Techniques de Lyapunov en contrôle quantique pour le couplage dipolaire et polarisabilité



Documents pareils
aux différences est appelé équation aux différences d ordre n en forme normale.

I. Polynômes de Tchebychev

NOTICE DOUBLE DIPLÔME

Physique quantique et physique statistique

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

Cours d Analyse. Fonctions de plusieurs variables

Continuité en un point

Table des matières. Introduction Générale 5

Chapitre 2 Le problème de l unicité des solutions

Algorithmes pour la planification de mouvements en robotique non-holonome

Comparaison de fonctions Développements limités. Chapitre 10

Continuité et dérivabilité d une fonction

I Stabilité, Commandabilité et Observabilité Introduction Un exemple emprunté à la robotique Le plan Problème...

3 Approximation de solutions d équations

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

Théorème du point fixe - Théorème de l inversion locale

Les Conditions aux limites

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes

Limites finies en un point

Correction du Baccalauréat S Amérique du Nord mai 2007

COURS COLLÉGIAUX PRÉALABLES À L ADMISSION

Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière

Calcul fonctionnel holomorphe dans les algèbres de Banach

Image d un intervalle par une fonction continue

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Correction de l examen de la première session

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Équations non linéaires

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent

Cours 9. Régimes du transistor MOS

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Modélisation du virus informatique Conficker

Théories de champ moyen et convection à grande échelle

Fonctions de plusieurs variables

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

TD1 Signaux, énergie et puissance, signaux aléatoires

K W = [H 3 O + ] [OH - ] = = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

Résonance Magnétique Nucléaire : RMN

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Chapitre 3. Mesures stationnaires. et théorèmes de convergence

CCP PSI Mathématiques 1 : un corrigé

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

Chapitre VI - Méthodes de factorisation

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Correction du baccalauréat S Liban juin 2007

Chapitre 0 Introduction à la cinématique

Capes Première épreuve

Programmation linéaire

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Exercices Corrigés Premières notions sur les espaces vectoriels

La fonction exponentielle

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Différentiabilité ; Fonctions de plusieurs variables réelles

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

OM 1 Outils mathématiques : fonction de plusieurs variables

Programmes des classes préparatoires aux Grandes Ecoles

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

Fonctions de plusieurs variables

Continuité d une fonction de plusieurs variables

Cours 1. Bases physiques de l électronique

Calcul différentiel. Chapitre Différentiabilité

Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?

Modélisation et Simulation

MATHÉMATIQUES FINANCIÈRES I

Chapitre VI Fonctions de plusieurs variables

Etude de fonctions: procédure et exemple

ANALYSE NUMERIQUE ET OPTIMISATION. Une introduction à la modélisation mathématique et à la simulation numérique

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Simulation numérique d un stockage de déchets nucléaires en site géologique profond

Résolution d équations non linéaires

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

5. Les conducteurs électriques

Probabilités III Introduction à l évaluation d options

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Théorie de la mesure. S. Nicolay

Plan du chapitre «Milieux diélectriques»

Calcul différentiel sur R n Première partie

Nombre dérivé et tangente

Le modèle de Black et Scholes

Approximations variationelles des EDP Notes du Cours de M2

La fonction d onde et l équation de Schrödinger

6 Equations du première ordre

Les indices à surplus constant

Mesures gaussiennes et espaces de Fock

CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle

Structure quantique cohérente et incohérente de l eau liquide

Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens

= b j a i φ ai,b j. = ˆBa i φ ai,b j. = a i b j φ ai,b j. Par conséquent = 0 (6.3)

Transcription:

Techniques de Lyapunov en contrôle quantique pour le couplage dipolaire et polarisabilité Andreea Grigoriu avec Jean-Michel Coron, Cătălin Lefter and Gabriel Turinici CEREMADE-Université Paris Dauphine Séminaire des doctorants-cermics 7 Juillet 2010

Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Introduction Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Introduction Chimie quantique Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Introduction Chimie quantique Biologie Figure: Mieux que nos cellules photo-voltaiques (8% 20%), les plantes savent transformer plus de 95% de l énergie solaire en énergie chimique, qui est à la base de tous les organismes vivants. Une étude récente (Nature 446, 782-786 2007) montre l importance des effets quantiques (cohérence). Source de l image : http ://www.wikipedia.org.

