Chapitre 2. Caractéristiques des distributions à une variable quantitative

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 2. Caractéristiques des distributions à une variable quantitative"

Transcription

1 Chapitre 2. Caractéristiques des distributions à une variable quantitative Jean-François Coeurjolly Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Caractéristiques de tendance centrale Mode Médiane Quantiles d ordre quelconque Moyenne Synthèse : quelles caractéristiques pour résumer une série? Complément : méthode du shift and share 2 Caractéristiques de dispersion Etendue (intervalle de variation) Ecarts interquantiles Ecart absolu Ecart-type et variance Comparaison de séries statistiques et synthèse 3 Caractéristiques de concentration Courbe de Lorentz Indice de Gini Médiale

2 Mode Mode d une variable statistique Définition Le mode (ou classe modale) est la valeur (ou la classe) Calcul du mode : variable discrète : modalité présentant le plus grand variable continue : on cherche d abord la classe ayant la plus Le mode peut ensuite être défini (par exemple comme le centre de cette classe). Remarques : pour une var. continue, en général on ne donne que la classe modale. Une série peut avoir plusieurs modes (en présence de maxima locaux de fréquence ou densité selon le type de variable) ; on parle de série Mode Application numérique sur deux exemples Exemple Nbre pers./voiture x i f i 1 10% 2 25% 3 40% 4 25% Total 100% 1.0 fréquence nombre de personnes/voiture 0 Revenu des ménages français x i f i d i (en euros) (/tr. de 800e) [0, 1600[ 45% 22.5% [1600, 2400[ 35% 35% [2400, 3200[ 20% 20% Total 100% % par tranche de 800 euros Revenu en euros

3 Médiane Médiane - définition Définition La médiane est la valeur de la série (i.e. une modalité) qui Il faut distinguer deux cas : 1 les données sont observés de manière brute. [le plus souvent une variable discrète] 2 les données sont regroupées en classes. [le plus souvent une variable continue] Médiane Médiane (2) - données brutes Deux cas possibles en fonction du caractère pair ou impair de la taille de l échantillon n : 1 n est impair : la médiane de la série de n = 5 âges : 17, 9, 19, 25, 21 est. 2 n est pair : la médiane de la série de n = 4 âges : 17, 9, 19, 25 est entre 17 et 19 Formule générale : Soient x 1,..., x n les valeurs de la série et soient x (1), x (2),..., x (n) les versions ordonnées, i.e. x (1) x (2)... x (n) alors

4 Médiane Médiane - données brutes (2) Quelle est la médiane de la série statistique suivante? Exemple nb personnes/voiture x i n i f i F i % 10% % 35% % 75% % 100% Total % n = 400 est pair il faut donc repérer la -ème observation dans la liste des observations ordonnées. et Médiane Médiane (3) - données regroupées Exemple du revenu ménages x i (en e) n i ( 10 6 ) f i F i [0, 1600[ 9 45% 45% [1600, 2400[ 7 35% 80% [2400, 3200[ 4 20% 100% Total % Dans le cas où les données sont regroupées en classes, il faut suivre deux étapes : 1 repérer la, i.e. la classe contenant la médiane. Ici, 45% des ménage ont un revenu < 1600eet 80% des ménages ont un revenu < 2400e Me ]1600, 2400[ 2 estimer la médiane par

5 Médiane Médiane (5) - interpolation linéaire Fi revenu Graphiquement : la médiane correspond à l abscisse du point d intersection entre la courbe des (x i, F i ) et la Formule générale : soit ]x i, x i+1 [ la classe médiane et soient F i et F i+1 les fréquences cumulées évaluées en x i et x i+1, alors Quantiles d ordre quelconque Quantile Définition Un quantile d ordre α (pour α (0, 1)) notée en toute généralité Q α est la valeur qui partage la série en deux sous-ensembles ; une proportion α se situe en dessous de Q α et une proportion 1 α au-dessus strictement de Q α. Remarques : Me = Q 50%. Quartiles (notés Q 1, Q 2, Q 3 ) : quantiles qui séparent la série en 4 sous-ensembles de même effectif/fréquence. Plus précisément Q 1 = Q 25%, Q 2 = Me, Q 3 = Q 75%. Déciles (notés D 1, D 2,..., D 9 ) : quantiles qui séparent la série en 10 sous-ensembes de même fréquence. Plus précisément D 1 = Q 10%, D 2 = Q 20%,..., D 9 = Q 90%.

6 Quantiles d ordre quelconque Quantile (2) Les quantiles se calculent de manière similaire à la médiane. Ainsi pour des données regroupées on a : si Q α ]x i, x i+1 [ Calculez le premier quartile de la série suivante Exemple du revenu ménages x i (en e) n i ( 10 6 ) f i F i [0, 1600[ 9 45% 45% [1600, 2400[ 7 35% 80% [2400, 3200[ 4 20% 100% Total % Moyenne Moyenne arithmétique (pondérée) Définition Soit x i (i = 1,..., p) les modalités d une série brute, d effectifs n i (i = 1,..., p) et fréquence f i, la moyenne arithmétique pondérée notée x est donnée par Si les données sont regroupées en classes, les x i ne sont en général pas observées. Ces valeurs sont alors remplacées par les centres de classes, notés c i pour i = 1,..., p. lorsque le nombre de modalités (ou nombre de classes) est grand, il devient intéressant d utiliser la calculatrice (rentrer les données sous forme d un tableau, configurer de manière appropriée et demander des résultats univariés).

