LES PAVAGES DU PLAN EXERCICES PROPOSES Exercices 1
|
|
|
- Ségolène Giroux
- il y a 10 ans
- Total affichages :
Transcription
1 LES PAVAGES DU PLAN Ces travaux sont mis en place dans la circonscription de Vitry sur Seine (94) au niveau des classes de cycle 2 (grandes sections, CP et CE1). Cette réflexion a été mise en place à partir de divers constats prenant en compte les problèmes généraux de vision du plan euclidien, la liaison peu fiable entre les dimensions 2 et 3 (le solide et ses patrons, le déplacement dans la ville et sa reconnaissance sur un plan imagé). L hypothèse émise consiste à considérer que l enfant doit pouvoir concevoir dans l espace (dimensions 2 ou 3) que des objets sont identiques s ils obéissent à une transformation géométrique simple (translation ou symétrie) ou une composition de translations et de symétries. La démarche consiste à proposer aux élèves des situations où des objets mathématiques sont à observer à analyser puis à reproduire, enfin à construire et à expliquer la construction en évitant tout mot qui n appartienne pas au lexique de cet age (ex : translation est traduit chez l enfant par bouger, déplacer, marcher ; symétrie se traduit par tourner, retourner, faire un tour.). Le matériel de base : Des formes à assembler afin d obtenir un pavage du plan puis à colorer Des formes géométriques complexes dont les motifs de base sont à colorer Des formes à assembler afin d obtenir un motif imposé (les tam gram en font partie) Des formes pour pouvoir créer des motifs pavant le plan Tous ces matériels figurent en annexe et taille réelle EXERCICES PROPOSES Exercices 1 Utilisation de la forme 1 (suivant les classes les formes ont été choisies en fonction de leur «simplicité apparente) Objectif : reconstituer un objet en juxtaposant ou superposant des objets. Les motions incluses sont la rotation et la translation «Vous possédez chacun des petits morceaux de cette forme, il faut les assembler pour obtenir la forme la plus grande possible» Les élèves de CP ont manipulé cette forme assez simplement, les contours formant un objet dont la représentation mentale est proche du carré sont aidants. Représentations mentales des objets mathématiques : Par la coloration des formes identiques (à une isométrie près), les élèves déterminent diverses familles d objets constitutifs du pavage. Ces objets ne peuvent pas être nommés mais simplement montrés (exception faite des formes simples : carré, triangle, figure à n côtés). Deux formes ont été reconnues et colorées. Agrandies et découpées, les élèves ont pu constater par superposition qu il s agissait de fait des mêmes unités de base, mais que l arrangement était différent. Nota : le choix des colorations des pièces n ayant pas été discuté au départ, les élèves dans un premier temps n ont pas reconnu les formes identiques, la variable couleur est une variable didactique qui détermine la vision privilégiée de formes. Il a été nécessaire dans d autres classes de limiter les coloris et de décider pour la classe dans un second temps, sur un second exemple, de fixer les couleurs de chaque pièce. (les autres formes proposées sont les formes 2,3,4 et 5) chaque classe a principalement travaillé sur deux formes, mais pour les CP et surtout les CE1, une forme supplémentaire a été utilisée en travail autonome par les élèves. Les premiers constats : Principalement en CP l activité a été fructueuse et riche. Est-ce l année ou les élèves mobilisent encore leur imaginaire? En CE1 : les formes reconnues sont les formes normées et «régulières» En GS : le problème principal est la vision de pièces en rotation ou symétriques Ce qui sera mené l année prochaine : le support ne sera plus du papier mais du papier transparent (afin de permettre une vision plus facile des superpositions) et travail en synthèse avec les enseignants : usage du vidéo-projecteur pour visualiser en collectif les pièces, pouvoir les coloriser et travailler sur les isométries de type translation ou rotation