Introduction Chimie quantique Médecine Figure: L adenine, une des molécules qui codent l information génétique de notre ADN. Les simulations numériques permettent de prédire la disposition des noyaux et des électrons.

Introduction Contrôle quantique Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Introduction Contrôle quantique Contrôle des systèmes quantiques en utilisant le laser affecte la structure des molécules (créer ou briser les liaisons chimiques) obtenir une précision plus grande qu avec les moyens macroscopiques habituels (temperature, pression...) D autres applications de cette technique la conception de portes logiques dans de futurs ordinateurs quantiques investigations dans l imagerie par résonance magnétique nucléaire-irm étude de la dynamique des protéines détection moléculaire orientation et alignement moléculaire construction de lasers ultra-courts

Introduction Contrôle quantique Figure: Ici l exemple d un laser optimisé pour choisir entre les réactions possibles. Science, 292 :709 713, 2001

Introduction Contrôle quantique Figure: Exemples d états finaux obtenus utilisand un champ laser Science, 292 :709 713, 2001

Introduction Contrôle quantique Système quantique évolution modélisée par l équation de Schrödinger (TDSE) { i t Ψ(x, t) = H 0Ψ(x, t) Ψ(x, t = 0) = Ψ 0 (x). Système de contrôle quantique ajout d une interaction externe { i t Ψ(x, t) = (H 0 + u(t)h 1 (x))ψ(x, t) Ψ(x, t = 0) = Ψ 0 (x) Ex. : H 0 = + V (x), domaine non borné Evolution sur la sphère unité : Ψ(t) L 2 = 1, t 0.

Introduction Contrôle quantique Motivation le terme de premier ordre u(t)h 1 n a pas assez d influence sur le système pour attendre l objectif de contrôle. le but peut devenir accessible après l ajout de plusieurs termes : i d dt Ψ(t) = [ H 0 + u(t)h 1 + u(t) 2 H 2 ] Ψ(t) i d dt Ψ(t) = [ H 0 + u(t)h 1 + u(t) 2 H 2 + u(t) 3 H 3 ] Ψ(t) i d dt Ψ(t) = [ H 0 + (u 1 (t) 2 + u 2 (t) 2 )H 1 + u 1 (t) 2 u 2 (t)h 2 ] Ψ(t)

Introduction Contrôle quantique La controlabilité Le systeme i d dt Ψ(t) = [ H 0 + u(t)h 1 + u(t) 2 H 2 ] Ψ(t) peut etre vu comme un cas particulier de : i d dt Ψ(t) = [H 0 + u(t)h 1 + v(t)h 2 ] Ψ(t) avec v(t) = u 2 (t). La controlabilité peut etre étudiée : en utilisand le critere général d accesibilité basé sur l Algebre de Lie : Sussmann et Jurdjevic (72), Brockett (73) resultats plus specifiques : Turinici (07)

Introduction Contrôle quantique Le contrôle la caracterisation de la controlabilité ne prévoit pas en général un moyen simple et efficace pour determiner le contrôle techniques de contrôle optimal : Shi, Woody et Rabitz (88), Maday et Turinici (03), techniques de factorisation du groupe unitaire : Altafini (02), Constantinescu et Ramakrishna (03) techniques Lyapunov Ferrante et all (02), Grivopoulos et Bahiem (03), Maday et Turinici (03), Sugawara (03), Beauchard, Coron, Mirrahimi et Rouchon (07),

