Université de Caen Basse-Normandie. Christophe Chesneau. http://www.math.unicaen.fr/~chesneau/



Documents pareils
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

Introduction à l approche bootstrap

Probabilités sur un univers fini

TABLE DES MATIERES. C Exercices complémentaires 42

STATISTIQUES. UE Modélisation pour la biologie

Méthodes de Simulation

Etude des propriétés empiriques du lasso par simulations

Chapitre 3. Les distributions à deux variables

Correction du baccalauréat STMG Polynésie 17 juin 2014

Relation entre deux variables : estimation de la corrélation linéaire

UFR de Sciences Economiques Année TESTS PARAMÉTRIQUES

3 Approximation de solutions d équations

Simulation de variables aléatoires

1 Définition de la non stationnarité

Température corporelle d un castor (une petite introduction aux séries temporelles)

1 Complément sur la projection du nuage des individus

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

La fonction exponentielle

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke

Évaluation de la régression bornée

Chapitre 2 Le problème de l unicité des solutions

TSTI 2D CH X : Exemples de lois à densité 1

Théorème du point fixe - Théorème de l inversion locale

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Programmes des classes préparatoires aux Grandes Ecoles

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Régression linéaire. Nicolas Turenne INRA

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Probabilités sur un univers fini

Données longitudinales et modèles de survie

Exemples d application

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Correction de l examen de la première session

Arbres binaires de décision

Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Chapitre VI - Méthodes de factorisation

Logiciel XLSTAT version rue Damrémont PARIS

FORMULAIRE DE STATISTIQUES

Résolution de systèmes linéaires par des méthodes directes

Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI

FOAD COURS D ECONOMETRIE 1 CHAPITRE 2 : Hétéroscédasicité des erreurs. 23 mars 2012.

La problématique des tests. Cours V. 7 mars Comment quantifier la performance d un test? Hypothèses simples et composites

CCP PSI Mathématiques 1 : un corrigé

Estimation et tests statistiques, TD 5. Solutions

Correction du Baccalauréat S Amérique du Nord mai 2007

Le Modèle Linéaire par l exemple :

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Résolution d équations non linéaires

IBM SPSS Regression 21

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Coup de Projecteur sur les Réseaux de Neurones

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

VI. Tests non paramétriques sur un échantillon

Moments des variables aléatoires réelles

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

2 TABLE DES MATIÈRES. I.8.2 Exemple... 38

Exercices M1 SES Ana Fermin ( fermin.perso.math.cnrs.fr/ ) 14 Avril 2015

Cours d Analyse. Fonctions de plusieurs variables

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Principe d un test statistique

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Introduction aux Statistiques et à l utilisation du logiciel R

Table des matières. I Mise à niveau 11. Préface

Programmation linéaire

Calcul différentiel sur R n Première partie

Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.

Probabilités III Introduction à l évaluation d options

Introduction à la statistique non paramétrique

données en connaissance et en actions?

INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

IV- Equations, inéquations dans R, Systèmes d équations

La classification automatique de données quantitatives

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Analyse en Composantes Principales

Quantification Scalaire et Prédictive

Texte Agrégation limitée par diffusion interne

Statistiques descriptives

«Cours Statistique et logiciel R»

Exercice : la frontière des portefeuilles optimaux sans actif certain

avec des nombres entiers

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

4 Distributions particulières de probabilités

Enjeux mathématiques et Statistiques du Big Data

NON-LINEARITE ET RESEAUX NEURONAUX

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Leçon N 4 : Statistiques à deux variables

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Précision d un résultat et calculs d incertitudes

Transcription:

Basse-Normandie Christophe Chesneau http://www.math.unicaen.fr/~chesneau/ Caen, le 18 Juillet 2015

Table des matières 1 Présentation 6 2 Régression linéaire multiple (rlm) 7 2.1 Contexte............................................ 7 2.2 Estimations.......................................... 10 2.3 Coefficients de détermination................................ 12 2.4 Lois des estimateurs..................................... 13 2.5 Intervalles de confiance.................................... 14 2.6 Tests d hypothèses...................................... 15 3 Améliorations et validation des hypothèses 17 3.1 Motivation........................................... 17 3.2 Analyses du/des nuages de points.............................. 18 3.3 Analyses graphiques des résidus............................... 20 3.4 Outils de vérification..................................... 23 3.4.1 Indépendance de ɛ 1,..., ɛ n.............................. 24 3.4.2 V(ɛ 1 ) =... = V(ɛ n )................................. 27 3.4.3 Normalité de ɛ 1,..., ɛ n................................ 29 3.5 Multicolinéarité........................................ 31 3.6 Détection des valeurs anormales............................... 35 3.7 Stabilité du modèle...................................... 38 3.8 Sélection de variables..................................... 40 3.9 Traitement de variables qualitatives............................. 46 C. Chesneau 2