7 Moyenne Moyenne arithmétique : exemple covoiturage Calculez la moyenne de la série Application : Exemple nb personnes/voiture x i n i f i F i % 10% % 35% % 75% % 100% Total % Moyenne Moyenne arithmétique : exemple revenu des ménages Calculez la moyenne de la série Application : Exemple du revenu ménages x i (en e) c i n i ( 10 6 ) f i F i [0, 1600[ % 45% [1600, 2400[ % 80% [2400, 3200[ % 100% Total %

8 Moyenne Propriétés de la moyenne arithmétique 1 La somme des écarts (pondérés) à la moyenne est nulle, c-a-d p n i (x i x) = 0 i=1 2 Considérons une population P d effectif total n composée de k sous-populations P 1,..., P k d effectifs n 1,..., n k (donc n = n n k ). Notons x 1,..., x k les moyennes arithmétiques des sous-populations P 1,..., P k alors x = n 1x n k x k. n Moyenne Moyenne globale = moyenne pondérée des moyennes Ex : salaire de n H =200 hommes et n F =100 femmes d une entreprise. Calculez la moyenne de la série Ensemble de deux façons différentes : x i (en e) c i n i,h n i,f n i,e [0, 1500[ [1500, 3000[ Total Méthode 1 (méthode directe) : x E = 1 ( ) = 1600e. 300 Méthode 2 (en utilisant la propriété précédente) : x H = x F = x E =

9 Moyenne Moyenne géométrique Une action en bourse a évolué à la hausse de 10% l année 1, puis a diminué de 5% l année 2 et de 5% l année 3. Question : Quel est le taux moyen (noté t moy ) d évolution de cette action sur les trois années? t moy 0!!! La moyenne géométrique est le taux qui, appliqué durant les trois années donnera le même capital final selon l évolution décrite précédemment. Moyenne Moyenne géométrique (2) Soit C 0 le capital initial et soient C 1, C 2, C 3 les capitaux après 1,2 ou 3 années. On a selon l énoncé C 1 = (1 + 10%)C 0, C 2 = (1 5%)C 1 et C 3 = (1 5%)C 2, c-a-d C 3 = (1 + 10%)(1 5%)(1 5%)C 0. selon la définition du taux moyen : C 1 = (1 + t moy )C 0, C 2 = (1 + t moy )C 1 et C 3 = (1 + t moy )C 2, c-a-d C 3 = (1 + t moy ) 3 C 0. Par identification des deux identités, il vient que pour tout capital initial C 0

10 Moyenne Moyenne géométrique (3) Définition Soit la série statistique x 1,..., x p d effectif n 1,..., n p alors la moyenne géométrique notée en général x G est définie par où n = n n p. Moyenne Moyenne harmonique Elle permet de calculer des moyennes de ratios. Exemple : Un coureur monte une côte de 1km à la vitesse de 10km/h et descend cette même côte à la vitesse de 30km/h. Question : Quelle est la vitesse moyenne du coureur? v moy 20 km/h!! car il a passé plus de temps à 10km/h qu à 30km/h. On cherche v moy telle que la somme des temps passés à la montée et la descente soit égal au temps passé à la vitesse v moy :

11 Moyenne Moyenne harmonique (2) Définition Soit la série statistique x 1,..., x p d effectif n 1,..., n p alors la moyenne harmonique notée en général x H est définie par où n = n n p. Synthèse : quelles caractéristiques pour résumer une série? Afin de résumer cette série quel est l indicateur pertinent? Salaires x i c i n i a i en e (1 u.a. 4000e) [0, 4000[ [4000, 8000[ [28000, 32000[ x = 16000e, Me = 16000e. 2 classes modales : [0, 4000[,[28000, 32000[.

12 Synthèse : quelles caractéristiques pour résumer une série? Afin de résumer cette série quel est l indicateur pertinent? Salaires x i c i n i a i en e (1 u.a. 1000e) [0, 1000[ [1000, 2000[ [2000, 3000[ x = 1500e, Me = 1500e. classes modales : [1000, 2000[. Synthèse : quelles caractéristiques pour résumer une série? Afin de résumer cette série quel est l indicateur pertinent? Salaires x i c i n i a i en e (1 u.a. 2000e) [0, 2000[ [2000, 38000[ x = 2900e, Me = 1100e.

13 Complément : méthode du shift and share Complément : méthode shift and share méthode utilisée pour comparer plusieurs moyennes pondérées lorsque les coefficients de pondération sont très, par exemple lorsqu ils évoluent au cours du temps. permet de lisser l effet structure. Exemples : salaires de 2 CSP en 2010 et Année 2010 Année 2011 CSP f i x i (e) f i x i (e) Cadres 10% % 1300 Employés 90% % 900 x 2010 = 1100 e, x 2011 = 1100 e. peut-on conclure qu il n y a pas d évolution de salaires de 2010 à 2011? Complément : méthode du shift and share Complément : méthode shift and share (2) Année 2010 Année 2011 CSP f i x i (e) f i x i (e) Cadres 10% % 1300 Employés 90% % 900 Pour éliminer l effet du changement des effectifs, on calcule les moyennes en fixant les effectifs de 2010 : pour éliminer l effet du changement de salaires, on calcule la moyenne en 2011 en fixant les salaires en 2010

14 Etendue (intervalle de variation) Etendue (intervalle de variation) Définition L étendue est la différence entre la plus grande et la plus petite observation de la série. Notion très peu utilisée en pratique car elle est très sensible aux fluctuations de l échantillon. Exemple : on relève l âge de 10 individus : 24, 16, 18, 22, 16, 26, 35, 25, 15, 76. étendue est de phantom = 50 ans. Si on remplace 76 par un âge 35 l étendue devient Ecarts interquantiles Ecarts-interquantiles Définition On définit l écart-interquartile et l écart-interdécile comme suit Ecart interquartile = Ecart interdécile = Plus ces écarts sont et plus la série est Du fait que l on ne tient pas compte des observations faibles ou élevées, ces caractéristiques sont moins sensibles aux fluctuations de l échantillon que l étendue.