Introduction Contrôle quantique Le contrôle Dans le cas H 0 + u(t)h 1 + u 2 (t)h 2 : adapter l analyse proposée pour le cas bilineaire : H 0 + u(t)h 1 Jurdjevic and Quinn (78), Mirrahimi, Rouchon et Turinici(05) Remarque : le cas bilineaire couplage direct non-nul realisé par H 1 entre l etat cible et tous les autes etats si H 1 a la même proprieté même type de controle si une partie des couplages est realisée par H 2 à la place de H 1 le feedback antérieur ne marche plus nous proposons deux alternatives : feedback discontinuu avec termes de mémoire feedback dependant de temps

Techniques de Lyapunov Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Techniques de Lyapunov Cadre général prendre le système quantique de niveau N évoluant selon l équation (NTDSE-Schrödinger non-linéaire) : i d dt Ψ = (H 0 + u(t)h 1 + u 2 (t)h 2 + ω(t))ψ(t) où Ψ S 2n 1 C = {Ψ C n Ψ C n = 1}; H 0, H 1 et H 2 sont des matrices Hermitiennes de dim N N (H 0 = H 0...) ω(t), u(t) R le contrôle ; De point de vue physique, Ψ et e ıθ(t) Ψ décrivent le même état physique avec θ(t) R géométrie non triviale contrôle ω.

Techniques de Lyapunov Construction du contrôle Lyapunov Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Techniques de Lyapunov Construction du contrôle Lyapunov Construction du contrôle Lyapunov méthode de Lyapunov introduite par : prenons une fonction V (Ψ, t) : où V (Ψ, t) = Ψ Ψ r Ψ Ψ r.. est le produit scalaire Hermitien correspondant à (u r (t), ω r (t)), nous prenons t (Ψ r (t)) une trajectoire de référence i.e., une solution régulière de NTDSE La fonction V est positive pout tout t > 0 et pout tout Ψ S 2n 1 C, vaut zero quand Ψ = Ψ r.

Techniques de Lyapunov Construction du contrôle Lyapunov Construction du contrôle Lyapunov La dérivée de V est donnée par : dv dt ( ) = 2(u u r ) Im( H 1 Ψ(t) Ψ r ) + (u + u r )Im( H 2 Ψ(t) Ψ r ) + 2(ω ω r )Im( Ψ(t) Ψ r ), où Im est la partie imaginaire. Lorsque par exemple on prend : u = u r (t) k Im( H 1Ψ(t) Ψ r )+2u rim( H 2 Ψ(t) Ψ r ) 1+kIm( H 2 Ψ(t) Ψ r ) ω = ω r (t) cim( Ψ(t) Ψ r ), avec k, c > 0 nous nous assurons que dv/dt 0, i.e. V est décroissante.

Techniques de Lyapunov Construction du contrôle Lyapunov Construction du contrôle Lyapunov le cas important : la trajectoire de référence correspond à un état statique : u r = 0, ω r = λ and Ψ r = φ où φ est un vecteur propre H 0 associé à la valeur propre λ R. on note : I 1 = Im( H 1 Ψ(t) φ ) et I 2 = Im( H 2 Ψ(t) φ. puis le feedback devient u = ki 1 /(1 + ki 2 ) ω = λ cim( Ψ(t) φ ).

Techniques de Lyapunov Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Techniques de Lyapunov H 0 a un spectre non dégénéré si λ j λ l pour tout j l, j, l = 1,..., n. Théorème Considerons NTDSE avec Ψ S 2n 1 C et une vecteur propre φ S 2n 1 C de H 0 associée à la valeur propre λ. Prenons le feedback enterieur avec c > 0, k < 1 H 2 et supponsons que le spectre de H 0 est non dégénéré. Alors, l assertion suivante est vraie : L ensemble limite du système est à l intersection de S 2n 1 avec l espace E = Rφ α Cφ α où φ α est un vecteur propre de H 0 qui n est pas colinéaire avec φ, tel que φ α H 1 φ = 0.