4 Méthode des moindres carrés généralisés (mcg) 49 4.1 Contexte............................................ 49 4.2 Quelques résultats...................................... 52 4.3 Hétéroscédasticité des erreurs et mcg............................ 53 4.4 Cas de données groupées................................... 54 4.5 Correction d hétéroscedasticité............................... 57 4.6 Autocorrélation des erreurs et mcg............................. 61 5 Régression non-linéaire 68 5.1 Contexte............................................ 68 5.2 Régression polynomiale.................................... 70 5.3 Résidus partiels........................................ 71 5.4 Méthode itérative....................................... 75 5.5 Extension : régression non-paramétrique.......................... 79 6 Régression logistique 82 6.1 Contexte............................................ 82 6.2 Transformation logit..................................... 84 6.3 Variable latente........................................ 86 6.4 Estimation.......................................... 89 6.5 Significativité de la régression................................ 92 6.6 Rapport des côtes....................................... 94 6.7 Intervalles de confiance.................................... 96 6.8 Pertinence du modèle..................................... 98 6.9 Détection des valeurs anormales............................... 101 C. Chesneau 3

6.10 Sélection de variables..................................... 103 6.11 Qualité du modèle...................................... 105 6.12 Cas des données groupées.................................. 108 7 Régression polytomique 110 7.1 Contexte............................................ 110 7.2 Régression multinomiale (ou polytomique non-ordonnée)................. 112 7.2.1 Contexte....................................... 112 7.2.2 Estimation...................................... 113 7.2.3 Significativité du modèle............................... 115 7.2.4 Sélection de variables................................. 117 7.2.5 Qualité du modèle.................................. 118 7.3 Régression polytomique ordonnée.............................. 120 8 Régression de Poisson 122 8.1 Contexte............................................ 122 8.2 Significativité de la régression................................ 126 8.3 Intervalles de confiance.................................... 128 8.4 Pertinence du modèle..................................... 129 8.5 Détection des valeurs anormales............................... 132 8.6 Sélection de variables..................................... 134 8.7 Dispersion anormale..................................... 136 8.8 Terme de décallage (offset).................................. 138 9 Jeux de données 141 C. Chesneau 4

10 Annexe : emv 142 10.1 Méthode............................................ 142 10.2 Résultats asymptotiques................................... 143 10.3 Test global.......................................... 143 10.4 Test partiel.......................................... 143 10.5 Algorithme de Newton-Raphson et emv.......................... 144 Index 145 C. Chesneau 5

1 Présentation Ce document résume les notions abordées dans le cours Modèle de Régression du M2 MASS (MIASHS) de l université de Caen. Un des objectifs est de donner des pistes de réflexion à la construction de modèles prédictifs à partir de données. Les méthodes statistiques y sont décrites de manière concise, avec les commandes R associées. La présente version est la première, avec tous les défauts que cela comporte. Entre autre, on relève une absence totale d exemple et d application. Ce vide sera comblé dans le futur avec une quinzaine d études sur jeux de données réelles, actuellement en cours d amélioration. Je vous invite à me contacter pour tout commentaire : christophe.chesneau@gmail.com Bonne lecture. C. Chesneau 6

2 Régression linéaire multiple (rlm) 2.1 Contexte Problématique : On souhaite expliquer une variable (ou caractère) Y en fonction de p autres variables X 1,..., X p. Ainsi, Y est la variable à expliquer, X 1,..., X p sont des variables explicatives. Données : Les données constituent des observations de ces variables. Ce sont n observations de (Y, X 1,..., X p ) notées (y 1, x 1,1,..., x p,1 ),..., (y n, x 1,n,..., x p,n ). Elles se présentent généralement sous la forme d un tableau : Y X 1... X p y 1 x 1,1... x p,1 y 2 x 1,2 x p,2.... y n x 1,n... x p,n Modèle de régression linéaire multiple : Si une liaison linéaire entre Y et X 1,..., X p est envisageable, on peut considérer le modèle de régression linéaire multiple (rlm) : il existe p + 1 coefficients inconnus β 0,..., β p tels que C. Chesneau 7

Y = β 0 + β 1 X 1 +... + β p X p + ɛ, où ɛ est une quantité représentant une somme d erreurs. On modélise Y, X1, X2 et X3 par une rlm en faisant : reg = lm(y ~ X1 + X2 + X3) Objectif : Un objectif est d estimer les coefficients inconnus β 0,..., β p à l aide des données afin de prédire la valeur moyenne de Y pour une nouvelle valeur de (X 1,..., X p ). Modélisation : On modélise les variables considérées comme des variables aléatoires réelles (var) (définies sur un espace probabilisé (Ω, A, P)). Pour tout i {1,..., n}, (x 1,i,..., x p,i ) est une réalisation du vecteur aléatoire réel (X 1,..., X p ), sachant que (X 1,..., X p ) = (x 1,i,..., x p,i ), y i est une réalisation de Y i = β 0 + β 1 x 1,i +... + β p x p,i + ɛ i, où ɛ i est une var modélisant une somme d erreurs. Remarque : Pour tout x = (x 1,..., x p ) R p, sous l hypothèse que E(ɛ {(X 1,..., X p ) = x}) = 0, le modèle de rlm peut s écrire comme E(Y {(X 1,..., X p ) = x}) = β 0 + β 1 x 1 +... + β p x p. Ainsi, sachant que (X 1,..., X p ) = x, la valeur moyenne de Y est une combinaison linéaire de (x 1,..., x p ). C. Chesneau 8