15 Ecart absolu Ecarts absolus x : statistique, x i : modalités, n i : effectifs, p nbre de modalités. 1 Ecart absolu moyen : 2 Ecart absolu médian : Remarques e x = 1 n e Me = 1 n p n i x i x. i=1 p n i x i Me. Plus les écarts absolus sont grands, plus la série est dispersée. i=1 Avantage : facile à calculer, écart absolu médian moins sensible aux valeurs extrêmes. Inconvénient : ne se prête pas aux calculs algébriques. Ecart-type et variance Ecart-type et variance Définition La variance est la moyenne arithmétique pondérée des L écart-type est la racine carrée de la variance. Variance : Ecart-type : Interprétation Plus l écart-type (ou variance) est observée est et plus la série

16 Ecart-type et variance Ecart-type et variance (2) Autre expression de la variance : Var(x) = 1 n = 1 n p n i (x i x) 2 i=1 p n i xi 2 (x) 2 i=1 = x 2 (x) 2 = moyenne des carrés carré de la moyenne. Tout comme la moyenne, pour calculer une variance (ou écart-type) pour une variable continue (dont les données sont regroupées en classes) on remplace les x i par c i les centres de classe. Ecart-type et variance Ecart-type et variance (3) Calculez les variance et écart-type de la série suivante : x i (en e) c i n i ( 10 6 ) f i [0, 1600[ % [1600, 2400[ % [2400, 3200[ % Total % Méthode 1 : on rappelle que x = 1620e. Var(x) = = e 2. Méthode 2 : x 2 = Var(x) = x 2 (x) 2 = = e 2 Ecart-type : σ x = e.

17 Ecart-type et variance Variance intra et interpopulation Théorème Considérons une population P de taille n composée de k sous-populations P 1,..., P k d effectifs respectifs n 1,..., n k. Notons, x 1,..., x k et Var(x 1 ),..., Var(x k ) les moyennes et variances des k sous-populations. Alors, la variance de la population P est Var(x) = n 1Var(x 1 ) n k Var(x k ) + n 1(x x 1 ) n k (x x k ) 2 n n = 1 k n i Var(x i ) + 1 p n i (x i x) 2 n n = = i=1 i=1 Ecart-type et variance Variance intra et interpopulation (2) Vérifions le résultat précédent sur l exemple suivant : on étudie le salaire de n H =200 hommes et n F =100 femmes d une entreprise. Calculez les variances inter-, intra- et totale de la série : x i (en e) c i n i,h n i,f n i,e [0, 1500[ [1500, 3000[ Total Pour simplifier (un peu) les calculs : x H = 1725 e Var(x H ) = e 2 x F = 1350 e Var(x F ) = e 2 x = 1600 e Var(x) = e 2. Moyenne des variances : Var. Intra = = = e 2.

18 Ecart-type et variance Variance intra et interpopulation (2) Vérifions le résultat précédent sur l exemple suivant : on étudie le salaire de n H =200 hommes et n F =100 femmes d une entreprise. Calculez les variances inter-, intra- et totale de la série : x i (en e) c i n i,h n i,f n i,e [0, 1500[ [1500, 3000[ Total Pour simplifier (un peu) les calculs : x H = 1725 e Var(x H ) = e 2 x F = 1350 e Var(x F ) = e 2 x = 1600 e Var(x) = e 2. Variance des moyennes : Var. Inter = = = 31250e 2. Ecart-type et variance Variance intra et interpopulation (3) Résumons un peu ces calculs : Var(x) = e 2. Var. Intra + Var. Inter = Moy. des variances + Var. des moyennes = = e 2. Peut-on dire que la caractéristique H/F influence le salaire? Si tel est le cas, la variance des moyennes est forte relativelement à la variance totale des salaires. Or, Var. Inter Var(x) = %.

19 Comparaison de séries statistiques et synthèse Complement I : Comparaison de séries (1) soit x la série statistique de 4 produits en Francs : 100F, 200F, 300F et 400F. soit y la série statistique des 4 produits en e :15e, 30e,45e,60e. Intuitivement, ces deux séries sont dispersées de la même manière. Or, σ x = 111.8F et σ y = 16.8e. Conclusion : pour comparer les deux séries qui ne sont pas dans la même unité, il faut transformer les caractéristiques de dispersion. Coefficient de variation : rapport à la moyenne, sans unité. = c est le % de variation par Comparaison de séries statistiques et synthèse Complement I : comparaison de séries (2) D autres indicateurs de comparaison de séries statistiques : Coefficient de dispersion : Q 3 Q 1 D 9 D 1 ou. Me Me Rapport interquartile ou rapport interdécile : Q 3 Q 1 ou D 9 D 1

20 Comparaison de séries statistiques et synthèse Complement II : la boîte à moustaches (1) aussi appelée box plot ou diagramme de Tukey. moyen rapide de visualiser des caractéristiques centrale et de dispersion d une principalement utilisée pour comparer un D 9 Q 3 Me Q 1 D 1 basée sur le calcul de D 1, Q 1, Me, Q 3 et D 9. Comparaison de séries statistiques et synthèse Complement II : la boîte à moustaches (2) Etude sur le niveau de vie des ménages en euros par CSP (personne de référence) en Application : complétez le graphique suivant avec les revenus des agriculteurs... sachant que pour les agriculteurs D 1 = 6040 Q 1 =11135 Me = Q 3 = D 9 = agriculteurs cadres profint employes ouvriers