Techniques de Lyapunov Remarque 1 la recherche de φ marche bien lorsque tous les vecteurs propres de H 0, φ 2,..., φ n (sauf φ) sont couplées avec φ par H 1, i.e. φ k, H 1 φ 0, k = 2,..., n. Remarque 2 nous ne savons pas ce qui se passe lorsque les couplages sont réalisés par H 2 (le théorème ne s applique pas, mais le système est toujours contrôlable). Remarque 3 on utilise le modèle H 0 + u(t)h 1 + u 2 (t)h 2 pour les cas où le couplage de H 1 n est pas suffisant pour contrôler (sinon prendre des intensités laser u(t) plus faibles, faire H 0 + u(t)h 1 hamiltonien effectif à la place de H 0 + u(t)h 1 + u 2 (t)h 2 et H 2 n est plus utilisée pour modéliser le sytème).

Techniques de Lyapunov Idées principales de la preuve le principe de LaSalle s dit que les trajectoires du système convergent aù plus grand ensemble invariant contenu dans dv/dt = 0 l équation dv/dt = 0 signifie que ainsi u = 0 et ω = 0. I 1 = Im( H 1 Ψ φ ) = Im( Ψ φ ) = 0, L invariance implique : i d dt Ψ = H d 0Ψ, dt Im( H 1Ψ φ ) = 0 et d dtim( Ψ φ ) = 0.

Techniques de Lyapunov On note B = H 1 ensuite le plus grand ensemble invariant est caractérisé par Im( Ψ φ ) = 0 avec les conditions suivantes : Im( H 1 Ψ φ ) = 0 Re( [H 0, H 1 ]Ψ φ ) = 0 Im( [H 0, [H 0, H 1 ]]Ψ φ ) = 0,...

Techniques de Lyapunov Exemples et simulations numériques Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Techniques de Lyapunov Exemples et simulations numériques Exemples et simulations simulations numériques pour un système à trois niveaux avec H 0, H 1 et H 2 donnés par : 0 0 0 0 1 1 0 0 1 H 0 = 0 1 0, H 1 = 1 0 0, H 2 = 0 0 0. 3 0 0 2 1 0 0 1 0 0 La fonction d onde est Ψ = (Ψ 1, Ψ 2, Ψ 3 ) T. on utilise le contrôle de Lyapunov à attiendre le premier vecteur propre φ = φ 1 = (1, 0, 0) d énergie λ = 0, au temps final T. remarque : Φ 2 H 1 φ 0 et Φ 3 H 1 φ 0.

Techniques de Lyapunov Exemples et simulations numériques Exemples et simulations Figure: Evolution de la fonction de Lyapunov V (Ψ) (ligne verte) et du contrôle u (ligne bleue) ; contition initiale Ψ(t = 0) = (0, 1/ 2, 1/ 2) ; soit k = 0.2, c = 0.8, t = 0.1.

Techniques de Lyapunov Exemples et simulations numériques Exemples et simulations simulations numériques pour un système à trois niveaux avec H 0, H 1 and H 2 donnés par : 0 0 0 0 1 0 0 0 1 H 0 = 0 1 0, H 1 = 1 0 0, H 2 = 0 0 0. 3 0 0 2 0 0 0 1 0 0 on utilise le contrôle de Lyapunov pour atteindre le premier vecteur propre φ = φ 1 = (1, 0, 0) d énergie λ = 0, au temps final T. remarque : Φ 3 H 1 φ = 0.