Écriture matricielle : Le modèle de rlm s écrit sous la forme matricielle : Y = Xβ + ɛ, où 1 x 1,1 x p,1 Y 1 β 0 ɛ 1 1 x 1,2 x p,2 Y 2 β 1 ɛ X =, Y =, β =, ɛ =....... 2. 1 x 1,n x p,n Y n β p ɛ n Hypothèses standards : On suppose que (X t X) 1 existe, ɛ et X 1,..., X p sont des var indépendantes et ɛ N n (0, σ 2 I n ) où σ est un paramètre inconnu. En particulier, cette dernière hypothèse entraîne que ɛ 1,..., ɛ n sont indépendantes, V(ɛ 1 ) =... = V(ɛ n ), ɛ 1,..., ɛ n suivent chacune la loi normale centrée. C. Chesneau 9

2.2 Estimations Emco : L estimateur des moindres carrés ordinaires (emco) de β est β = (X t X) 1 X t Y. Il est construit de sorte que l erreur d estimation entre X β et Y soit la plus petite possible au sens. 2 : où. désigne la norme euclidienne de R n : β = Argmin β R p+1 Y Xβ 2, < a, b >= a t b = b t a = n a i b i, a 2 =< a, a >= a t a = i=1 n a 2 i. i=1 Pour tout j {0,..., p}, la j + 1-ème composante de β, notée β j, est l emco de β j. Emco et emv : L emco de β est l estimateur du maximum de vraisemblance (emv) de β. En effet, la vraisemblance associée à (Y 1,..., Y n ) est L(β, z) = ) 1 z Xβ 2 (2πσ 2 exp ( ) n/2 2σ 2 ), z R n. Par conséquent Argmax β R p+1 L(β, Y ) = Argmin Y Xβ 2 = β. β R p+1 Estimateur de la prédiction : Soit y x la valeur prédite moyenne de Y lorsque (X 1,..., X p ) = C. Chesneau 10

(x 1,..., x p ) = x : y x = β 0 + β 1 x 1 +... + β p x p. Un estimateur de y x est Ŷ x = β 0 + β 1 x 1 +... + β p x p. Estimateur de σ 2 : Un estimateur de σ 2 est σ 2 = 1 n (p + 1) Y X β 2. Il vérifie E( σ 2 ) = σ 2. De plus, σ 2 et β sont indépendants. Estimations ponctuelles : En pratique, on considère les réalisations de β 0, β 1,..., β p, σ 2 correspondantes aux données. On travaille donc avec des réels. reg = lm(y ~ X1 + X2 + X3) On obtient les estimations ponctuelles de β 0, β 1, β 2 et β 3 par la commande : reg Pour isoler l estimation ponctuelle de β 2 (par exemple), on fait : reg$coeff[3] Les valeurs prédites moyennes de Y prises aux valeurs des données de X1, X2 et X3 s obtiennent en faisant : predict(reg) (ou fitted(reg)) La valeur prédite moyenne de Y pour la valeur (X1, X2, X3) = (1.2, 2.2, 6) est donnée par la commande : predict(reg, data.frame(x1 = 1.2, X2 = 2.2, X3 = 6)) Si le coefficient β 0 n a pas de sens dans la modélisation, on l enlève en faisant : reg = lm(y ~ X1 + X2 + X3-1) C. Chesneau 11

2.3 Coefficients de détermination Coefficients de détermination : On appelle coefficient de détermination la réalisation R 2 de R 2 = Ŷ Y 2 Y Y 2, où Ŷ = X β et Y = (1/n) n i=1 Y i. Ce R 2 est un coefficient réel toujours compris entre 0 et 1. Il mesure de la qualité de l ajustement des données par le modèle de rlm ; plus R 2 est proche de 1, (plus Ŷ est proche de Y ), meilleur est le modèle. Coefficients de détermination ajusté : On appelle coefficient de détermination ajusté le réel : R 2 = R 2 (1 R 2 p ) n (p + 1). Ce coefficient est considéré comme plus fiable que R 2 car il tient compte du nombre de variables. Le R 2 et R 2 sont donnés par la commande : summary(reg) C. Chesneau 12