21 Introduction Elles sont utilisées pour mesurer (essentiellement) la répartition de la masse salariale. La répartition de la masse salariale se situe entre les deux cas extrêmes suivants Répartition des salaires parfaitement équitables : un certain pourcentage de salariés reçoit le même pourcentage de la masse salariale. On dit que la concentration est nulle. Un seul salarié reçoit toute la masse salariale (et les autres rien). On dit que la concentration est maximale. Trois indicateurs pour quantifier la concentration 1 courbe de Lorentz 2 Indice de Gini 3 Médiale. Courbe de Lorentz Courbe de Lorentz On étudie les salaires de 50 employés d une entreprise. x i (en e) c i n i f i F i n i c i g i G i [600, 1200[ % 30 % [1200, 1800[ % 80% [1800, 2100[ % 100% Total % 1 on calcule la masse salariale =. 2 on calcule le % de la masse salariale g i, ainsi que les fréquences cumulées G i. Définition La courbe de Lorentz est obtenue en faisant correspondre à la fréquence cumulée à la fréquence cumulée.

22 Courbe de Lorentz Courbe de Lorentz (2) Gi (en %) Fi (en %) droite rouge = répartition Plus la courbe de Lorentz est de la droite rouge et plus la concentration est Indice de Gini Indice de Gini Gi (en %) Soit S la surface orange Fi (en %) Plus I Gini est, plus la concentration est (proche de équirépartition). Dans notre cas, % (on ne cherchera pas à calculer l indice)

23 Médiale Médiale La médiale est exemple Dans notre 50% 19.1% Médiale = ( ) 1548e. 72.3% 19.1% Les salariés recevant moins de Mesure de concentration : Médiale Me = 0. Etendue petit = faible concentration, grand= grande concentration. Ici, on peut vérifier que ( )/( ) 7.2%.

Chapitre 2. Caractéristiques des distributions à une variable quantitative

Chapitre 2. Caractéristiques des distributions à une variable quantitative Chapitre 2. Caractéristiques des distributions à une variable quantitative Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University

Plus en détail

CONTROLE CONTINU DE STATISTIQUES DESCRIPTIVES L1 ECO - Correction -

CONTROLE CONTINU DE STATISTIQUES DESCRIPTIVES L1 ECO - Correction - CONTROLE CONTINU DE STATISTIQUES DESCRIPTIVES L ECO - Correction - EXERCICE (5 points) Le nombre de téléphones portables vendus en France entre 2005 et 2008 a connu plusieurs évolutions successives : il

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle

Cours 2 : Rappels de Statistique descriptive. A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle Cours 2 : Rappels de Statistique descriptive A- Introduction B- Statistique descriptive unidimensionnelle C- Statistique descriptive bidimensionnelle A- Introduction A- Introduction Rappel : Série statistique

Plus en détail

MESURER ET REPRÉSENTER LES INÉGALITÉS

MESURER ET REPRÉSENTER LES INÉGALITÉS MESURER ET REPRÉSENTER LES INÉGALITÉS I - DISPARITÉ ET DISPERSION La disparité consiste à mesurer l écart entre les valeurs centrales qui caractérisent une ou plusieurs populations statistiques. (exemple

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

8. Statistique descriptive

8. Statistique descriptive 8. Statistique descriptive MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: statistique descriptive 1/47 Plan 1. Introduction 2. Terminologie 3. Descriptions graphiques des

Plus en détail

Statistiques: rappels et compléments

Statistiques: rappels et compléments Statistiques: rappels et compléments I) Vocabulaire élémentaire Population: Ensemble étudié. Individus: Éléments de la population. Caractère étudié ou variable statistique: Propriété étudiée dans la population.

Plus en détail

Classe de 3ème. Effectif partiel n Effectif total N

Classe de 3ème. Effectif partiel n Effectif total N Classe de 3ème Chapitre 2 Statistiques. 1. Quelques rappels. Une série statistique est composée de valeurs. Le nombre de fois où une valeur est répétée s'appelle l'effectif partiel de cette valeur. La

Plus en détail

Arrondir à la troisième décimale

Arrondir à la troisième décimale Université Sidi Mohamed Ben Abdellah Faculté des sciences Juridiques, Economiques et Sociales - Fès- Année Universitaire 2004/2005 Filière: Sciences Economiques et Gestion S2 Module: Méthodes quantitatives

Plus en détail

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne :

Comme la moyenne au devoir est plutôt faible, le professeur propose deux possibilités pour augmenter cette moyenne : Chapitre 6 : Statistiques I Premières définitions - Etablir une statistique, c est relever pour tous les individus d une population les valeurs d une grandeur X, appelée caractère ou variable statistique.

Plus en détail

Statistique Descriptive I (M1102)

Statistique Descriptive I (M1102) Illustration du cours de Statistique Descriptive I (M1102) Année scolaire 2013/2014 Université de Perpignan Via Domitia, IUT STatistique et Informatique Décisionnelle (STID) Table des matières 1 Généralités

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES

STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES STATISTIQUES A UNE VARIALE EXERCICES CORRIGES Exercice n Les élèves d une classe ont obtenu les notes suivantes lors d un devoir : Note 4 5 8 0 4 5 8 0 Effectif 4 7 6 4 ) Déterminer l étendue et le mode

Plus en détail

DIU Infirmières de Santé au Travail - IDF. Service Central de Santé au Travail de l AP-HP PLAN DE COURS

