autrement dit, les coefficients de ces deux combinaisons linéaires constituent les colonnes de la matrice A. C est ce point de vue avec les bases que nous allons généraliser dans la sous-section suivante. I.2 Matrice d une application linéaire Définition 1 Soit u L(E, F), B E = (e 1,..., e p ) une base de E et B F = (f 1,..., f n ) une base de F. On appelle matrice de u relative aux bases B E, B F, la matrice de M n,p (K) notée Mat BE,B F (u) dont les coefficients a i,j sont définies par la relation : n j 1, p, u(e j ) = a i,j f i. i=1 Réciproquement si A = (a i,j ) est une matrice de M n,p (K), il existe une unique application linéaire u L(E, F) telle que A = Mat BE,B F (u). Remarques : si u est un endomorphisme de E donc E = F, on prend en général la même base de «départ» et d «arrivée». On note alors plus simplement Mat B (u) au lieu de Mat B,B (u). soit F = (x 1,..., x p ) est une famille de vecteurs de F dont les coordonnées dans B F sont définies par : n j 1, p, x j = a i,j f i. On dit que la matrice A = (a i,j ) est la matrice de la famille F dans la base B F. En particulier, si un vecteur x de F a pour coordonnées (c 1,..., c n ) dans B F, sa matrice dans B F est la matrice colonne t (c 1 c n ). i=1

Arnaud de Saint Julien - MPSI Lycée La Merci 2017-2018 3 I.3 Un véritable dictionnaire : correspondance entre opérations sur les applications linéaires et opérations sur les matrices Proposition 2 (Dictionnaire et opérations) 1. Soit u et v dans L(E, F), λ K, B E = (e 1,..., e p ) une base de E et B F = (f 1,..., f n ) une base de F. Alors 2. Soit u L(E, F), v L(F, G). Alors Remarques : Mat BE,B F (λu + v) = λmat BE,B F (u) + Mat BE,B F (v) Mat BE,B G (v u) = Mat BF,B G (v) Mat BE,B F (u) comme on a prouvé que la composée d applications linéaires était bilinéaire et associative, on en déduit que le produit matriciel est bilinéaire et associatif. A l inverse, une information sur la matrice donne de l information sur l application linéaire : si par exemple A p = 0 où A est la matrice d un endomorphisme u, alors u p = 0. L application u Mat BE,B F (u) est ainsi un isomorphisme entre les espaces vectoriels L(E, F) et M n,p (K). Cela permet de retrouver que dim L(E, F) = dim E dim F. Proposition 3 (Dictionnaire et inverse) Soit E et F deux K-espaces vectoriels de même dimension de bases respectives B E et B F. Soit u L(E, F) et A sa matrice relative aux bases B et B. Alors on a : u est un isomorphisme de E sur F ssi la matrice A est inversible, et alors (Mat B,B (u)) 1 = Mat B,B(u 1 ) Remarque : cela fournit un nouveau moyen de prouver qu une matrice est inversible. Par exemple, on peut montrer que la matrice A M n+1 (K) définie par a i,j = ( ) j 1 i 1 est inversible car matrice dans la base canonique de K n+1 [X] de l endomorphisme bijectif P P(X + 1). Corollaire 4 (Inverse à gauche ou à droite suffit) Soit A M n (K). Les trois propositions suivantes sont équivalentes : A est inversible il existe B M n (K) tel que AB = I n. il existe C M n (K) tel que CA = I n. Remarque : la preuve de ce corollaire repose sur le fait qu un endomorphisme en dimension finie est bijectif ssi il est injectif. Proposition 5 (Dictionnaire et image d un vecteur) Soit u L(E, F) et A sa matrice dans les bases B E et B F. Soit x un vecteur de E et X la matrice colonne de ses coordonnées dans B E. Alors la matrice colonne des coordonnées du vecteur u(x) dans la base B F est la matrice colonne AX. Remarque : on( retrouve ) donc que si u est l endormorphisme ( ) ( ) de K( 2 canoniquement ) associé 1 3 1 3 2 11 à la matrice A =, on a u(2, 3) = (11, 16), car = 2 4 2 4 3 16