Techniques de Lyapunov Exemples et simulations numériques Exemples et simulations (a) (b) Figure: (a) Evolution de la fonction de Lyapunov V (Ψ) (ligne verte) et du contrôle u (ligne bleue) ; (b) Evolution de I 1 et I 2 ; avec k = 0.2, c = 0.8, t = 0.1 et la condition initiale Ψ(t = 0) = (0, 1/ 2, 1/ 2)

Feedback discontinuu Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Feedback discontinuu Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Feedback discontinuu Afin de surmonter le manque de convergence pour les cas similaires à ceux préséntés ci-dessus, nous définissons les régions A, B, C : A = {Ψ I 1 (Ψ) < δ et I 2 (Ψ) < δ} B = {Ψ I 1 (Ψ) < δ et I 2 (Ψ) > δ} C = {Ψ I 1 (Ψ) > δ/2 ou I 2 (Ψ) < 2 δ} sachant que : dv /dt = u(i 1 + ui 2 ) = u 2 I 2 + ui 1 et nous définissons le contôle (DLFdiscontinuu Lyapunov feedback) : 8 < u(i 1, I 2 ) = : k 1 I 2, en A \ C 0, en B \ C k 2 I 1 /(1 + k 2 I 2 ), en C \ (A B) ω = λ cim( Ψ(t) φ ). avec δ une constante positive petite. Figure: Overlapping regions A, B, C

Feedback discontinuu Plus précisément, dans notre situation nous pouvons définir le propagateur S 1 (t)ψ 0 en résolvant l équation du feedback tel que : si l état initial Ψ 0 A C, nous initialisations avec le feedback correspondant à C si l état initilal Ψ 0 B C, nous initialisations aussi avec le feedback correspondant à C. le propagateur S 2 (t)ψ 0 en résolvant l équation du feedback tel que : si l état initial Ψ 0 A C, nous initialisations avec le feedback correspondant àa si l état initial Ψ 0 B C, nous initialisations avec le feedback correspondant à B. Figure: Overlapping regions A, B, C

Feedback discontinuu Remarque 1. ni S 1 ni S 2 ne définissent un système dynamique classique (pas de propriété de semigroupe). Remarque2. à la place on a : S 1 (t + s)ψ 0 = S 1 (t)s 1 (s)ψ 0 ou S 1 (t + s)ψ 0 = S 2 (t)s 1 (s)ψ 0. Remarque 3. S 1 (t)ψ 0 et S 2 (t)ψ 0 sont solutions au sens de Carathéodory et dépendent continuement de la donnée initiale.

Feedback discontinuu Soit k 1 > 0 et 0 < k 2 < 1 H 2 fixés Puisque dv/dt = u(i 1 + ui 2 ), nous avons les possibilités suivantes 1 Si Ψ(t) A \ C alors u = k 1 I 2 et dv /dt = k 1 I 2 (I 1 + k 1 I 2 2 ) k 2 1 δ I 2 + k 1 δ I 2 < 0. 2 Si Ψ(t) B \ C alors u = 0 et dv /dt = 0. 3 If Ψ(t) C \ (A B) alors u = k 2 I 1 /(1 + k 2 I 2 ) (le dénominateur ne s annule pas grâce à la restriction imposée à k 2 ) alors dv /dt = k 2 I 2 1 /(1 + k 2I 2 ) 2 0. 4 Si Ψ(t) A C or B C nous sommes dans une des situations précédentes selon quel feedback est utilisé au moment donné t. Figure: Overlapping regions A, B, C

Feedback discontinuu Théorème Considérons NTDSE avec Ψ S 2n 1 C et un vecteur propre φ S 2n 1 C de H 0 associé à la valeur propre λ. Soit le feedback (DLF) avec k 1 > 1, k 2 < 1 H 2 et c, δ > 0. Si H 0 est non dégénéré et pour tout k avec φ k φ soit φ k H 1 φ 0 ou φ k H 2 φ 0, alors l ensemble limite de Ψ(t) est reduit à une solution du système non contrôlé, avec I 1 < δ, 2 δ I 2 C δ, C une constante dependente seulement de H 0.