DIU Infirmières de Santé au Travail - IDF. Service Central de Santé au Travail de l AP-HP PLAN DE COURS DIU Infirmières de Santé au Travail - IDF Faculté de Médecine Paris VII - Denis Diderot Mardi 7 juin 2016 STATISTIQUES EN SANTE AU TRAVAIL : NOTIONS ESSENTIELLES Service Central de Santé au Travail de

Plus en détail

Statistiques - Alternance HSE

Statistiques - Alternance HSE Statistiques - Alternance HSE Anne Fredet, Jean-Marie Gourdon 8 janvier 2006 Table des matières 1 Statistique descriptive 2 1.1 Définitions............................. 2 1.2 Effectif, moyenne, médiane

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

PSY C3 Eléments de statistique

PSY C3 Eléments de statistique PSY C3 Eléments de statistique Responsables : Amandine Penel & Fabrice Guillaume Maîtres de conférence en Psychologie Cognitive penel@up.univ-mrs.fr guillaume@isc.cnrs.fr semaine du 4 Sept semaine du oct

Plus en détail

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité

Plus en détail

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17

2) Ecrire en utilisant la notation : 3+5+7+9+ 15+17 STATISTIQUES A UNE VARIABLE EXERCICES CORRIGES Exercice n. Les 5 élèves d'une classe ont composé et le tableau ci-dessous donne la répartition des diverses notes. Recopier et compléter ce tableau en calculant

Plus en détail

Partie I : Séries statistiques descriptives univariées (SSDU)... 1

Partie I : Séries statistiques descriptives univariées (SSDU)... 1 Table des matières Préface Avant-propos Pourquoi un tel ouvrage?... À propos de l ouvrage... À propos de la statistique................................................................ Remerciements....

Plus en détail

Partie A : revenu disponible des ménages. construction d une courbe de Lorenz

Partie A : revenu disponible des ménages. construction d une courbe de Lorenz Correction TD n 4 Math-SES Courbe de Lorenz Objectif du TD : réinvestissement des connaissances de statistiques, étude des inégalités de répartition des revenus disponibles et comparaison avec la répartition

Plus en détail

Parimaths.com. S20. Autour de la GESTION DE DONNEES Probabilités, Statistiques

Parimaths.com. S20. Autour de la GESTION DE DONNEES Probabilités, Statistiques CRPE S0. Autour de la GESTION DE DONNEES Probabilités, Statistiques om Mise en route1 A. Alimentation L étiquette d'un paquet de céréales affiche : «30g de muesli croustillant dans 100g de lait donnent

Plus en détail

Math 04 : Probabilités et Statistiques

Math 04 : Probabilités et Statistiques Centre Universitaire Ain Témouchent Math 04 : Probabilités et Statistiques Dr. AISSA MAMOUNE Sidi Mohammed Département des Sciences et Technologie Institut des Sciences et Technologie E-mail : aissa_mamoune@yahoo.fr

Plus en détail

Les diamants Prix et caractéristiques

Les diamants Prix et caractéristiques Exploration d un fichier de données Valérie Fontanieu - Ingénieur statisticien Institut National de Recherche Pédagogique Les diamants Prix et caractéristiques Données parues dans le Singapore s Business

Plus en détail

Statistique descriptive. Analyse de données

Statistique descriptive. Analyse de données Chapitre Statistique descriptive. Analyse de données Énigme On note x le prix au kg du produit. 5 % de remise en caisse : le prix au kg devient x 5 x = 0,85x. + 5 % de produit gratuit : le prix au kg devient

Plus en détail

Statistiques 2009-10 Cours 4. Statistiques descriptives: méthodes numériques (1) Mesures de tendance centrale (1)

Statistiques 2009-10 Cours 4. Statistiques descriptives: méthodes numériques (1) Mesures de tendance centrale (1) Statistiques 2009-10 Cours 4 Bachelor 1 ère année Unil, Ecole des HEC 1 Statistiques descriptives: méthodes numériques (1) Eléments de tendance centrale (moyenne, médiane, mode, quantiles, ) 2 Mesures

Plus en détail

Ch6 : Statistiques descriptives - analyse des données

Ch6 : Statistiques descriptives - analyse des données Ch6 : Statistiques descriptives - analyse des données 1. Caractéristiques de position : moyenne, médiane 2. Caractéristiques de dispersion : étendue, écart et intervalle inter-quartile 3. Utilisation de

Plus en détail

Problème 4: Les diagrammes suivants représentent la distribution de 4 variables discrètes X1, X2, X3 et X4 :

Problème 4: Les diagrammes suivants représentent la distribution de 4 variables discrètes X1, X2, X3 et X4 : Cours 5-62-96 : Traitement et analyse des données Test autodiagnostique PARTIE 1 : Problème 1 : Pour chacune des distributions ci-dessous, identifier la population et la variable étudiée en précisant si

Plus en détail

INTRODUCTION A LA RECHERCHE QUANTITATIVE

INTRODUCTION A LA RECHERCHE QUANTITATIVE INTRODUCTION A LA RECHERCHE QUANTITATIVE Deuxième partie : de la base de données aux résultats Juin 2010 Julien Gelly, Caroline Huas, Josselin Le Bel Plan 2 1. Introduction 2. Saisie des données : Epi

Plus en détail

1 Retour sur le cours 3 Présentation de tableaux et graphiques Les mesures de tendance centrale Moyenne Mode (et classe modale) Médiane Les mesures de position Quartiles Déciles Mesures tendance centrale

Plus en détail

COURS. STATISTIQUE et PROBABILITÉS

COURS. STATISTIQUE et PROBABILITÉS Cycles préparatoires du Service Commun de Formation Continue de l INPL COURS de STATISTIQUE et PROBABILITÉS Cours et exercices : Philippe Leclère 1 1-Statistiques descriptives à une variable 1 Statistique,