2 Exercices 2 Les objectifs poursuivis dans cette série d exercices consiste après avoir observer des formes géométriques de base, de pouvoir les assembler afin de réaliser des motifs (soit ces motifs sont imposés, soit ces motifs sont libres). Les éléments utilisés ont été fabriqués pour une première approche en papier, les formes tenant dans un format d environ 4 cm sur 4 cm. Le pavage de Truchet Les élèves disposent de carrés où sont inscrites 4 formes possibles (selon le niveau de classe). Le nombre d objets est suffisamment grand pour que4 élèves travaillent ensemble (60 pièces) Objectifs : reconstituer la forme proposée Créer une forme à faire exécuter par des camarades Les formes de base : permettent pour CP et CE1 d élaborer des stratégies avec une seule forme et une réflexion sur les rotations et symétries par référence à une forme donnée puis création de formes libres. A partir de ces formes et pour ébaucher les séquences suivantes : proposition de mettre en place les stratégies relatives au triangle Exercices de stratégies Les triangles de Mac Mahon Objectif : arrangement de triangles équilatéraux composés chacun de trois couleurs, deux triangles peuvent s accoler à la seule condition de posséder une couleur commune Première tâche : constituer et colorer les triangles sachant que ceux-ci sont tricolores et que les couleurs possibles sont le bleu, le vert, le rouge et jaune (24 cas possibles) Seconde tâche : jouer (chaque enfant possédant 20 triangles) : l aire maximale a été délimitée afin d éviter les aspects linéaires Troisième activité : regarder les arrangements (CE1 puis CE2 en regard) et pouvoir préciser certaines des formes obtenues Il existe une autre variante des triangles : les découpes sont repérables par les médiatrices, mais bien que la réalisation soit simplifiée, les élèves de CE2 n ont pu réaliser de nombreuses pièces à l aide de la règle et du compas
3 Les mêmes exercices peuvent être mis en place à partir des carrés Des formes complexes à assembler ( partie création artistique) Les triangles de Penrose Objectif : pavage du plan à l aide de triangles manipulations concernant les symétries les rotations, la notion de translation n a pas été abordée (niveaux concernés CE1 CE2) Il s agit ici de confier aux élèves des triangles, ceux-ci doivent comparer les mesures des côtés et dans un premier temps les assembler par 2 pour obtenir des figures plus complexes, puis réaliser des regroupements afin de paver le plan On détermine rapidement que
4 On détermine rapidement pour l enseignant la valeur des angles 108, 36, 36 pour le triangle EAB et 72, 72, 36 pour le triangle ACD pour l élève :AB= CD = AE travail de formation de figures complexes à partir des figures de base : A partir de ces formes, agencements pour créer le pavage du plan : D autres réalisations se trouvent en annexe Le point actuel : Ces travaux font suite à ceux entrepris l année précédente sur le passage de la réalité au plan. Les conséquences : Manipulation des objets mathématique et travail non plus sur l aspect mais sur des propriétés Vision plus globale des figures Activités développant l imaginaire Travail sur les représentations des objets mathématiques sans avoir pour autant une modélisation préalable Les prolongement : Les prolongements sont prévus pour cette année en direction des CE2 et surtout CM1 : travaux sur les quadrilatères et sur les isométries (dessins géométriques) dans deux directions : Pavage du plan à partir de formes polygonales : Pavage du plan à l aide de formes polygonales complexes :
5 Utilisation de papiers lignés pour créer des objets mathématiques un exemple est fourni avec du papier ligné à 60 ; deux formes possibles ont été indiquées. Il est possible d entreprendre des travaux similaires avec du papier à 45 Bibliographie : Penrose : pavages et tessellations Truchet : pavages par J.P Delavan The Four Types of Symmetry in the Plane written by Dr. Susan Addington Forme 1 ANNEXES
6
7 Annexes 2 Formes de TRUCHET
8 pour ces formes, il existe de fait 2 objets symétriques de base annexe 3
9
Math 5 Dallage Tâche d évaluation
Math 5 Dallage Tâche d évaluation Résultat d apprentissage spécifique La forme et l espace (les transformations) FE 21 Reconnaître des mosaïques de figures régulières et irrégulières de l environnement.
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
Comparer des surfaces suivant leur aire en utilisant leurs propriétés géométriques Découverte et manipulation
Socle commun - palier 2 : Compétence 3 : les principaux éléments de mathématiques Grandeurs et mesures Compétences : Comparer des surfaces selon leurs aires (par pavage) Mesurer l aire d une surface par
Problèmes de dénombrement.
Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers
Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard
Rencontre des personnes-ressources en déficience motrice et organique RÉCIT MST - RÉCIT Adaptation scolaire Pierre Couillard Pylote (http://pascal.peter.free.fr/?17/pylote) Logiciels d aide en mathématique
Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable
Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
Le contexte. Le questionnement du P.E.R. :
Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et
Cabri et le programme de géométrie au secondaire au Québec
Cabri et le programme de géométrie au secondaire au Québec Benoît Côté Département de mathématiques, UQAM, Québec [email protected] 1. Introduction - Exercice de didactique fiction Que signifie intégrer
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
Jean Dubuffet AUTOPORTRAIT II - 1966
Jean Dubuffet AUTOPORTRAIT II - 1966 MON VISAGE A LA MANIERE DE JEAN DUBUFFET OBJECTIFS - utiliser son expérience sensorielle visuelle pour produire une œuvre picturale. - réaliser une œuvre s'inspirant
modélisation solide et dessin technique
CHAPITRE 1 modélisation solide et dessin technique Les sciences graphiques regroupent un ensemble de techniques graphiques utilisées quotidiennement par les ingénieurs pour exprimer des idées, concevoir
MAT2027 Activités sur Geogebra
MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il
Le seul ami de Batman
Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
EVALUATIONS MI-PARCOURS CM2
Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice
Triangles isométriques Triangles semblables
Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction
Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?
Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION
LES CARTES À POINTS : POUR UNE MEILLEURE PERCEPTION DES NOMBRES par Jean-Luc BREGEON professeur formateur à l IUFM d Auvergne LE PROBLÈME DE LA REPRÉSENTATION DES NOMBRES On ne conçoit pas un premier enseignement
La médiatrice d un segment
EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que
Indications pour une progression au CM1 et au CM2
Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir
Tux Paint. 1. Informations générales sur le logiciel. Auteur : Bill Kendrick et l équipe de développement de New Breed Software
1. Informations générales sur le logiciel Auteur : Bill Kendrick et l équipe de développement de New Breed Software Version : 0.9.13 Licence : GPL Date de parution : octobre 2004 Environnement requis :
AIDE à l utilisation du cédérom «L athlétisme à l école» Niveau Primaire SOMMAIRE
AIDE à l utilisation du cédérom «L athlétisme à l école» Niveau Primaire SOMMAIRE Arborescence du cédérom (page 2) Lancement du Cédérom et configuration minimale de votre ordinateur (page 3). Loupe, page
Je découvre le diagramme de Venn
Activité 8 Je découvre le diagramme de Venn Au cours de cette activité, l élève découvre le diagramme de Venn et se familiarise avec lui. Pistes d observation L élève : reconnaît les éléments du diagramme
TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet
TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France
LPP SAINT JOSEPH BELFORT MODE OPERATOIRE ACTIVINSPIRE. Bonne utilisation à toutes et tous! UTILISATION DES TBI LE LOGICIEL ACTIVINSPIRE
LPP SAINT JOSEPH BELFORT MODE OPERATOIRE ACTIVINSPIRE Utilisation des TBI UTILISATION DES TBI LE LOGICIEL ACTIVINSPIRE T B utoriel de base, ce mode d emploi a pour objectif de vous présenter les principales
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
point On obtient ainsi le ou les points d inter- entre deux objets».
Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2
NOM : Prénom : Date de naissance : Ecole : CM2 Palier 2 Résultats aux évaluations nationales CM2 Annexe 1 Résultats de l élève Compétence validée Lire / Ecrire / Vocabulaire / Grammaire / Orthographe /
Logiciel SCRATCH FICHE 02
1. Reprise de la fiche 1: 1.1. Programme Figure : Logiciel SCRATCH FICHE 02 SANS ORDINATEUR : Dessiner à droite le dessin que donnera l'exécution de ce programme : Unité : 50 pas : Remarque : vous devez
Tâche complexe produite par l académie de Clermont-Ferrand. Mai 2012 LE TIR A L ARC. (d après une idée du collège des Portes du Midi de Maurs)
(d après une idée du collège des Portes du Midi de Maurs) Table des matières Fiche professeur... 2 Fiche élève... 5 1 Fiche professeur Niveaux et objectifs pédagogiques 5 e : introduction ou utilisation
Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année
Attestation de maîtrise des connaissances et compétences au cours moyen deuxième année PALIER 2 CM2 La maîtrise de la langue française DIRE S'exprimer à l'oral comme à l'écrit dans un vocabulaire approprié
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Prêt(e) pour le CE1. Tu es maintenant au CE1. Avant de commencer les leçons, nous allons réviser avec toi!