Feedback discontinuu Idées principales de la preuve Ω δ est invariant soit à S 1 soit à S 2, cela signifie que si Ψ 1 Ω δ alors S 1 (t)ψ 1 Ω δ, t > 0 ou S 2 (t)ψ 1 Ω δ, t > 0. l ensemble limite Ω δ est une reunion de trajectoires correspondant soit au propagateur S 1 soit au propagateur S 2. Sur l ensemble limite Ω δ, V est constante alors dv/dt = 0, ce qui implique : u(i 1 + ui 2 ) = 0, Im Ψ, φ = 0.

Feedback discontinuu par la définition de u, l ensemble limite Ω δ consiste en effet des trajectoires du système non contrôlé i Ψ = H 0 Ψ. avec les solutions de la forme : Ψ = n b j e iλjt φ j. j=1 Nous obtenons que l ensemble limite Ω δ est caractérisé par Ω δ {I 1 = 0 et I 2 < 2 δ} { I 1 < δ et I 2 > δ}.

Feedback discontinuu Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Feedback discontinuu Exemples et simulations soit un système quantique à 5-niveaux H 1 = H 0 = 0 0 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1.0 0 0 0 0 0 1.2 0 0 0 0 0 1.3 0 0 0 0 0 1.4 0 0 0 0 0 2.15, H 2 =, 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0. Nous utilisons le contrôle (DLF) pour attendre le premier vecteur propre φ = (1, 0, 0, 0, 0, 0) d énergie λ = 1, au temps final T. Remarquons que H 2 = 1.

Feedback discontinuu Exemples et simulations (a) (b) Figure: (a) Evolution de la fonction de Lyapunov V (Ψ) (ligne verte) et du contrôle u (ligne blue) ; (b) Evolution de I 1 et I 2 ; avec k 1 = 1.1, k 2 = c = 0.8, δ = 10 4, t = 0.1 et la condition initiale Ψ(t = 0) = (0, 1/ 4, 1/ 4, 1/ 4, 1/ 4).

Feedback discontinuu Exemples et simulations Figure: Zoom sur l évolution de u entre t = 410 et t = 490.

Feedback dependant du temps Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Feedback dependant du temps Resultat théorique Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Feedback dependant du temps Resultat théorique Feedback dependant du temps trouver un feedback periodique dependant du temps u(t, Ψ) = α(ψ(t)) + β(ψ(t)) sin(t/ε). pour stabiliser NTDSE à l état fondamental φ. l idée générale on utilise une méthode de moyennisation pour comparer le comportement asymptotique du système (NTDSE) avec le comportement du système moyenné. On identifie les coefficients α et β tels que le système moyenné soit asymptotiquement stable

Feedback dependant du temps Resultat théorique Remarque Pour un système differentiel ẋ = f(t, x) f une fonction T periodique, f(t + T, x) = f(t, x) le système moyenné est défini par ẋ av = f av (x) où f av (x) = 1 T T 0 f(t, x)dt

Feedback dependant du temps Resultat théorique Système moyenné nous remplacons TDPF dans l équation de NTDSE et nous obtenons le sytème : i Ψ(t) ( = H 0 + α(ψ(t))h 1 + β(ψ(t)) sin(t/ε)h 1 +α 2 (Ψ(t))H 2 + 2α(Ψ(t))β(Ψ(t)) sin(t/ε)h 2 ) +β 2 (Ψ(t)) sin 2 (t/ε)h 2 + ω(t) Ψ(t). dans notre cas le système moyenné (A v S) est donné par : i d dt Ψ av = (H 0 + αh 1 + α 2 H 2 + 1 2 β2 H 2 + ω)ψ av.