Plus en détail

Statistiques Descriptives - Probabilité - Estimation - Intervalles de confiance

Statistiques Descriptives - Probabilité - Estimation - Intervalles de confiance Chapitre 1 : UE4 : Biostatistiques Statistiques Descriptives - Probabilité - Estimation - Intervalles de confiance Professeur Philippe CINQUIN Année universitaire 2011/2012 Université Joseph Fourier de

Plus en détail

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes)

EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) EXERCICES D ENTRAINEMENT POUR LE DS 7. 1ère STG (Extraits de devoirs d années précédentes) Les corrigés sont en seconde partie de ce fichier (pages 4 à 8). Exercice 1: A la sortie d un hypermarché, on

Plus en détail

Chapitre 1 GRAPHIQUES

Chapitre 1 GRAPHIQUES Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 1 GRAPHIQUES On entend souvent qu un schéma vaut mieux qu un long discours. Effectivement, lorsque l on

Plus en détail

Université Paris Ouest Nanterre La Défense M2 Droit-Éco Mise à Niveau en Statistiques

Université Paris Ouest Nanterre La Défense M2 Droit-Éco Mise à Niveau en Statistiques Université Paris Ouest Nanterre La Défense M2 Droit-Éco Mise à Niveau en Statistiques Cours et exercices B. Desgraupes 2015 2016 Table des matières 1 Variables statistiques 1 1.1 Notions de base............................

Plus en détail

Statistiques descriptives (1/2)

Statistiques descriptives (1/2) Statistiques descriptives (1/2) Anita Burgun 2011-2012 http://www.med.univ-rennes1.fr Introduction! Statistique: méthode scientifique qui consiste à réunir des données chiffrées sur des ensembles d individus

Plus en détail

Un pourcentage est la part, la proportion, que représente un sous-ensemble B dans un ensemble A. On le calcule de la manière suivante :

Un pourcentage est la part, la proportion, que représente un sous-ensemble B dans un ensemble A. On le calcule de la manière suivante : FICHE TD n 1 : LE POURCENTAGE Un pourcentage est la part, la proportion, que représente un sous-ensemble B dans un ensemble A. On le calcule de la manière suivante : Sous-ensemble B / Ensemble A x 100

Plus en détail

Statistiques I. Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge.

Statistiques I. Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge. Statistiques I Alexandre Caboussat alexandre.caboussat@hesge.ch Classe : Mercredi 8h15-10h00 Salle : C114 http://campus.hesge.ch/caboussata A. Caboussat, HEG STAT I, 2010 1 / 54 Rappel Représentations

Plus en détail

Statistiques. Effectif total. Une valeur du caractère c) Situation 3 : on relève l activité sportive préférée de 40 adolescents. Plongée.

Statistiques. Effectif total. Une valeur du caractère c) Situation 3 : on relève l activité sportive préférée de 40 adolescents. Plongée. Statistiques Échauffez-vous! Pour les trois situations, reliez chaque information à sa signification statistique. a) Situation : on réalise une étude statistique sur les 5 élèves d une classe. 5 Population

Plus en détail

Fonctions affines Exercices corrigés

Fonctions affines Exercices corrigés Fonctions affines Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : antécédent, image, résolution d équation, représentation graphique d une fonction affine (coefficient directeur et ordonnée

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Paramètres de position

Paramètres de position Paramètres de position 1 On va parler ici des statistiques quantitatives. On veut les résumer par des nombres. On a deux types de nombres Les paramètre de position : ce sont ceux qui définissent une notion

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Statistiques descriptives Variance et écart type

Statistiques descriptives Variance et écart type Statistiques descriptives Variance et écart type I) Rappel : la moyenne (caractéristique de position ) Définition Soit la série statistique définie dans le tableau suivant : Valeur... Effectif... Fréquences

Plus en détail

Enquête sur les taux de revalorisation des contrats individuels d assurance-vie au titre de 2010 et 2011

Enquête sur les taux de revalorisation des contrats individuels d assurance-vie au titre de 2010 et 2011 Enquête sur les taux de revalorisation des contrats individuels d assurance-vie au titre de 2010 et 2011 n o 6 juin 2012 1 Sommaire 1. Synthèse générale... 3 2. Typologie des contrats et des organismes...

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière PRO 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde PRO partie première PRO partie terminale PRO Sommaire

Plus en détail

Mathématiques en Terminale STG. David ROBERT

Mathématiques en Terminale STG. David ROBERT Mathématiques en Terminale STG David ROBERT 2008 2009 Sommaire 1 Optimisation à deux variables 1 1.1 Équations de droites................................................... 1 1.1.1 Activités......................................................

Plus en détail

Corrigé du baccalauréat ES Asie 19 juin 2014

Corrigé du baccalauréat ES Asie 19 juin 2014 Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Échantillonnage : couleur des yeux au Canada Contexte pédagogique Objectifs Obtenir un intervalle de

Plus en détail

Contrôle commun : 4 heures

Contrôle commun : 4 heures Exercice 1 (5 points) Contrôle commun : 4 heures PARTIE A On considère la fonction f définie sur l intervalle ]0 ; + [ par f(x) = ln x + x. 1. Déterminer les limites de la fonction f en 0 et en +.. Étudier

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (1) Statistique descriptive «Uni & Bi-variée» R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Statistiques Pourcentages et probabilité

Statistiques Pourcentages et probabilité 6 septembre 2014 Statistiques Pourcentages et probabilité Moyenne EXERCICE 1 On connaît la répartition des notes à un test. Calculer la moyenne des notes. Notes 4 6 8 9 10 11 12 14 16 Effectifs 13 23 28