Jour Prêt(e) pour le CE Tu es maintenant au CE. vant de commencer les leçons, nous allons réviser avec toi! Géométrie Retrouver un itinéraire en tenant compte des informations. Lis les explications de
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Sites web éducatifs et ressources en mathématiques
Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition
Les TICE en cours de Mathématiques au collège. Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème
Les TICE en cours de Mathématiques au collège Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème Généralités page 2 Différents outils page 4 Classe de 6 ème page 5 Classe de 5 ème page
FICHE 1 Fiche à destination des enseignants
FICHE 1 Fiche à destination des enseignants 1S 8 (b) Un entretien d embauche autour de l eau de Dakin Type d'activité Activité expérimentale avec démarche d investigation Dans cette version, l élève est
BREVET D ETUDES PROFESSIONNELLES REPRESENTATION INFORMATISEE DE PRODUITS INDUSTRIELS. Epreuve EP1 Unité : UP1
Doc 1/11 BREVET D ETUDES PROFESSIONNELLES REPRESENTATION INFORMATISEE DE PRODUITS INDUSTRIELS Epreuve EP1 Unité : UP1 Analyser une pièce et produire sa maquette numérique en fonction d'un mode d'élaboration
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Jeux mathématiques en maternelle. Activités clés. Jeu des maisons et des jardins (Yvette Denny PEMF)
Activités clés NIVEAU : PS/MS Jeu des maisons et des jardins (Yvette Denny PEMF) Compétences Construire les premiers nombres dans leur aspect cardinal Construire des collections équipotentes Situation
Savoir lire une carte, se situer et s orienter en randonnée
Savoir lire une carte, se situer et s orienter en randonnée Le b.a.-ba du randonneur Fiche 2 Lire une carte topographique Mais c est où le nord? Quel Nord Le magnétisme terrestre attire systématiquement
Le projet 3D de la Ville de Liège: réflexions sur l'exploitation des données. Bernard Lechanteur, Responsable Cellule cartographie Ville de Liège
Le projet 3D de la Ville de Liège: réflexions sur l'exploitation des données Bernard Lechanteur, Responsable Cellule cartographie Ville de Liège La cellule cartographie La cellule cartographie n est pas
Réseau électrique. Le transport de l énergie électrique depuis la centrale électrique jusqu à la maison de Monsieur Toulemonde
Alain ROBERT Réseau électrique Le transport de l énergie électrique depuis la centrale électrique jusqu à la maison de Monsieur Toulemonde Fabrication et utilisation de la maquette UTLO - Groupe InterGénérations
Sommaire de la séquence 10
Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................
Sommaire. Première partie. Lire, comprendre et interpréter les graphiques boursiers Chapitre 1. Chapitre 2. Chapitre 3. Chapitre 4.
Sommaire Première partie Lire, comprendre et interpréter les graphiques boursiers Chapitre 1 Qu est-ce que le chartisme Définition Le mode de représentation des graphiques La tendance Les lignes de tendance
Opérations de base sur ImageJ
Opérations de base sur ImageJ TPs d hydrodynamique de l ESPCI, J. Bico, M. Reyssat, M. Fermigier ImageJ est un logiciel libre, qui fonctionne aussi bien sous plate-forme Windows, Mac ou Linux. Initialement
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Manuel Utilisateur Logiciel PEB Partie modeleur version 2.5
Manuel Utilisateur Logiciel PEB Partie modeleur version 2.5 Table des matières Table des matières... 3 Introduction... 7 Objectifs du modeleur... 7 Coup d oeil... 9 Principes sous-tendant l utilisation
Le Dessin Technique.
