Chapitre 2. Caractéristiques des distributions à une variable quantitative

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 2. Caractéristiques des distributions à une variable quantitative"

Transcription

1 Chapitre 2. Caractéristiques des distributions à une variable quantitative Jean-François Coeurjolly Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Caractéristiques de tendance centrale Mode Médiane Quantiles d ordre quelconque Moyenne Synthèse : quelles caractéristiques pour résumer une série? Complément : méthode du shift and share 2 Caractéristiques de dispersion Etendue (intervalle de variation) Ecarts interquantiles Ecart absolu Ecart-type et variance Comparaison de séries statistiques et synthèse 3 Caractéristiques de concentration Courbe de Lorentz Indice de Gini Médiale

2 Mode Mode d une variable statistique Définition Le mode (ou classe modale) est la valeur (ou la classe) Calcul du mode : variable discrète : modalité présentant le plus grand variable continue : on cherche d abord la classe ayant la plus Le mode peut ensuite être défini (par exemple comme le centre de cette classe). Remarques : pour une var. continue, en général on ne donne que la classe modale. Une série peut avoir plusieurs modes (en présence de maxima locaux de fréquence ou densité selon le type de variable) ; on parle de série Mode Application numérique sur deux exemples Exemple Nbre pers./voiture x i f i 1 10% 2 25% 3 40% 4 25% Total 100% 1.0 fréquence nombre de personnes/voiture 0 Revenu des ménages français x i f i d i (en euros) (/tr. de 800e) [0, 1600[ 45% 22.5% [1600, 2400[ 35% 35% [2400, 3200[ 20% 20% Total 100% % par tranche de 800 euros Revenu en euros

3 Médiane Médiane - définition Définition La médiane est la valeur de la série (i.e. une modalité) qui Il faut distinguer deux cas : 1 les données sont observés de manière brute. [le plus souvent une variable discrète] 2 les données sont regroupées en classes. [le plus souvent une variable continue] Médiane Médiane (2) - données brutes Deux cas possibles en fonction du caractère pair ou impair de la taille de l échantillon n : 1 n est impair : la médiane de la série de n = 5 âges : 17, 9, 19, 25, 21 est. 2 n est pair : la médiane de la série de n = 4 âges : 17, 9, 19, 25 est entre 17 et 19 Formule générale : Soient x 1,..., x n les valeurs de la série et soient x (1), x (2),..., x (n) les versions ordonnées, i.e. x (1) x (2)... x (n) alors

4 Médiane Médiane - données brutes (2) Quelle est la médiane de la série statistique suivante? Exemple nb personnes/voiture x i n i f i F i % 10% % 35% % 75% % 100% Total % n = 400 est pair il faut donc repérer la -ème observation dans la liste des observations ordonnées. et Médiane Médiane (3) - données regroupées Exemple du revenu ménages x i (en e) n i ( 10 6 ) f i F i [0, 1600[ 9 45% 45% [1600, 2400[ 7 35% 80% [2400, 3200[ 4 20% 100% Total % Dans le cas où les données sont regroupées en classes, il faut suivre deux étapes : 1 repérer la, i.e. la classe contenant la médiane. Ici, 45% des ménage ont un revenu < 1600eet 80% des ménages ont un revenu < 2400e Me ]1600, 2400[ 2 estimer la médiane par

5 Médiane Médiane (5) - interpolation linéaire Fi revenu Graphiquement : la médiane correspond à l abscisse du point d intersection entre la courbe des (x i, F i ) et la Formule générale : soit ]x i, x i+1 [ la classe médiane et soient F i et F i+1 les fréquences cumulées évaluées en x i et x i+1, alors Quantiles d ordre quelconque Quantile Définition Un quantile d ordre α (pour α (0, 1)) notée en toute généralité Q α est la valeur qui partage la série en deux sous-ensembles ; une proportion α se situe en dessous de Q α et une proportion 1 α au-dessus strictement de Q α. Remarques : Me = Q 50%. Quartiles (notés Q 1, Q 2, Q 3 ) : quantiles qui séparent la série en 4 sous-ensembles de même effectif/fréquence. Plus précisément Q 1 = Q 25%, Q 2 = Me, Q 3 = Q 75%. Déciles (notés D 1, D 2,..., D 9 ) : quantiles qui séparent la série en 10 sous-ensembes de même fréquence. Plus précisément D 1 = Q 10%, D 2 = Q 20%,..., D 9 = Q 90%.