Plus en détail

2 Fonctions affines : définitions et propriétés fondamentales

2 Fonctions affines : définitions et propriétés fondamentales Chapitre 3 : Fonctions affines Dans tout ce chapitre, le plan est muni d un repère. 1 Rappels sur les équations de droite Une droite qui n est pas verticale a une unique équation du type y = ax + b, qu

Plus en détail

Le partage inégal des revenus et du patrimoine

Le partage inégal des revenus et du patrimoine Le partage inégal des revenus et du patrimoine I. La répartition des revenus 1. Le partage de la valeur ajoutée - La valeur ajoutée brute (calculée en déduisant des ventes d une entreprise tous les achats

Plus en détail

Estimation. Anita Burgun

Estimation. Anita Burgun Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population

Plus en détail

Exercices. Version du 7 janvier 2016 16:37. UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées

Exercices. Version du 7 janvier 2016 16:37. UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées Exercices Version du 7 janvier 2016 16:37 UE Mathématiques et statistiques appliquées AA Mathématiques et statistiques appliquées 1ère Bachelier en Informatique de Gestion Ludovic Kuty

Plus en détail

I. LA VARIABILITE AU SEIN DES POPULATIONS

I. LA VARIABILITE AU SEIN DES POPULATIONS I. LA VARIABILITE AU SEIN DES POPULATIONS La notion de population recouvre un concept difficilement réductible à une définition unique. Au sens de la génétique, une population représente une entité de

Plus en détail

Probabilités et inférence statistique (STAT-S-202) Titulaires : Catherine Dehon et Davy Paindaveine Partie 2 : Inférence statistique

Probabilités et inférence statistique (STAT-S-202) Titulaires : Catherine Dehon et Davy Paindaveine Partie 2 : Inférence statistique Probabilités et inférence statistique (STAT-S-202) Titulaires : Catherine Dehon et Davy Paindaveine Partie 2 : Inférence statistique Les exercices qui vous sont proposés sont classés de la façon suivante

Plus en détail

Baccalauréat STMG Polynésie 12 septembre 2014 Correction

Baccalauréat STMG Polynésie 12 septembre 2014 Correction Baccalauréat STMG Polynésie 1 septembre 014 Correction Durée : 3 heures EXERCICE 1 6 points Pour une nouvelle mine de plomb, les experts d une entreprise modélisent le chiffre d affaires (en milliers d

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve... Sommaire Descriptif de l épreuve............................................. Conseils pour l épreuve............................................ Les pourcentages FICHES Pages 1 Pourcentage Proportions....................................7

Plus en détail

Analyse des données 1: erreurs expérimentales et courbe normale

Analyse des données 1: erreurs expérimentales et courbe normale Analyse des données 1: erreurs expérimentales et courbe normale 1 Incertitude vs. erreur Une mesure expérimentale comporte toujours deux parties: la valeur vraie de la grandeur mesurée et l'erreur sur

Plus en détail

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18 Première partie : Effectifs et fréquences Dans deux entreprises d'un groupe industriel a été mené une enquête sur le niveau de formation des employés. On a obtenu les résultats suivants : Entreprise 1

Plus en détail

Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana

Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana Validation d une méthode performante de dosage des steviols glycosides de Stevia Rebaudiana J.M. Roussel, Consultant, Aix-en-Pce Prof. Dr. Gertrud Morlock, Chair of Food Science, JLU Giessen S. Meyer,

Plus en détail

Baccalauréat Série S Métropole, juin 2014

Baccalauréat Série S Métropole, juin 2014 Baccalauréat Série S Métropole, juin 4 Sujet et Corrigé Stéphane PASQUET Disponible sur http://www.mathweb.fr juin 4 Exercice (5 points) - Commun à tous les candidats Partie A Dans le plan muni d un repère

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Note liminaire Programme selon les sections : - fonctions de références, représentations graphiques, dérivées, tableau de variations : toutes sections - opérations sur les limites, asymptotes : STI2D,

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

Comparaison de Moyennes et de Variances Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHU Besançon

Comparaison de Moyennes et de Variances Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHU Besançon PACES - APEMK UE 4 Evalua0on des méthodes d analyses appliquées aux sciences de la vie et de la santé Comparaison de Moyennes et de Variances Prof Franck Bonnetain Unité de méthodologie & de qualité de

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

Etudes, Actuariat et statistiques

Etudes, Actuariat et statistiques Etudes, Actuariat et statistiques Mots clés Pension de réversion IRCANTEC Octobre 2014 Résumé L Institution de retraite complémentaire des agents non titulaires de l Etat et des collectivités publiques

Plus en détail

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire

STATISTIQUES. I. Un peu de vocabulaire. II. Representations graphiques. 1. Diagramme circulaire STATISTIQUES I. Un peu de vocabulaire Toute étude statistique s'appuie sur des données. Dans le cas où ces données sont numériques, on distingue les données discrètes (qui prennent un nombre fini de valeurs

Plus en détail

Statistiques 0,14 0,11

Statistiques 0,14 0,11 Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières

Plus en détail

Chapitre 4 : RÉGRESSION

Chapitre 4 : RÉGRESSION Chapitre 4 : RÉGRESSION 4.3 Régression linéaire multiple 4.3.1 Equation et Estimation 4.3.2 Inférence 4.3.3 Coefficients de détermination 4.3.4 Spécifications Régression linéaire multiple 1 / 50 Chapitre

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2013-2014 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

Chapitre 3 Dénombrement et représentation d un caractère continu. Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel

Chapitre 3 Dénombrement et représentation d un caractère continu. Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel Chapitre 3 Dénombrement et représentation d un caractère continu Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel Introduction Un caractère quantitatif est continu si ses modalités possibles

Plus en détail

Support di cours disponible à l adresse suivante http://sspsd.u-strasbg.fr/mdem22e-statistiques-cours-td.html

Support di cours disponible à l adresse suivante http://sspsd.u-strasbg.fr/mdem22e-statistiques-cours-td.html MDEM22E - Cours et TD de statistiques descriptives à partir de données d enquête Support di cours disponible à l adresse suivante http://sspsd.u-strasbg.fr/mdem22e-statistiques-cours-td.html Objectif du

Plus en détail

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015

Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 Corrigé du baccalauréat STMG Centres étrangers 11 juin 2015 La calculatrice (conforme à la circulaire n o 99-186 du 16 novembre 1999) est autorisée. Le candidat est invité à faire figurer sur la copie

Plus en détail

Qualité Six Sigma. Sommaire. Sylvain ROZÈS. 28 mars 2008. 1 Introduction 1. 2 Étude séparée de quatre échantillons 1

Qualité Six Sigma. Sommaire. Sylvain ROZÈS. 28 mars 2008. 1 Introduction 1. 2 Étude séparée de quatre échantillons 1 Qualité Six Sigma Sylvain ROZÈS 28 mars 2008 Sommaire 1 Introduction 1 2 Étude séparée de quatre échantillons 1 3 Étude sur l ensemble des échantillons 8 4 Étude sur les range 13 1 Introduction Le but

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Calcul d erreur (ou Propagation des incertitudes)

Calcul d erreur (ou Propagation des incertitudes) Travaux Pratiques de Physique vers. septembre 014 Calcul d erreur (ou Propagation des incertitudes) 1) Introduction Le mot "erreur" se réfère à quelque chose de juste ou de vrai. On parle d erreur sur

Plus en détail

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon

Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie

Plus en détail

Ou t i l s d a n a l y s e d e l e v o l u t io n d e s

Ou t i l s d a n a l y s e d e l e v o l u t io n d e s Ou t i l s d a n a l y s e d e l e v o l u t io n d e s c h a r g e s d e p e r s o n n e l Jacques GROLIER Directeur du Master d Économie et de Gestion des Établissements Sanitaires et Sociaux Université

Plus en détail

Revenu disponible par unité de consommation de l ensemble des ménages en 1999 (hors revenu du patrimoine) en euros

Revenu disponible par unité de consommation de l ensemble des ménages en 1999 (hors revenu du patrimoine) en euros Nom Revenu disponible par unité de consommation de l ensemble des ménages en 1999 (hors revenu du patrimoine) en euros Décile «pointés» Valeur du décile Décile moyen Moyenne D1 7 194 1 er décile 5 625

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

Variations des fonctions

Variations des fonctions CH2-1er S Variations des fonctions Rédacteur : Yann BANC Le mot du prof : Ce chapitre vous permet de revoir les fonctions usuelles et de découvrir de nouvelles fonctions usuelles : valeur absolue et racine

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

Baccalauréat Blanc 10 février 2015 Corrigé

Baccalauréat Blanc 10 février 2015 Corrigé Exercice Commun à tous les candidats Baccalauréat Blanc février 25 Corrigé. Réponse d. : e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e 5,4. 2. Réponse b. : positif

Plus en détail

Statistique descriptive unidimensionnelle

Statistique descriptive unidimensionnelle 1 Statistique descriptive unidimensionnelle Statistique descriptive unidimensionnelle Résumé Les objectifs et la démarche d un première exploration d un jeu de données, les outils de la description statistique

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

MASTER de Génie Civil, Lyon Année scolaire 2006-2007 DYNAMIQUE DES SOLS ET DES STRUCTURES. Sujet No 1, durée : 2 heures

MASTER de Génie Civil, Lyon Année scolaire 2006-2007 DYNAMIQUE DES SOLS ET DES STRUCTURES. Sujet No 1, durée : 2 heures MASTER de Génie Civil, Lyon Année scolaire 6-7 Epreuve du 6 mars 7 DYNAMIQUE DES SOLS ET DES STRUCTURES GENIE PARASISMIQUE Sujet No, durée : heures Les copies doivent être rédigées en français et écrites

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

Les différenciations de salaires au cours de la carrière : deux études sur un panel long.

Les différenciations de salaires au cours de la carrière : deux études sur un panel long. Les différenciations de salaires au cours de la carrière : deux études sur un panel long. Sébastien Roux INSEE-CREST COE, 13 mai 2008 Roux (CREST) Trajectoires salariales COE, 13 mai 2008 1 / 36 Introduction

Plus en détail

EVALUATION DES MESURES FISCALES ANNONCEES PAR LE GOUVERNEMENT

EVALUATION DES MESURES FISCALES ANNONCEES PAR LE GOUVERNEMENT ECONEWS 6/2010 2 juin 2010 EVALUATION DES MESURES FISCALES ANNONCEES PAR LE GOUVERNEMENT Dans le cadre du présent Econews, la Chambre des salariés procède à une série de calculs sur l impact des mesures

Plus en détail

EXERCICE. On peut lire par exemple qu il y a 11 paquets qui pèsent 251 grammes

EXERCICE. On peut lire par exemple qu il y a 11 paquets qui pèsent 251 grammes EXERCICE Dans une usine d emballage du café, on a effectué un contrôle sur une machine M1 pour vérifier la masse du café par paquet étiqueté 250 grammes. On a donc prélevé un échantillon de 50 paquets

Plus en détail