2.4 Lois des estimateurs Loi de β : On a β N p+1 ( β, σ 2 (X t X) 1). La matrice de covariance estimée de β, qui est aussi la réalisation de σ 2 (X t X) 1, est donnée par la commande : vcov(reg) Loi de β j : Pour tout j {0,..., p}, on a β j N ( β j, σ 2 [(X t X) 1 ] j+1,j+1 ), βj β j σ [(X t X) 1 ] j+1,j+1 N (0, 1), où [(X t X) 1 ] j+1,j+1 désigne la j + 1-ème composante diagonale de (X t X) 1. Degrés de liberté : Dans ce qui suit, on travaillera avec le nombre de degrés de liberté : ν = n (p + 1). Loi associée à σ 2 : On a (n (p + 1)) σ2 σ 2 χ2 (ν). Apparition de la loi de Student : Pour tout j {0,..., p}, on a β j β j σ [(X t X) 1 ] j+1,j+1 T (ν). C. Chesneau 13

2.5 Intervalles de confiance Intervalle de confiance pour β j : Pour tout j {0,..., p}, un intervalle de confiance pour β j au niveau 100(1 α)%, α ]0, 1[, est la réalisation i βj de I βj = [ ] β j t α (ν) σ [(X t X) 1 ] j+1,j+1, βj + t α (ν) σ [(X t X) 1 ] j+1,j+1, où t α (ν) est le réel vérifiant P( T t α (ν)) = α, avec T T (ν). confint(reg, level = 0.95) Intervalle de confiance pour y x : Soient y x la prédiction moyenne de Y quand (X 1,..., X p ) = (x 1,..., x p ) = x et x = (1, x 1,..., x p ). Un intervalle de confiance pour y x au niveau 100(1 α)%, α ]0, 1[, est la réalisation i yx de I yx = [Ŷx t α (ν) σ x (X t X) 1 x t, Ŷ x + t α (ν) σ x (X t X) 1 x t ], où t α (ν) est le réel vérifiant P( T t α (ν)) = α, avec T T (ν). predict(reg, data.frame(x1 = 1.2, X2 = 2.2, X3 = 6), interval = "confidence") C. Chesneau 14

2.6 Tests d hypothèses p-valeur : On considère des hypothèses de la forme : H 0 : A contre H 1 : contraire de A La p-valeur est la probabilité exacte (ou presque) de se tromper en rejetant H 0. Ainsi, le plus petit risque de se tromper en rejetant H 0 est (100 p-valeur)%. Degrés de significativité : Le rejet de H 0 sera significatif si p-valeur ]0.01, 0.05], symbolisé par, très significatif si p-valeur ]0.001, 0.01], symbolisé par, hautement significatif si p-valeur < 0.001, symbolisé par, (presque significatif si p-valeur ]0.05, 0.1], symbolisé par. (un point)). Test de Student : Soit j {0,..., p}. L objectif du test de Student est d évaluer l influence de X j sur Y. On considère les hypothèses : H 0 : β j = 0 contre H 1 : β j 0. On calcule la réalisation t obs de T = β j σ [(X t X) 1 ] j+1,j+1. On considère une var T T (ν). Alors la p-valeur associée est p-valeur = P( T t obs ). Si C. Chesneau 15

, l influence de X j sur Y est significative,, l influence de X j sur Y est très significative,, l influence de X j sur Y est hautement significative. Test global de Fisher : L objectif du test global de Fisher est d étudier la pertinence du lien linéaire entre Y et X 1,..., X p. On considère les hypothèses : H 0 : β 1 = β 2 =... = β p = 0 contre H 1 : il y a au moins un coefficient non nul. On calcule la réalisation f obs de F = R 2 n (p + 1) 1 R. 2 p On considère une var F F(p, ν). Alors la p-valeur associée est p-valeur = P(F f obs ). Notons que ce test est moins précis que le test de Student car il ne précise pas quels sont les coefficients non nuls. Il est toutefois un indicateur utile pour déceler d éventuelles problèmes (comme des colinéarités entre X 1,..., X p ). Les tests d hypothèses précédents sont mis en œuvre par la commande : summary(reg) C. Chesneau 16

3 Améliorations et validation des hypothèses 3.1 Motivation Questions : 1. Peut-on améliorer les estimations des paramètres? 2. Comment valider ces hypothèses avec les données? Rappel : Les hypothèses suivantes ont été formulées : ɛ et X 1,..., X p sont indépendantes, ɛ 1,..., ɛ n sont indépendantes, V(ɛ 1 ) =... = V(ɛ n ), ɛ 1,..., ɛ n suivent des lois normale centrées. Commandes R clés : Une première analyse de la validation de ces hypothèses doit être graphique. Les commandes clés sont : par(mfrow = c(2, 2)) plot(reg, 1:4) Des tests d hypothèses rigoureux viendront ensuite confirmer/infirmer cette première analyse visuelle. C. Chesneau 17