6 Quantiles d ordre quelconque Quantile (2) Les quantiles se calculent de manière similaire à la médiane. Ainsi pour des données regroupées on a : si Q α ]x i, x i+1 [ Calculez le premier quartile de la série suivante Exemple du revenu ménages x i (en e) n i ( 10 6 ) f i F i [0, 1600[ 9 45% 45% [1600, 2400[ 7 35% 80% [2400, 3200[ 4 20% 100% Total % Moyenne Moyenne arithmétique (pondérée) Définition Soit x i (i = 1,..., p) les modalités d une série brute, d effectifs n i (i = 1,..., p) et fréquence f i, la moyenne arithmétique pondérée notée x est donnée par Si les données sont regroupées en classes, les x i ne sont en général pas observées. Ces valeurs sont alors remplacées par les centres de classes, notés c i pour i = 1,..., p. lorsque le nombre de modalités (ou nombre de classes) est grand, il devient intéressant d utiliser la calculatrice (rentrer les données sous forme d un tableau, configurer de manière appropriée et demander des résultats univariés).

7 Moyenne Moyenne arithmétique : exemple covoiturage Calculez la moyenne de la série Application : Exemple nb personnes/voiture x i n i f i F i % 10% % 35% % 75% % 100% Total % Moyenne Moyenne arithmétique : exemple revenu des ménages Calculez la moyenne de la série Application : Exemple du revenu ménages x i (en e) c i n i ( 10 6 ) f i F i [0, 1600[ % 45% [1600, 2400[ % 80% [2400, 3200[ % 100% Total %

8 Moyenne Propriétés de la moyenne arithmétique 1 La somme des écarts (pondérés) à la moyenne est nulle, c-a-d p n i (x i x) = 0 i=1 2 Considérons une population P d effectif total n composée de k sous-populations P 1,..., P k d effectifs n 1,..., n k (donc n = n n k ). Notons x 1,..., x k les moyennes arithmétiques des sous-populations P 1,..., P k alors x = n 1x n k x k. n Moyenne Moyenne globale = moyenne pondérée des moyennes Ex : salaire de n H =200 hommes et n F =100 femmes d une entreprise. Calculez la moyenne de la série Ensemble de deux façons différentes : x i (en e) c i n i,h n i,f n i,e [0, 1500[ [1500, 3000[ Total Méthode 1 (méthode directe) : x E = 1 ( ) = 1600e. 300 Méthode 2 (en utilisant la propriété précédente) : x H = x F = x E =

9 Moyenne Moyenne géométrique Une action en bourse a évolué à la hausse de 10% l année 1, puis a diminué de 5% l année 2 et de 5% l année 3. Question : Quel est le taux moyen (noté t moy ) d évolution de cette action sur les trois années? t moy 0!!! La moyenne géométrique est le taux qui, appliqué durant les trois années donnera le même capital final selon l évolution décrite précédemment. Moyenne Moyenne géométrique (2) Soit C 0 le capital initial et soient C 1, C 2, C 3 les capitaux après 1,2 ou 3 années. On a selon l énoncé C 1 = (1 + 10%)C 0, C 2 = (1 5%)C 1 et C 3 = (1 5%)C 2, c-a-d C 3 = (1 + 10%)(1 5%)(1 5%)C 0. selon la définition du taux moyen : C 1 = (1 + t moy )C 0, C 2 = (1 + t moy )C 1 et C 3 = (1 + t moy )C 2, c-a-d C 3 = (1 + t moy ) 3 C 0. Par identification des deux identités, il vient que pour tout capital initial C 0

10 Moyenne Moyenne géométrique (3) Définition Soit la série statistique x 1,..., x p d effectif n 1,..., n p alors la moyenne géométrique notée en général x G est définie par où n = n n p. Moyenne Moyenne harmonique Elle permet de calculer des moyennes de ratios. Exemple : Un coureur monte une côte de 1km à la vitesse de 10km/h et descend cette même côte à la vitesse de 30km/h. Question : Quelle est la vitesse moyenne du coureur? v moy 20 km/h!! car il a passé plus de temps à 10km/h qu à 30km/h. On cherche v moy telle que la somme des temps passés à la montée et la descente soit égal au temps passé à la vitesse v moy :

11 Moyenne Moyenne harmonique (2) Définition Soit la série statistique x 1,..., x p d effectif n 1,..., n p alors la moyenne harmonique notée en général x H est définie par où n = n n p. Synthèse : quelles caractéristiques pour résumer une série? Afin de résumer cette série quel est l indicateur pertinent? Salaires x i c i n i a i en e (1 u.a. 4000e) [0, 4000[ [4000, 8000[ [28000, 32000[ x = 16000e, Me = 16000e. 2 classes modales : [0, 4000[,[28000, 32000[.