Jardin-Nicolas Hervé cours 1 / 9. Modélisation et représentation d un objet technique. La modélisation et la représentation d un objet sont deux formes de langage permettant de définir complètement la
Sommaire de la séquence 12
Sommaire de la séquence 12 Séance 1................................................................................................... 367 Je redécouvre le parallélépipède rectangle..........................................................
Programme de la formation. Écrit : 72hdepréparation aux épreuves d admissibilité au CRPE
Programme de la formation Écrit : 72hdepréparation aux épreuves d admissibilité au CRPE o 36 h pour la préparation à l'épreuve écrite de français Cette préparation comprend : - un travail sur la discipline
VOS PREMIERS PAS AVEC TRACENPOCHE
Vos premiers pas avec TracenPoche page 1/16 VOS PREMIERS PAS AVEC TRACENPOCHE Un coup d'oeil sur l'interface de TracenPoche : La zone de travail comporte un script, une figure, un énoncé, une zone d analyse,
Consigne : je remplis le tableau en tenant compte des informations de la ligne supérieure et de la colonne de gauche (droite pour les gauchers)
Découverte du monde : traiter deux informations Compétence : Savoir utiliser un tableau à double entrée. Matériel : - un plateau de jeu quadrillé : cinq lignes et cinq colonnes, - quatre pièces "couleur",
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
ADVENTURES IN FRONT OF THE TV SET Dossier pédagogique
ADVENTURES IN FRONT OF THE TV SET Dossier pédagogique L Armada Productions 3, rue de Lorraine 35000 Rennes 02 99 54 32 02 www.armada-productions.com www.adventuresinfrontofthetvset.com Contact / Salima
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES
ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE
Organiser des séquences pédagogiques différenciées. Exemples produits en stage Besançon, Juillet 2002.
Cycle 3 3 ème année PRODUCTION D'ECRIT Compétence : Ecrire un compte rendu Faire le compte rendu d'une visite (par exemple pour l'intégrer au journal de l'école ) - Production individuelle Précédée d'un
Chapitre 2 : Vecteurs
1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous
LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )
SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite
Titre : SDLS08 - Modes propres d'une plaque carrée calculé[...] Date : 03/08/2011 Page : 1/6 SDLS08 - Modes propres d'une plaque carrée calculés sur base réduite Résumé : Ce cas test a pour objectif de
Mise en scène d un modèle dans l espace 3D
CHAPITRE 3 Mise en scène d un modèle dans l espace 3D Blender permet de construire des espaces à la manière d une scène de théâtre. Pour cela, il présente dès l ouverture tout ce dont on a besoin : un
5 ème Chapitre 4 Triangles
5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du
"#$%&!'#$'$&%(%$)&!*$++,)(-,&!.,!/0! 123456768!'$9#!/,&!&9:,(&!;!.,!/<-'#,9=,!.,!+0(>-+0(%?9,&!.9!1536!&,&&%$)!@;AB!
!!! "#$%&!'#$'$&%(%$)&!*$++,)(-,&!.,!/0! 123456768!'$9#!/,&!&9:,(&!;!.,!/
Maîtriser les fonctionnalités d un traitement de texte (Word OpenOffice)
Utilisation de l'ordinateur et apport des TIC en enseignement (1NP) Module 03 Maîtriser les fonctionnalités d un traitement de texte. Sens du Module De nombreux documents remis aux enfants sont réalisés
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
ROULER A L ECOLE MATERNELLE
Construire une Unité d Apprentissage en EPS ROULER A L ECOLE MATERNELLE Dossier réalisé par l équipe des CPC EPS des circonscriptions de Châlons-en-Champagne Anne GANTELET, Bernard FLORION et Pascal LOCUTY
enquête pour les fautes sur le fond, ce qui est graves pour une encyclopédie.