Feedback dependant du temps Resultat théorique Fonction de Lyapunov pour le système moyenné on utilise une technique de Lyapunov pour stabiliser le système moyenné A v S autour de l état fondamental φ. soit V av = V av (Ψ) : V av (Ψ) = Ψ av φ Ψ av φ la dérivée de V av autour d une trajectoire du système moyenné : dv av dt = 2αIm( H 1 Ψ av (t) φ ) + 2α 2 Im( H 2 Ψ av (t) φ) + 2( 1 2 β2 )Im( H 2 Ψ av (t) φ ) + 2(ω + λ)im( Ψ av (t) φ )

Feedback dependant du temps Resultat théorique On note : I 1 av = Im( H 1 Ψ av (t) φ ) et I 2 av = Im( H 2 Ψ av (t) φ ). Lorsque par exemple on prend α = ki 1 av β = (I 2 av) ω = λ cim( Ψ av (t) φ ) nous obtenons : dv av dt = 2 (k(i av) 1 2 (1 ki 2 ) + ((I2 av) ) 3 ) + bim 2 ( Ψ av (t) φ ) 2 et nous assurons que dv/dt 0, avec k > 0 et b > 0, i.e. V av est decroissante le long de la trajectoire du système moyenné.

Feedback dependant du temps Resultat théorique Stabilité du système moyenné Théorème Sous les hypothèses (i) λ j λ l pour j l, (ii) pout tout j = 2,.., n : H 1 φ j φ 0 ou H 2 φ j φ 0, le système moyenné est globalement asymptotiquement stable sur S 2n 1 C \{ φ}, au sens que toute solution Ψ av de A v S avec un état initial autre que φ converge vers φ quand t tend vers +.

Feedback dependant du temps Resultat théorique Stabilité approximative pour l équation NTDSE Théorème Supposons que les hypothèses (i) and (ii) ont lieu, soit V un voisinage de φ et δ un nombre positif. Il existe un temps T > 0 et ɛ 0 > 0 (dependent à la fois de δ et V) tels que toute solution Ψ(t) de NT DSE avec ɛ (0, ɛ 0 ) qui satisfait Ψ(τ) S 2n 1 C \ V pour un τ > 0, satisfait aussi Ψ(t) φ < δ pout tout t τ + T. Remarque : le théorème peut etre considéré soit comme un résulat de stabilité ou un résultat de contrôlabilité approximative

Feedback dependant du temps Resultat théorique Schema de la preuve toute trajectoire du système moyenné A v S, autre que φ converge vers l état cible φ. les trajectoires du système periodique sont à proximité des trajectoires du système moyenné Lemme Soit T > 0. Il existe C et ε 0 > 0 tels que, pour tout τ R et pour tout ε (0, ε 0 ), si Ψ : [τ, τ +T ] S 2n 1 est une solution du système periodique et Ψ av est une solution du système moyenné, avec Ψ av (τ) = Ψ(τ), alors Ψ(t) Ψ av (t) < Cε, t [τ, τ + T ].

Feedback dependant du temps Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Feedback dependant du temps Simulation numériques Figure: Evolution de la fonction de Lyapunov V (Ψ)(ligne verte) et du contrôle u (ligne bleue) ; condition initiale : Ψ(t = 0) = (0, 1/ 4, 1/ 4, 1/ 4, 1/ 4) ; avec ε = 10 3, k = 0.8, c = 0.5, t = 0.1.

Feedback dependant du temps Resultats numériques Figure: Evolution de la fonction Ψ(ligne blue) et de la fonction Ψ av (ligne verte) ; condition initiale : Ψ(t = 0) = (0, 1/ 4, 1/ 4, 1/ 4, 1/ 4) ; avec ε = 10 3, k = 0.8, c = 0.5, t = 0.1.

Conclusions et travail en cours Outline 1 Introduction Chimie quantique Contrôle quantique 2 Techniques de Lyapunov Construction du contrôle Lyapunov Exemples et simulations numériques 3 Feedback discontinuu 4 Feedback dependant du temps Resultat théorique 5 Conclusions et travail en cours

Conclusions et travail en cours Conclusions et travail en cours conclusions Techniques de Lyapunov couplage dipolaire et polarisé feedback discontinu avec termes de mémoire, feedback dependant du temps perspectives stabilité exacte au sens de Filippov champs laser plus réguliers techniques de Lyapunov implicites homogénéisation feedback dépendant du temps cas dégénérés