12 Synthèse : quelles caractéristiques pour résumer une série? Afin de résumer cette série quel est l indicateur pertinent? Salaires x i c i n i a i en e (1 u.a. 1000e) [0, 1000[ [1000, 2000[ [2000, 3000[ x = 1500e, Me = 1500e. classes modales : [1000, 2000[. Synthèse : quelles caractéristiques pour résumer une série? Afin de résumer cette série quel est l indicateur pertinent? Salaires x i c i n i a i en e (1 u.a. 2000e) [0, 2000[ [2000, 38000[ x = 2900e, Me = 1100e.

13 Complément : méthode du shift and share Complément : méthode shift and share méthode utilisée pour comparer plusieurs moyennes pondérées lorsque les coefficients de pondération sont très, par exemple lorsqu ils évoluent au cours du temps. permet de lisser l effet structure. Exemples : salaires de 2 CSP en 2010 et Année 2010 Année 2011 CSP f i x i (e) f i x i (e) Cadres 10% % 1300 Employés 90% % 900 x 2010 = 1100 e, x 2011 = 1100 e. peut-on conclure qu il n y a pas d évolution de salaires de 2010 à 2011? Complément : méthode du shift and share Complément : méthode shift and share (2) Année 2010 Année 2011 CSP f i x i (e) f i x i (e) Cadres 10% % 1300 Employés 90% % 900 Pour éliminer l effet du changement des effectifs, on calcule les moyennes en fixant les effectifs de 2010 : pour éliminer l effet du changement de salaires, on calcule la moyenne en 2011 en fixant les salaires en 2010

14 Etendue (intervalle de variation) Etendue (intervalle de variation) Définition L étendue est la différence entre la plus grande et la plus petite observation de la série. Notion très peu utilisée en pratique car elle est très sensible aux fluctuations de l échantillon. Exemple : on relève l âge de 10 individus : 24, 16, 18, 22, 16, 26, 35, 25, 15, 76. étendue est de phantom = 50 ans. Si on remplace 76 par un âge 35 l étendue devient Ecarts interquantiles Ecarts-interquantiles Définition On définit l écart-interquartile et l écart-interdécile comme suit Ecart interquartile = Ecart interdécile = Plus ces écarts sont et plus la série est Du fait que l on ne tient pas compte des observations faibles ou élevées, ces caractéristiques sont moins sensibles aux fluctuations de l échantillon que l étendue.

15 Ecart absolu Ecarts absolus x : statistique, x i : modalités, n i : effectifs, p nbre de modalités. 1 Ecart absolu moyen : 2 Ecart absolu médian : Remarques e x = 1 n e Me = 1 n p n i x i x. i=1 p n i x i Me. Plus les écarts absolus sont grands, plus la série est dispersée. i=1 Avantage : facile à calculer, écart absolu médian moins sensible aux valeurs extrêmes. Inconvénient : ne se prête pas aux calculs algébriques. Ecart-type et variance Ecart-type et variance Définition La variance est la moyenne arithmétique pondérée des L écart-type est la racine carrée de la variance. Variance : Ecart-type : Interprétation Plus l écart-type (ou variance) est observée est et plus la série

16 Ecart-type et variance Ecart-type et variance (2) Autre expression de la variance : Var(x) = 1 n = 1 n p n i (x i x) 2 i=1 p n i xi 2 (x) 2 i=1 = x 2 (x) 2 = moyenne des carrés carré de la moyenne. Tout comme la moyenne, pour calculer une variance (ou écart-type) pour une variable continue (dont les données sont regroupées en classes) on remplace les x i par c i les centres de classe. Ecart-type et variance Ecart-type et variance (3) Calculez les variance et écart-type de la série suivante : x i (en e) c i n i ( 10 6 ) f i [0, 1600[ % [1600, 2400[ % [2400, 3200[ % Total % Méthode 1 : on rappelle que x = 1620e. Var(x) = = e 2. Méthode 2 : x 2 = Var(x) = x 2 (x) 2 = = e 2 Ecart-type : σ x = e.

17 Ecart-type et variance Variance intra et interpopulation Théorème Considérons une population P de taille n composée de k sous-populations P 1,..., P k d effectifs respectifs n 1,..., n k. Notons, x 1,..., x k et Var(x 1 ),..., Var(x k ) les moyennes et variances des k sous-populations. Alors, la variance de la population P est Var(x) = n 1Var(x 1 ) n k Var(x k ) + n 1(x x 1 ) n k (x x k ) 2 n n = 1 k n i Var(x i ) + 1 p n i (x i x) 2 n n = = i=1 i=1 Ecart-type et variance Variance intra et interpopulation (2) Vérifions le résultat précédent sur l exemple suivant : on étudie le salaire de n H =200 hommes et n F =100 femmes d une entreprise. Calculez les variances inter-, intra- et totale de la série : x i (en e) c i n i,h n i,f n i,e [0, 1500[ [1500, 3000[ Total Pour simplifier (un peu) les calculs : x H = 1725 e Var(x H ) = e 2 x F = 1350 e Var(x F ) = e 2 x = 1600 e Var(x) = e 2. Moyenne des variances : Var. Intra = = = e 2.