Arnaud de Saint Julien - MPSI Lycée La Merci 2017-2018 4 I.4 Notion de rang d une matrice Proposition 6 (dictionnaire) Soit A M n,p (K). On appelle rang de la matrice A le rang de la famille (C 1,..., C p ) de K n formée par les colonnes de A. Le rang de A est aussi égal au rang de toute application linéaire représentée par A par rapport à n importe quel couple de base. Application : on calcule rg(a), on en déduit la dimension du noyau et on obtient alors rapidement une base du noyau sans résoudre le système linéaire AX = 0. Par exemple, soit u l endomorphisme de K 3 canoniquement associé à la matrice 2 2 6 A = 3 0 9. 4 4 12 On a rg(a) = rg(c 1, C 2, C 3 ) = rg(c 1, C 2 )=2 car C 3 = 3C 1 et (C 1, C 2 ) libre. Ainsi Im u est engendré par (2, 3, 4) et (2, 0, 4). De plus, par le théorème du rang dim Ker u = 3 rg(u) = 1. Or C 3 = 3C 1 donne u(e 3 ) = 3u(e 1 ) donc u(e 3 3e 1 ) = 0. Le vecteur e 3 3e 1 constitue donc une base du noyau car de dimension 1. Corollaire 7 (Propriétés du rang d une matrice) Soit A M n,p (K) on a rg(a) min(n, p). Soit A M n (K), A est inversible ssi rg(a) = n. Le rang d une matrice n est pas modifié si on la mulitiplie par une matrice inversible. Nous verrons dans la dernière section, que les opérations élémentaires conservent le rang d une matrice, et qu on pourra ainsi appliquer l algorithme du pivot de Gauss pour calculer le rang d une matrice. II Changements de base Problématique : soit u L(E, F), On note A sa matrice relative au couple de base (B E, B F ) et A sa matrice relative au couple de base (B E, B F ). Quel est le lien matriciel entre les matrices A et A? II.1 Matrices de passage Proposition 8 Si B et si B sont deux bases de E, on appelle matrice de passage de B à B la matrice notée Pass(B, B ) dont les colonnes sont les coordonnées des vecteurs de B dans la base B. On a aussi Pass(B, B ) = Mat B,B(id E ), ainsi l application identité étant bijective, on en déduit (DICO) que Pass(B, B ) est inversible et que son inverse est Pass(B, B).

Arnaud de Saint Julien - MPSI Lycée La Merci 2017-2018 5 II.2 Formules de changement de base Proposition 9 (Relation entre deux matrices d une même application linéaire) Si u L(E, F), (avec des notations évidentes) si A = Mat BE,B F (u), A = Mat B E,B F (u), P = Pass(B E, B E) et Q = Pass(B F, B F ), on a A = QA P 1. En particulier si u est un endomorphisme donc E = F, on a A = PA P 1. Exemple ( «ma) première réduction» : soit u l endomorphisme de K 2 canoniquement associé 5 4 à A =. On sait que le polynôme P = X 3 2 2 Tr(A)X + det A = (X 1)(X 2) est annulateur de A. Les noyaux Ker(u id) et Ker(u 2 id) vont ainsi jouer un rôle crucial 1 : ils sont engendrés respectivement par u 1 = (1, 1) et u 2 = (4, 3). La famille (u 1, u 2 ) est une base ( de K 2 et dans ) cette base, la matrice de u est D = diag(1, 2). On a ainsi A = PDP 1 avec 1 4 P =. 1 3 Proposition 10 (Formule de changement de coordonnées) Soit x un vecteur de E. Soit X la matrice colonne des coordonnées de x dans la base B et X la matrice colonne des coordonnées de x dans la base B. On note P = Pass(B, B ). Alors X = PX et X = P 1 X. II.3 Applications des changements de base En trouvant de «bonnes bases», les objets géométriques (vecteurs ou applications linéaires) ont des représentations numériques plus simples qui facilitent les calculs : réduction de coniques en prenant une base polaire. calculs de puissances et de racines carrées de matrices calculs de commutants classification des matrices à équivalence et à similitude près (cf section suivante). III III.1 Classification des matrices Matrices équivalentes Définition 11 Deux matrices A et B de M n,p (K) sont dites équivalentes s il existe deux matrices inversibles P GL n (K) et Q GL p (K) telles que A = PBQ. Cela revient à dire que A et B codent une même application linéaire mais relativement à deux couples de base (éventuellement) différents. 1. Vous verrez l année prochaine, «le lemme des noyaux» qui justifie que l on aura K 2 = Ker(u id) Ker(u 2 id) car (X 2) et (X 1) sont premiers entre eux.

Arnaud de Saint Julien - MPSI Lycée La Merci 2017-2018 6 Remarque : la relation «matrices équivalentes» est une relation d équivalence sur M n,p (K). Le résultat suivant donne un représentant simple des matrices de rang r. Théorème 12 (Représentant d une matrice de rang r) Soit A une matrice de M n,p (K) de rang r. Alors A est équivalente à la matrice bloc J r = diag(i r, 0). Corollaire 13 (Le rang, invariant total) Deux matrices de M n,p (K) sont équivalentes ssi elles ont même rang. Corollaire 14 (Conservation du rang par transposition) Une matrice et sa transposée ont même rang. Puisque le rang d une matrice est le rang des ses vecteurs colonnes, par transposition, on en déduit qu il est aussi égal au rang de ses vecteurs lignes. III.2 Matrices semblables Définition 15 Deux matrices A et B de M n (K) sont dites semblables s il existe une matrice inversible P GL n (K) telles que A = PBP 1. Cela revient à dire que A et B codent un même endomorphisme mais dans une base différente (sauf si A = B). Remarques : la notion de matrices semblables ne vaut que pour des matrices carrées. la relation «matrices semblables» est une relation d équivalence sur M n (K). Si deux matrices sont semblables, elles sont en particulier équivalentes. La réciproque est fausse, car par exemple I 2 et diag(1, 1) sont équivalentes car de rang 2 mais non semblables car la seule matrice semblable à I n est I n. Proposition 16 (Deux invariants de similitude) Si deux matrices sont semblables, alors elles ont même trace et même déterminant. Les réciproques sont fausses. Par exemple, la matrice nulle et la matrice élémentaire E 1,2 ont une trace et un déterminant nul mais ne sont pas semblables. On étudiera en TD la description complète des classes de similitude de M 2 (K). Le cas général est très difficile, il repose essentiellement sur la classification des matrices nilpotentes, que l on étudiera toutefois en exercice pour M 3 (K). IV IV.1 Matrices d opérations élémentaires, application au calcul de rang Conservation du rang par opérations élémentaires Soit i et j deux entiers distincts de {1,..., n} et λ K. On appelle opération élémentaire sur les lignes d une matrice :