3.2 Analyses du/des nuages de points Pertinence du modèle : Pour certain problème, le modèle de rlm n est pas le plus adapté. Il est parfois judicieux de transformer Y et X 1,..., X p, puis de les modéliser par une rlm. Ainsi, on considère un modèle de la forme : f(y ) = β 0 + β 1 g 1 (X 1 ) +... + β p g p (X p ) + ɛ, où f, g 1,..., g p désignent des transformations/fonctions à choisir. Choix des transformations : Les p nuages de points : {(x j,i, y i ); i {1,..., n}}, j {1,..., p} peuvent nous aiguiller sur les transformations candidates. Pour tout j {1,..., p}, une approche intuitive consiste à déterminer des fonctions f et g j telles que le nuage de points {(g j (x j,i ), f(y i )); i {1,..., n}} soit ajustable par une droite. plot(w) ou pairs(cbind(y, X1, X2)) Nous verrons par la suite les limites de cette approche et étudierons les méthodes alternatives (dans le chapitre Régression non-linéaire). C. Chesneau 18

Exemple : Dans l exemple-ci dessous, on cherche à expliquer Y en fonction X 1 : Vu le nuage de points, il est préférable de considérer la transformation exp(y ) et de faire une régression linéaire sur X 1, soit exp(y ) = β 0 + β 1 X 1 + ɛ. On obtiendra des estimations de β 0 et β 1 avec un meilleur R 2. Un exemple de rlm avec variables transformées est reg = lm(log(y) ~ sqrt(x1) + exp(x2) + X3) C. Chesneau 19

3.3 Analyses graphiques des résidus Résidus : Pour tout i {1,..., n}, on appelle i-ème résidu la réalisation e i de ɛ i = Y i Ŷi, où Ŷi = β 0 + β 1 x 1,i +... + β p x p,i. On appelle résidus les réels e 1,..., e n. Ces résidus vont nous permettre de valider ou non les hypothèses initiales. residuals(reg) Résidus standardisés : Pour tout i {1,..., n}, on appelle i-ème résidu standardisé la réalisation e i de ɛ i = ɛ i σ 1 [X(X t X) 1 X t ] i,i. On appelle résidus standardisés les réels e 1,..., e n. rstandard(reg) Lois : Pour tout i {1,..., n}, si les hypothèses initiales sont vérifiées, on a ɛ i N ( 0, σ 2 (1 [X(X t X) 1 X t ] i,i ) ), ɛ i 1 [X(X t X) 1 X t ] i,i N (0, σ 2 ) et ɛ i = ɛ i σ 1 [X(X t X) 1 X t ] i,i T (ν). C. Chesneau 20

Analyse graphique 1 : On trace le nuage de points : {(e i, y i e i ); i {1,..., n}}. Notons que y i e i est la réalisation de Ŷi = Y i ɛ i. Si on ne peut pas ajuster le nuage de points par une "ligne" (droite ou ondulée), on admet que ɛ et X 1,..., X p sont indépendantes : tout va bien. plot(reg, 1) Si problème : Si on peut ajuster le nuage de points par une "ligne" (droite ou ondulée), on soupçonne que ɛ et X 1,..., X p sont dépendantes. Le lien linéaire entre Y et X 1,..., X p peut être remis en question. Analyse graphique 2 : On trace le nuage de points : {(i, e i ); i {1,..., n}}. Si le nuage de points n a aucune structure particulière, il y a une symétrie dans la répartition des points par rapport à l axe des abscisses, alors on admet que ɛ N n (0, σ 2 I n ) : tout va bien. plot(residuals(reg)) Si problème : 1. Si le nuage de points a l allure d une route sinueuse ou d un mégaphone, on soupçonne que les var ɛ 1,..., ɛ n sont dépendantes (si cela a du sens), ou/et V(ɛ 1 ) =... = V(ɛ n ) n est pas C. Chesneau 21

vérifiée. 2. S il y a une asymétrie dans la répartition des points par rapport à l axe des abscisses, l hypothèse de normalité de ɛ 1,..., ɛ n est à étudier. C. Chesneau 22

3.4 Outils de vérification En cas de doute, il convient de vérifier, dans l ordre : l indépendance de ɛ 1,..., ɛ n, l égalité V(ɛ 1 ) =... = V(ɛ n ), la normalité de ɛ 1,..., ɛ n. C. Chesneau 23