18 Ecart-type et variance Variance intra et interpopulation (2) Vérifions le résultat précédent sur l exemple suivant : on étudie le salaire de n H =200 hommes et n F =100 femmes d une entreprise. Calculez les variances inter-, intra- et totale de la série : x i (en e) c i n i,h n i,f n i,e [0, 1500[ [1500, 3000[ Total Pour simplifier (un peu) les calculs : x H = 1725 e Var(x H ) = e 2 x F = 1350 e Var(x F ) = e 2 x = 1600 e Var(x) = e 2. Variance des moyennes : Var. Inter = = = 31250e 2. Ecart-type et variance Variance intra et interpopulation (3) Résumons un peu ces calculs : Var(x) = e 2. Var. Intra + Var. Inter = Moy. des variances + Var. des moyennes = = e 2. Peut-on dire que la caractéristique H/F influence le salaire? Si tel est le cas, la variance des moyennes est forte relativelement à la variance totale des salaires. Or, Var. Inter Var(x) = %.

19 Comparaison de séries statistiques et synthèse Complement I : Comparaison de séries (1) soit x la série statistique de 4 produits en Francs : 100F, 200F, 300F et 400F. soit y la série statistique des 4 produits en e :15e, 30e,45e,60e. Intuitivement, ces deux séries sont dispersées de la même manière. Or, σ x = 111.8F et σ y = 16.8e. Conclusion : pour comparer les deux séries qui ne sont pas dans la même unité, il faut transformer les caractéristiques de dispersion. Coefficient de variation : rapport à la moyenne, sans unité. = c est le % de variation par Comparaison de séries statistiques et synthèse Complement I : comparaison de séries (2) D autres indicateurs de comparaison de séries statistiques : Coefficient de dispersion : Q 3 Q 1 D 9 D 1 ou. Me Me Rapport interquartile ou rapport interdécile : Q 3 Q 1 ou D 9 D 1

20 Comparaison de séries statistiques et synthèse Complement II : la boîte à moustaches (1) aussi appelée box plot ou diagramme de Tukey. moyen rapide de visualiser des caractéristiques centrale et de dispersion d une principalement utilisée pour comparer un D 9 Q 3 Me Q 1 D 1 basée sur le calcul de D 1, Q 1, Me, Q 3 et D 9. Comparaison de séries statistiques et synthèse Complement II : la boîte à moustaches (2) Etude sur le niveau de vie des ménages en euros par CSP (personne de référence) en Application : complétez le graphique suivant avec les revenus des agriculteurs... sachant que pour les agriculteurs D 1 = 6040 Q 1 =11135 Me = Q 3 = D 9 = agriculteurs cadres profint employes ouvriers

21 Introduction Elles sont utilisées pour mesurer (essentiellement) la répartition de la masse salariale. La répartition de la masse salariale se situe entre les deux cas extrêmes suivants Répartition des salaires parfaitement équitables : un certain pourcentage de salariés reçoit le même pourcentage de la masse salariale. On dit que la concentration est nulle. Un seul salarié reçoit toute la masse salariale (et les autres rien). On dit que la concentration est maximale. Trois indicateurs pour quantifier la concentration 1 courbe de Lorentz 2 Indice de Gini 3 Médiale. Courbe de Lorentz Courbe de Lorentz On étudie les salaires de 50 employés d une entreprise. x i (en e) c i n i f i F i n i c i g i G i [600, 1200[ % 30 % [1200, 1800[ % 80% [1800, 2100[ % 100% Total % 1 on calcule la masse salariale =. 2 on calcule le % de la masse salariale g i, ainsi que les fréquences cumulées G i. Définition La courbe de Lorentz est obtenue en faisant correspondre à la fréquence cumulée à la fréquence cumulée.

22 Courbe de Lorentz Courbe de Lorentz (2) Gi (en %) Fi (en %) droite rouge = répartition Plus la courbe de Lorentz est de la droite rouge et plus la concentration est Indice de Gini Indice de Gini Gi (en %) Soit S la surface orange Fi (en %) Plus I Gini est, plus la concentration est (proche de équirépartition). Dans notre cas, % (on ne cherchera pas à calculer l indice)

23 Médiale Médiale La médiale est exemple Dans notre 50% 19.1% Médiale = ( ) 1548e. 72.3% 19.1% Les salariés recevant moins de Mesure de concentration : Médiale Me = 0. Etendue petit = faible concentration, grand= grande concentration. Ici, on peut vérifier que ( )/( ) 7.2%.