4.0 Contrôles /4 4 e enquête pour les fautes sur le fond, ce qui est graves pour une encyclopédie. RPPEL de 0. Wikipédia 2/2 Dans le chapitre : XX e siècle : ( 4.0 mythe paroxysme ) sous la photo d un
Académie de Créteil. Projet présenté autour de l album «Trois souris peintres» d Ellen Stoll Walsh
Projet académique 2013-2014 «Des boîtes à histoires» Comment créer un outil au service de la mise en mémoire et de la compréhension des textes littéraires Académie de Créteil Projet présenté autour de
Introduction à. Version 4.4. Traduction et adaptation française. www.geogebra.org
Introduction à Version 4.4 www.geogebra.org Traduction et adaptation française Introduction à GeoGebra Dernière modification : 23 novembre 2013, adaptée à la version GeoGebra 4.4. Ce livre expose une introduction
Mise en pratique : Etude de spectres
Mise en pratique : Etude de spectres Introduction La nouvelle génération de spectromètre à détecteur CCD permet de réaliser n importe quel spectre en temps réel sur toute la gamme de longueur d onde. La
Sillage Météo. Notion de sillage
Sillage Météo Les représentations météorologiques sous forme d animation satellites image par image sont intéressantes. Il est dommage que les données ainsi visualisées ne soient pas utilisées pour une
Activités pour la maternelle PS MS GS
Gcompris V.8.4.4 linux 1 Activités pour la maternelle SOMMAIRE : Gcompris : Qu est-ce que c est? 2 Remarques et problèmes rencontrés dans la mise en œuvre en classe 3 Liste des activités pour la maternelle
Thème 17: Optimisation
OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir
Séquence 9. Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière
Séquence 9 Consignes de travail Étudiez le chapitre 11 de physique des «Notions fondamentales» : Physique : Dispersion de la lumière Travaillez les cours d application de physique. Travaillez les exercices
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
LIVRET PERSONNEL DE COMPÉTENCES
Nom... Prénom... Date de naissance... Note aux parents Le livret personnel de compétences vous permet de suivre la progression des apprentissages de votre enfant à l école et au collège. C est un outil
Document d aide au suivi scolaire
Document d aide au suivi scolaire Ecoles Famille Le lien Enfant D une école à l autre «Enfants du voyage et de familles non sédentaires» Nom :... Prénom(s) :... Date de naissance :... Ce document garde
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Ch.G3 : Distances et tangentes
4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas
DOSSIER TECHNIQUE. HAUT CERISE Ref: H030506 SOMMAIRE. Contenu Format Page 2 3 4 5 6-7 8 9 10
HAUT CERISE Ref: H030506 DOSSIER TECHNIQUE SOMMAIRE Contenu Format Page Cahier des charges Fiche technique de définition Fiche technique de fournitures Nomenclature et repères Gamme de montage A4 2 3 4
Tp_chemins..doc. Dans la barre "arche 2" couleur claire 1/5 21/01/13
TP de création : utilisation des chemins vectoriels Finis les mauvais rêves : vous aurez enfin votre dreamcatcher (Indienss des Grands Lacs) 1 ) Créez une nouvelle image de 300 pixels sur 600 pixels en
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X
INTRODUCTION La conception d'un mécanisme en vue de sa réalisation industrielle comporte plusieurs étapes. Avant d'aboutir à la maquette numérique du produit définitif, il est nécessaire d'effectuer une
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
GMEC1311 Dessin d ingénierie. Chapitre 1: Introduction
GMEC1311 Dessin d ingénierie Chapitre 1: Introduction Contenu du chapitre Introduction au dessin technique Normes Vues Traits Échelle Encadrement 2 Introduction Les dessins ou graphiques sont utilisés
Tombez en amour avec Charlie Brown et les
Tombez en amour avec Charlie Brown et les! Chère enseignante/cher enseignant, Vous connaissez et aimez fort probablement déjà les personnages intemporels de la bande de Peanuts. La bande dessinée la plus
Plus petit, plus grand, ranger et comparer
Unité 11 Plus petit, plus grand, ranger et comparer Combien y a-t-il de boules sur la tige A? Sur la tige B? A B Le nombre de boules sur la tige A est plus grand que sur la tige B. On écrit : > 2 On lit
BIENVENUE A MARSEILLE
BIENVENUE A MARSEILLE Congrès MATh.en.JEANS 2013 à Marseille Programme général Vendredi, 11:00-14:00 : Repas Vendredi, 12:00-13:30 : Installation des stands Vendredi, 13:30-15:00 : Exposés et animations
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