3.4.1 Indépendance de ɛ 1,..., ɛ n Motivation : Si les observations de Y, X 1,..., X p portent sur des individus tous différents et que le modèle de rlm a du sens, ɛ 1,..., ɛ n sont indépendantes. Par conséquent, si on distingue une structure dans le nuage des points des résidus (route sinueuse, mégaphone,... ), soit le modèle n est pas adapté, soit il faut se tourner vers la vérification de l hypothèse V(ɛ 1 ) =... = V(ɛ n ). En revanche, si les observations de Y, X 1,..., X p présentent une dépendance temporelle, la dépendance de ɛ 1,..., ɛ n est à étudier. Corrélogramme : Pour étudier l indépendance de ɛ 1,..., ɛ n, partant des résidus e 1,..., e n, la première approche consiste à tracer le corrélogramme. Celui-ci représente les estimations ponctuelles de la fonction d autocorrélation (acf) définie par ρ(h) = C(ɛ i, ɛ i+h ), i {1,..., n h}, h {1,..., n 1}, σ(ɛ i )σ(ɛ i+h ) sous forme de bâtons. La liaison linéaire entre ɛ i et ɛ i+h est mesurée. On peut aussi calculer un intervalle de confiance pour ρ(h) au delà duquel la dépendance est remise en cause. Si les bâtons sont de tailles et de signes alternés (ou presque) et qu aucun d entre eux ne dépassent les bornes de l intervalle de confiance (ou presque), on admet l indépendance de ɛ 1,..., ɛ n : tout va bien. C. Chesneau 24

acf(residuals(reg)) Corrélogramme partiel : Le corrélogramme partiel vient compléter l étude précédente ; il représente les estimations ponctuelles de la fonction d autocorrélation partielle (pacf) sous forme de bâtons. Cette fonction mesure la liaison linéaire entre ɛ i et ɛ i+h une fois retirés les liens transitant par les variables intermédiaires ɛ i+1,..., ɛ i+h 1. L interprétation est la même que pour l acf. pacf(residuals(reg)) Si problème : Ainsi, si les sommets des bâtons peuvent être rejoints par une ligne serpentée "sans pic" ou si plusieurs bâtons dépassent les bornes de l intervalle de confiance, une dépendance peut-être soupçonnée. Cela peut être confirmé avec le test de Ljung-Box. Test de Ljung-Box (ou du portemanteau) : On considère les hypothèses : H 0 : ρ(1) =... = ρ(n) = 0 contre H 1 : au moins une corrélation n est pas nulle. Partant des résidus e 1,..., e n, on peut utiliser le test de Ljung-Box : si p-valeur < 0.05, on admet qu au moins une corrélation n est pas nulle, donc que ɛ 1,..., ɛ n ne sont pas indépendantes. library(lawstat) Box.test(residuals(reg), type = "Ljung") Structure de dépendance : Si la dépendance ɛ 1,..., ɛ n est avérée ; le modèle de rlm n est pas adapté. Afin de trouver une alternative, il est intéressant d identifier, si possible, la structure de dépendance associée. La structure AR(1) présentée ci-après est l une des plus répandue. C. Chesneau 25

Structure AR(1) : On dit que ɛ 1,..., ɛ n ont une structure auto-régressive de degré 1 (AR(1)) si il existe : ρ ] 1, 1[ {0}, n var iid u 1,..., u n suivant chacune la loi normale N (0, υ 2 ), tels que, pour tout i {1,..., n}, ɛ i = ρɛ i 1 + u i. Le réel ρ mesure la dépendance de ɛ 1,..., ɛ n ; si ρ = 0, pour tout i {1,..., n}, ɛ i = u i, donc ɛ 1,..., ɛ n sont indépendants, si ρ 0, on admet la structure AR(1 ) ; ɛ 1,..., ɛ n ne sont pas indépendants. Test de Durbin-Watson : On considère les hypothèses : H 0 : ρ = 0 contre H 1 : ρ 0. Partant des résidus e 1,..., e n, on peut utiliser le test de Durbin-Watson : si p-valeur < 0.05, alors on admet que ρ 0, entraînant la structure AR(1 ) de ɛ 1,..., ɛ n. library(lmtest) dwtest(reg) Si problème : Dans le cas d une structure AR(1) sur ɛ 1,..., ɛ n, on est capable d estimer efficacement β. Cela sera présenté dans le chapitre Méthode des moindres carrés généralisés. C. Chesneau 26

3.4.2 V(ɛ 1 ) =... = V(ɛ n ) Graphique "Scale-Location" : On considère le nuage de points : { } ( e i, y i e i ); i {1,..., n}. Si on ne distingue aucune structure, on peut admettre que V(ɛ 1 ) =... = V(ɛ n ) : tout va bien. plot(reg, 3) Test de White : Admettons que ɛ 1,..., ɛ n soient indépendantes. Pour étudier l égalité V(ɛ 1 ) =... = V(ɛ n ), partant des résidus e 1,..., e n, on préconise le test de White. L idée est de tester l existence d un lien linéaire entre ɛ 2 et les p 2 variables constituées de X 1,..., X p, les carrés : X1 2,..., X2 p, les produits croisés : X 1 X 2, X 1 X 3,..., X p 1 X p. Si p-valeur > 0.05, on admet que V(ɛ 1 ) =... = V(ɛ n ). library(bstats) white.test(reg) Alternativement, on peut utiliser le test de Breusch-Pagan qui repose sur une idée similaire. library(lmtest) bptest(reg) Méthode de Glejser : La méthode de Glejser étudie l existence d un lien linéaire entre ɛ et des transformations (subjectives) de X 1,..., X p. Si au moins une variable influe très significativement sur ɛ, on rejette V(ɛ 1 ) =... = V(ɛ n ). C. Chesneau 27