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

Support di cours disponible à l adresse suivante http://sspsd.u-strasbg.fr/mdem22e-statistiques-cours-td.html

Support di cours disponible à l adresse suivante http://sspsd.u-strasbg.fr/mdem22e-statistiques-cours-td.html MDEM22E - Cours et TD de statistiques descriptives à partir de données d enquête Support di cours disponible à l adresse suivante http://sspsd.u-strasbg.fr/mdem22e-statistiques-cours-td.html Objectif du

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

EXERCICES - ANALYSE GÉNÉRALE

EXERCICES - ANALYSE GÉNÉRALE EXERCICES - ANALYSE GÉNÉRALE OLIVIER COLLIER Exercice 1 (2012) Une entreprise veut faire un prêt de S euros auprès d une banque au taux annuel composé r. Le remboursement sera effectué en n années par

Plus en détail

Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2013-2014.

Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2013-2014. Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2013-2014. Thèmes des séances de TD Thème n.1: Tableaux statistiques et représentations graphiques. Thème

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2014-2015.

Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2014-2015. Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2014-2015. Thèmes des séances de TD Thème n.1: Tableaux statistiques et représentations graphiques. Thème

Plus en détail

Statistique Descriptive Élémentaire

Statistique Descriptive Élémentaire Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

STATISTIQUES ET PROBABILITÉS. Université du Littoral - Côte d Opale Laurent SMOCH. Janvier 2013

STATISTIQUES ET PROBABILITÉS. Université du Littoral - Côte d Opale Laurent SMOCH. Janvier 2013 ISCID-CO - PRÉPA 1ère année STATISTIQUES ET PROBABILITÉS Université du Littoral - Côte d Opale Laurent SMOCH Janvier 2013 Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville Université du

Plus en détail

Collecter des informations statistiques

Collecter des informations statistiques Collecter des informations statistiques FICHE MÉTHODE A I Les caractéristiques essentielles d un tableau statistique La statistique a un vocabulaire spécifique. L objet du tableau (la variable) s appelle

Plus en détail

Chapitre 11. Premières Notions sur les fonctions

Chapitre 11. Premières Notions sur les fonctions Chapitre 11 Premières Notions sur les fonctions 1. Exemples Exemple 1 La distance parcourue par une automobile en un temps donné varie en fonction de sa vitesse. Faire deux phrases utilisant les mots suivants.

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

Principe d un test statistique

Principe d un test statistique Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre

Plus en détail

STATISTIQUES I) UN PEU DE VOCABULAIRE

STATISTIQUES I) UN PEU DE VOCABULAIRE STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

PROBABILITÉS STATISTIQUES

PROBABILITÉS STATISTIQUES PROBABILITÉS ET STATISTIQUES Probabilités et Statistiques PAES 0-03 L FOUCA Sommaire Chapitre Statistique descriptive 4 La statistique et les statistiques 4 Généralités sur les distributions statistiques

Plus en détail

Révision de statistiques

Révision de statistiques IUP SID M1 UPS TOULOUSE Maîtrise statistique des procédés 2005/2006 Révision de statistiques Exercice 1 Révisions sur la lecture de tables. 1. Soit U une v.a. normale centrée réduite. Calculer P(U < 2),

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques 1 e S - programme 2011 mathématiques ch4 cahier élève Page 1 sur 14 Ch4 : Statistiques Exercice n A page 286 : Calculer une médiane et une moyenne Déterminer la médiane et la moyenne de chacune des deux

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

TP1 Master Finance logiciels Introduction à R

TP1 Master Finance logiciels Introduction à R TP1 Master Finance logiciels Introduction à R Emeline Schmisser, emeline.schmisser@math.univ-lille1.fr, bureau 314 (bâtiment M3). 1 Séquences, Vecteurs, Matrice Tableaux (arrays) Pour obtenir l aide de

Plus en détail

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves.