Arnaud de Saint Julien - MPSI Lycée La Merci 2017-2018 7 ajouter à la ligne i la ligne j, codée par L i L i + λl j multiplier la ligne i par un scalaire λ non nul, codée par L i λl i permuter les lignes i et j, codée par L i L j On définit de même les opérations élémentaires sur les colonnes d une matrice. Les opérations élémentaires sont inversibles, l inverse des précédentes étant respectivement : L i L i λl j L i 1 λ L i L i L j Effectuer ces opérations élémentaires sur une matrice A revient à multiplier A par des matrices. On note T i,j (λ) la matrice obtenue à partir de I n en ajoutant à la ligne i, λ fois la ligne j. On dit que T i,j (λ) est une matrice de transvection. On note D i (λ) la matrice obtenue à partir de I n en multipliant la ligne i par λ. Lorsque λ est non nul, on dit que D i (λ) est une matrice de dilatation. On note P i,j la matrice obtenue à partir de I n en permutant les lignes i et j. On dit que P i,j est une matrice de transposition. Appliquer les opérations élémentaires L i L i + λl j, L i λl i et L i L j à une matrice A revient à multiplier A par la gauche par les matrices respectives T i,j (λ), D i (λ) et P i,j. Appliquer les opérations élémentaires C i C i +λc j, C i λc i et C i C j à une matrice A revient à multiplier A par la droite par les matrices respectives T j,i (λ), D i (λ) et P i,j (attention, il n y a pas d erreur c est bien T j,i (λ)). Les opérations élémentaires étant inversibles, il en est de même de leur matrice associée, le tableau ci-dessous le résume. opération L i L i + λl j L i λl i L i L j opération inverse L i L i λl j L i 1 λ L i L i L j matrice T i,j (λ) D i (λ) P ( ) i,j 1 inverse matrice T i,j ( λ) D i P i,j λ Puisque le rang d une matrice n est pas modifié si on la multiplie par une matrice inversible, on en déduit Proposition 17 Si l on transforme une matrice par une opération élémentaire sur une ligne ou une colonne, son rang n est pas modifié. On pourra donc appliquer l algorithme du pivot de Gauss, pour transformer une matrice en une matrice triangulaire ou échelonnée pour en calculer le rang.

Arnaud de Saint Julien - MPSI Lycée La Merci 2017-2018 8 IV.2 Complément : notion de matrice échelonnée On note M n,p (R) l ensemble des matrices à coefficients réels à n lignes et p colonnes. Définition 18 Une matrice A de M n,p (R) est dite échelonnée (en ligne) si : les lignes nulles de A sont en-dessous de toutes les lignes non nulles. chaque ligne non nulle de A commence avec strictement plus de zéros que la précédente. On appelle pivot, le premier coefficient non nul d une ligne non nulle. Exemples : considérons les matrices 0 2 3 0 1 0 2 3 0 1 A = 0 0 0 3 5 0 0 0 0 7 et B = 0 0 0 3 5 0 0 0 1 0. 0 0 0 0 0 0 0 0 0 0 La matrice A est échelonnée, elle possède trois pivots que l on a encadrés. En revanche, la matrice B n est pas échelonnée car sa troisième ligne commence avec le même nombre de zéros que la seconde ligne. Voici d autres exemples de matrices échelonnées, où les pivots sont symbolisés par des carrés et les étoiles désignent des coefficients pouvant prendre n importe quelle valeur. 0 0 0 0 0 C = 0 0 0 0 D = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Remarque : si une matrice carrée est échelonnée en ligne, alors elle est forcément triangulaire supérieure. ( En) revanche une matrice triangulaire supérieure n est pas forcément échelonnée, 0 1 prendre. 0 1 L algorithme du pivot de Gauss permet d échelonner une matrice A à l aide des opérations élémentaires. On obtient alors son rang en comptant le nombre de pivots. Proposition 19 Le rang d une matrice échelonnée est égal à son nombre de pivots. Par exemple, si on revient aux exemples du début de cette sous-section, le rang des matrices A, C et D vaut respectivement 3, 2 et 5.