e = residuals(reg) reg2 = lm(abs(e) ~ sqrt(x1) + X2ˆ0.3 + log(x3)) summary(reg2) Si problème : On propose 2 solutions : Une rlm avec Y transformée (comme ln Y, Y ou 1/Y ) peut engendrer des nouvelles variables d erreurs ɛ 1,..., ɛ n vérifiant V(ɛ 1 ) =... = V(ɛ n ). Dès lors, on peut utiliser ce nouveau modèle pour une étude statistique. Si, pour tout i {1,..., n}, on a une idée de la valeur de V(ɛ i ) ou que celle-ci est estimable, alors nous verrons une solution dans le chapitre Méthode des moindres carrés généralisés. C. Chesneau 28

3.4.3 Normalité de ɛ 1,..., ɛ n QQ plot : Admettons que ɛ 1,..., ɛ n soient indépendantes et V(ɛ 1 ) =... = V(ɛ n ). Pour étudier plus finement la normalité de ɛ 1,..., ɛ n, on trace le nuage de points QQ plot associé (ou diagramme Quantile-Quantile). Si le nuage de points peut être très facilement ajusté par la droite y = x, alors on admet la normalité de ɛ 1,..., ɛ n. Principe du QQ plot : Le principe du QQ plot est le suivant : 1. Pour tout i {1,..., n}, si ɛ i N (0, σ 2 ), alors ɛ i = ɛ i σ 1 [X(X t X) 1 X t ] i,i T (ν). On considère alors la fonction de répartition F de ɛ 1 dans ce cas. 2. D autre part, un estimateur de la fonction de répartition de ɛ 1 dans le cas général est Ĝ(x) = (1/n) n i=1 I { ɛ i x}. Soit G(x) sa réalisation. 3. Par conséquent, si ɛ i N (0, σ 2 ), alors on a F (x) G(x) et, a fortiori, x F 1 (G(x)). Le graphique QQ plot consiste à tracer le nuage de points { (F 1 (G(e i )), e i ); i {1,..., n} }. Si ɛ i N (0, σ 2 ), alors, pour tout i {1,..., n}, (F 1 (G(e i )), e i ) (e i, e i ) et les points du C. Chesneau 29

nuage seront presque sur la droite d équation y = x. Notons que l on trace le QQ plot en fonction des résidus standardisés e 1,..., e n et la loi de Student T (ν). Si ν 30, on peut utiliser la loi normale N (0, 1) car T (ν) N (0, 1), on parle alors de QQ norm. plot(reg, 2) soit encore : qqnorm(rstandard(reg)) ou plus joli : library(car) qqplot(reg) Test de Shapiro-Wilk : Pour conclure à la normalité de ɛ 1,..., ɛ n, partant des résidus e 1,..., e n, on préconise le test de Shapiro-Wilk : si p-valeur > 0.05, on admet l hypothèse de normalité. shapiro.test(residuals(reg)) Si problème : Une rlm avec Y transformée (comme ln Y, Y ou 1/Y ) peut engendrer des nouvelles variables d erreurs ɛ 1,..., ɛ n suivant chacune une loi normale. Dès lors, on peut utiliser ce nouveau modèle pour une étude statistique. C. Chesneau 30

3.5 Multicolinéarité Problème : Si au moins une des variables parmi X 1,..., X p a une liaison (presque) linéaire avec d autres, alors det(x t X) 0. Par conséquent, les éléments de la matrice : (X t X) 1 = 1 det(x t X) com(xt X) t seront très grands (à cause du terme 1/ det(x t X) ). Comme, pour tout j {1,..., p}, β j N ( β j, σ 2 [(X t X) 1 ] j+1,j+1 ), la variance de β j explose. Conséquence : Cela entraîne une grande instabilité dans l estimation de β j et fausse tous les tests d hypothèses. En particulier, si au moins une variable parmi X 1,..., X p a une liaison linéaire avec d autres, il est possible qu aucune variable ne montre d influence significative sur Y et cela, en dépit de toute logique, du test de Fisher qui peut quand même indiquer une influence significative globale des coefficients (car il prend en compte toutes les variables). Il convient donc d étudier d éventuelles multicolinéarités dans les X 1,..., X p avant de valider des résultats statistiques (arrangeants ou pas). Méthodes : C. Chesneau 31