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves. SECONDE DST CORRECTION Exercice 1 Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves 6 2e trimestre 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

T. D. n o 3 Analyse de données quantitatives avec le logiciel R

T. D. n o 3 Analyse de données quantitatives avec le logiciel R T. D. n o 3 Analyse de données quantitatives avec le logiciel R 1 Rappel de quelques fonctions statistiques sous R Fonction summary() cumsum() sum() mean() max() min() range() median() var() sd() Description

Plus en détail

Cours de statistique descriptive. 1. Analyse univariée. Université Charles-de-Gaulle Lille 3

Cours de statistique descriptive. 1. Analyse univariée. Université Charles-de-Gaulle Lille 3 Cours de statistique descriptive 1. Analyse univariée Support de cours destiné aux étudiants de la licence MOMR : Université Charles-de-Gaulle Lille 3 UFR MSES O. Torrès Année universitaire 007-8 Version

Plus en détail

Le regroupement de valeurs continues, ARRONDIR... Notion de discrétisation : groupes ou intervalles de valeurs. Exemple : Glycémie normale :

Le regroupement de valeurs continues, ARRONDIR... Notion de discrétisation : groupes ou intervalles de valeurs. Exemple : Glycémie normale : Variables : samedi 14 novembre 2009 12:54 1. Quelques Exemples : C'est une caractéristique ou un facteur susceptible de prendre des valeurs différentes selon les individus. Exemples : o Couleur des cheveux

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Devoir maison du mercredi 13 novembre 2013 : Énoncé

Devoir maison du mercredi 13 novembre 2013 : Énoncé Devoir maison du mercredi 13 novembre 2013 : Énoncé Taper sous R library(car) data(mroz) Mroz fix(mroz) help(mroz) qui charge les données Mroz, les affiche et affiche leur descriptif. À partir de là, produire

Plus en détail

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE

Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction

Plus en détail

Partie 2 Statistique- Chapitre 8 Tableaux Croisés

Partie 2 Statistique- Chapitre 8 Tableaux Croisés Partie 2 Statistique- Chapitre 8 Tableaux Croisés PLAN: Cours... 2 TABLEAUX CROISES... 2 1. Tableau des effectifs... 2 2. Tableau des fréquences un rapport à l'effectif total... 2 3. Tableau des fréquences

Plus en détail

STATISTIQUE PLAN DE COURS

STATISTIQUE PLAN DE COURS STATISTIQUE Intitulé du cours : Diplôme : Enseignants : Organisation : Evaluation : Statistique AES - L2 Cours : M. BRESSOUD TD : M. KAHANE Cours : 13 séances de 3h TD : 12 séances de 1h30 3 notes de contrôle

Plus en détail

Cours 9 Une variable numérique : distribution et répartition

Cours 9 Une variable numérique : distribution et répartition Cours 9 Une variable numérique : distribution et répartition Lorsqu'une variable est qualitative et l'autre numérique, il est courant que la première identie des sous-populations (sexe, catégories socio-économiques,

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Statistiques 0,14 0,11

Statistiques 0,14 0,11 Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières

Plus en détail

Licence Pro Amélioration Végétale

Licence Pro Amélioration Végétale Analyse de données Licence Pro Amélioration Végétale Marc Bailly-Bechet Université Claude Bernard Lyon I France marc.bailly-bechet@univ-lyon1.fr 1 marc.bailly-bechet@univ-lyon1.fr Analyse de données Des

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de Terminale ES 2 Table des matières 1 Équations de droites. Second degré 7 1.1 Équation de droite.................................. 7 1.2 Polynôme du second degré..............................

Plus en détail

Candidat A B C D Nombre de voix obtenues. A partir de ce tableau on a l effectif total : 51 210 + 43 821 + 23 212 + 8 597 = 126 840

Candidat A B C D Nombre de voix obtenues. A partir de ce tableau on a l effectif total : 51 210 + 43 821 + 23 212 + 8 597 = 126 840 Première L Statistiques Cours 1. Définitions 1 2. Données Gaussiennes 5 3. Médiane et quartiles 6 4. Diagramme en boîte 9 5. Exercices corrigés 12 1. Définitions Une série statistique est la donnée d objets

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Chapitre 5 : Mouvement accéléré

Chapitre 5 : Mouvement accéléré 1 Chapitre 5 : Mouvement accéléré 5.1 Accélération Tu sais que les mobiles voyagent très rarement à des vitesses constantes. Exemple une promenade en voiture, ta vitesse augmente et diminue constamment.

Plus en détail

Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières Interrogation 1 : Indice et taux d évolution........................... 2 Devoir maison 1 : Taux d évolution................................ 4 Devoir maison 1

Plus en détail

Direction de la recherche, des études, de l évaluation et des statistiques DREES SERIE STATISTIQUES DOCUMENT DE TRAVAIL

Direction de la recherche, des études, de l évaluation et des statistiques DREES SERIE STATISTIQUES DOCUMENT DE TRAVAIL Direction de la recherche, des études, de l évaluation et des statistiques DREES SERIE STATISTIQUES DOCUMENT DE TRAVAIL Les trimestres acquis pour la retraite au titre des périodes assimilées et de l assurance

Plus en détail

ANALYSE BIVARIÉE DE VARIABLES QUALITATIVES LE TEST DU Chi2

ANALYSE BIVARIÉE DE VARIABLES QUALITATIVES LE TEST DU Chi2 ANALYSE BIVARIÉE DE VARIABLES QUALITATIVES LE TEST DU Chi2 Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine

Plus en détail

Statistique descriptive et prévision

Statistique descriptive et prévision Statistique descriptive et prévision Année 2010/2011 L. Chaumont Contents 1. Étude d une variable 5 1.1. Définitions................................ 5 1.2. Représentations graphiques usuelles................

Plus en détail

à moyen Risque moyen Risq à élevé Risque élevé Risq e Risque faible à moyen Risq Risque moyen à élevé Risq

à moyen Risque moyen Risq à élevé Risque élevé Risq e Risque faible à moyen Risq Risque moyen à élevé Risq e élevé Risque faible Risq à moyen Risque moyen Risq à élevé Risque élevé Risq e Risque faible à moyen Risq Risque moyen à élevé Risq L e s I n d i c e s F u n d a t a é Risque Les Indices de faible risque

Plus en détail

Les statistiques descriptives et les intervalles de confiance

Les statistiques descriptives et les intervalles de confiance Les statistiques et les intervalles de Yohann.Foucher@univ-nantes.fr Equipe d Accueil 4275 "Biostatistique, recherche clinique et mesures subjectives en santé", Université de Nantes Master 2 - Cours #2

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

Faire croître votre chiffre d affaires PLACEMENTS PLANIFICATION FINANCIÈRE ASSURANCE

Faire croître votre chiffre d affaires PLACEMENTS PLANIFICATION FINANCIÈRE ASSURANCE Faire croître votre chiffre d affaires PLACEMENTS PLANIFICATION FINANCIÈRE ASSURANCE 2 Table des matières 1. Survol de ÉlémentsPatrimoine 2. Modules renseignements du client 3. Modules planifications financière

Plus en détail

Bilan Social des Entreprises. Guide pratique d utilisation pour les équipes syndicales

Bilan Social des Entreprises. Guide pratique d utilisation pour les équipes syndicales Paris, le 22 mars 2011 Bilan Social des Entreprises Guide pratique d utilisation pour les équipes syndicales Le bilan social est un document extrêmement utile pour une équipe syndicale. Beaucoup de renseignements

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. 1 Généralités sur les tests statistiques 2 UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 Master d économie Cours de M. Desgraupes MATHS/STATS Document 4 : Les tests statistiques 1 Généralités sur les tests

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Classe de première L

Classe de première L Classe de première L Orientations générales Pour bon nombre d élèves qui s orientent en série L, la classe de première sera une fin d étude en mathématiques au lycée. On a donc voulu ici assurer à tous

Plus en détail

Techniques Quantitatives

Techniques Quantitatives GOL Techniques Quantitatives 1.2 HERVÉ BOULET 08/11/2013 Légende Table des matières Objectifs 5 Introduction 7 I - Généralités 9 A. Terminologie...9 1. Objet de la statistique...9 2. Population statistique...10

Plus en détail

Deux exemples de l impact d un choc exogène sur l évolution des prix : le prix du pétrole et la déréglementation

Deux exemples de l impact d un choc exogène sur l évolution des prix : le prix du pétrole et la déréglementation Deux exemples de l impact d un choc exogène sur l évolution des prix : le prix du pétrole et la déréglementation Deux chocs importants ont affecté le comportement des prix de détail des principaux pays

Plus en détail

RAPPORT TECHNIQUE CCE 2014-2415

RAPPORT TECHNIQUE CCE 2014-2415 RAPPORT TECHNIQUE CCE 2014-2415 CCE 2014-2415 Rapport technique 2014 22 décembre 2014 2 CCE 2014-2415 3 CCE 2014-2415 Le tableau 1 présente les principaux indicateurs du contexte macro-économique belge

Plus en détail

Brock. Rapport supérieur

Brock. Rapport supérieur Simplification du processus de demande d aide financière dans les établissementss : Étude de cas à l Université Brock Rapport préparé par Higher Education Strategy Associates et Canadian Education Project

Plus en détail

SERIE 1 Statistique descriptive - Graphiques

SERIE 1 Statistique descriptive - Graphiques Exercices de math ECG J.P. 2 ème A & B SERIE Statistique descriptive - Graphiques Collecte de l'information, dépouillement de l'information et vocabulaire La collecte de l information peut être : directe:

Plus en détail

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier

Statistiques Appliquées à l Expérimentation en Sciences Humaines. Christophe Lalanne, Sébastien Georges, Christophe Pallier Statistiques Appliquées à l Expérimentation en Sciences Humaines Christophe Lalanne, Sébastien Georges, Christophe Pallier Table des matières 1 Méthodologie expérimentale et recueil des données 6 1.1 Introduction.......................................