Règle de Klein, Facteur d inflation de la variance (vif). Règle de Klein : On calcule la matrice carré p p composée des estimations ponctuelles des corrélations : ρ i,j = C(X i, X j ) σ(x i )σ(x j ). Si une ou plusieurs valeurs au carré sont proches de R 2, alors on soupçonne que les variables associées sont colinéaires. c = cor(cbind(x1, X2, X3), cbind(x1, X2, X3)) cˆ2 Vif : Pour tout j {1,..., p}, on appelle j-ème facteur d inflation de la variance (vif) le réel : V j = 1 1 Rj 2, où R 2 j désigne le coefficient de détermination de la rlm de X j sur les autres variables. On peut montrer que la variance estimée de β j est proportionnelle à V j. Ainsi, plus le lien linéaire entre X j et les autres variables est fort, plus R 2 j est proche de 1, plus V j est grand et plus l estimation de β j est instable. Critère pratique : Si V j 5, on admet que X j a un lien linéaire avec les autres variables. library(car) vif(reg) Si problème : On propose 3 solutions : 1. On regroupe les variables colinéaires pour n en former qu une. C. Chesneau 32

Par exemple, si on soupçonne que X j et X k sont colinéaires, on peut considérer la nouvelle variable Z = a + b(x j + X k ) (ou Z = a + b(x j X k )), avec a et b arbitrairement choisis. 2. On élimine une ou plusieurs des variables colinéaires (en concertation avec un spécialiste des données pour savoir si cela a du sens). 3. On considère un autre estimateur de β : l estimateur Ridge, l estimateur LASSO. Estimateur Ridge : L estimateur ridge est défini par β = (X t X + λi p ) 1 X t Y, où λ désigne une constante positive. Il vérifie β = Argmin β R p+1 Y Xβ 2 + λ p j=1 β 2 j En general, on le calcule pour plusieurs valeurs de λ. Une constante λ convenable est estimable avec plusieurs méthodes, dont la méthode du maximum de vraisemblance. C. Chesneau 33

library(mass) reg = lm.ridge(y ~ X1 + X2 + X3, lambda = seq(0, 100, 1)) select(reg) Si cela renvoie une valeur estimée pour λ de 4 (par exemple), on considère : regridge = lm.ridge(y ~ X1 + X2 + X3, lambda = 4) summary(regridge) Estimateur LASSO : L estimateur LASSO est défini par β = Argmin β R p+1 Y Xβ 2 + λ p β j, j=1 où λ désigne une constante positive. library(lars) X = cbind(1, X1, X2) reglasso = lars(x, Y, type = "lasso") summary(reglasso) C. Chesneau 34

3.6 Détection des valeurs anormales Objectif : La détection de valeurs anormales dans les données est cruciale car ces valeurs peuvent avoir une influence négative dans les estimations et, a fortiori, dans les prévisions (effet levier de la fonction de régression). Méthodes : Méthode des résidus standardisés, Critère des distances de Cook. Méthode des résidus standardisés : Pour tout i {1,..., n}, si e i > 2, on envisage l anormalité de la i-ème observation. Cette règle repose sur la construction d un intervalle de confiance nous assurant qu il y a (environ) 95 chances sur 100 que la i-ème observation vérifie e i 2. e = rstandard(reg) plot(e) e[abs(e) > 2] Critère des distances de Cook : Pour tout i {1,..., n}, on défini la distance de Cook de la i-ème observation par Si d i = [X(X t X) 1 X t ] i,i (p + 1)(1 [X(X t X) 1 X t ] i,i ) (e i ) 2. d i > 1, C. Chesneau 35

on envisage l anormalité de la i-ème observation. On peut montrer que d i est la réalisation de D i = Ŷ Ŷ i 2 n (p + 1) σ 2, où Ŷ i = (X β) i qui correspond au calcul de X β = X(X t X) 1 X t Y avec X et Y privés de la i-ème observation. Ce critère mesure donc l influence d une observation sur l erreur de prévision. plot(reg, 4) cooks.distance(reg)[cooks.distance(reg) > 1] Admettons que les valeurs associées aux individus 4 et 26 soient anormales. On refait l analyse sans ces individus avec la commande : reg2 = lm(y ~ X1 + X2 + X3, subset = - c(4, 26)) Ou alors : ww = w[ - c(4, 26), ] attach(ww) reg = lm(y ~ X1 + X2 + X3) Peu importe la méthode et le résultat, il faut toujours s assurer auprès du spécialiste de l étude que une ou plusieurs observations peuvent être retirées des données. Régression robuste : S il y a une ou plusieurs valeurs considérées comme anormales mais qui ont lieu d être dans l analyse, on peut améliorer la prédiction en faisant ce que l on appelle de la "régression robuste". C. Chesneau 36