Plus en détail

SONDAGE DE 2010 SUR LA TARIFICATION ET LES REVENUS

SONDAGE DE 2010 SUR LA TARIFICATION ET LES REVENUS SONDAGE DE 21 SUR LA TARIFICATION ET LES REVENUS RÉSULTATS DESTINÉS AUX MEMBRES par François Gauthier, trad. a. Ces résultats sont publiés à titre indicatif seulement et n ont nullement pour but de dicter

Plus en détail

Leçon N 4 : Statistiques à deux variables

Leçon N 4 : Statistiques à deux variables Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d

Plus en détail

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30

Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 Comparaison entre un groupe expérimental et un groupe témoin (Corrigé) /30 I1 Connaissances préalables : Buts spécifiques : Outils nécessaires: Consignes générales : Test t de comparaison de moyennes pour

Plus en détail

Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie

Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie Partie I : Séries statistiques descriptives univariées (SSDU) A Introduction Comment se servir de cet ouvrage? Chaque chapitre présente une étape de la méthodologie et tous sont organisés selon le même

Plus en détail

Premiers pas vers l analyse de données...

Premiers pas vers l analyse de données... Fiche TD avec le logiciel : tdr1101 Premiers pas vers l analyse de données... A.B. Dufour & D. Clot Cette fiche comprend des exercices portant sur les paramètres descriptifs principaux et les représentations

Plus en détail

ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN

ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN Pôle Informatique de Recherche et d Enseignement en Histoire ANALYSE : OUTIL D ANALYSE DE DONNEES POUR LES SCIENCES HUAMINES MANUEL DE L UTILISATEUR : PRISE EN MAIN A. PREMIER PAS 1. INTEGRATION DU TABLEAU

Plus en détail

et idées sur le marché du pétrole Diversification de styles dans les placements en revenu fixe : défis et solutions Septembre 2015

et idées sur le marché du pétrole Diversification de styles dans les placements en revenu fixe : défis et solutions Septembre 2015 Point de Analyse vue sur le marché du pétrole Septembre 2015 Diversification de styles dans les placements en revenu fixe : défis et solutions Les investisseurs en obligations ne seront pas étonnés de

Plus en détail

Panorama de la filière Réparation de machines agricoles en Aquitaine

Panorama de la filière Réparation de machines agricoles en Aquitaine Panorama de la filière Réparation de machines agricoles en Aquitaine Contact : Fabien LALLEMENT - 05 57 14 27 13 Avril 2012 Sommaire 1. Périmètre de l analyse... Page 1 2. Définition des termes utilisés...

Plus en détail

DOCUMENT DE RÉVISION MAT-4104

DOCUMENT DE RÉVISION MAT-4104 CENTRE D ÉDUCATION DES ADULTES DOCUMENT DE RÉVISION MAT-4104 ÉLABORÉ PAR RICHARD ROUSSEAU, ENSEIGNANT EN MATHÉMATIQUES, CENTRE D ÉDUCATION DES ADULTES L ESCALE COMMISSION SCOLAIRE DE L AMIANTE MAI 005

Plus en détail

Fiche méthode n 1 Révision des outils de mesure des proportions et des variations

Fiche méthode n 1 Révision des outils de mesure des proportions et des variations Fiche méthode n 1 Révision des outils de mesure des proportions et des variations 1 Objectif de ce TD: - Mobiliser vos connaissances de l an dernier afin de réutiliser et de maîtriser ces outils statistiques

Plus en détail

Statistique descriptive. Fabrice MAZEROLLE Professeur de sciences économiques Université Paul Cézanne. Notes de cours

Statistique descriptive. Fabrice MAZEROLLE Professeur de sciences économiques Université Paul Cézanne. Notes de cours Statistique descriptive Fabrice MAZEROLLE Professeur de sciences économiques Université Paul Cézanne Notes de cours Dernière mise à jour le mercredi 25 février 2009 1 ère année de Licence Aix & Marseille

Plus en détail

Étude sur les taux de revalorisation des contrats individuels d assurance vie au titre de 2013 n 26 mai 2014

Étude sur les taux de revalorisation des contrats individuels d assurance vie au titre de 2013 n 26 mai 2014 n 26 mai 2014 Étude sur les taux de revalorisation des contrats individuels d assurance vie au titre de 2013 Sommaire 1.INTRODUCTION 4 2.LE MARCHÉ DE L ASSURANCE VIE INDIVIDUELLE 6 2.1.La bancassurance

Plus en détail

Le suivi de la qualité. Méthode MSP : généralités

Le suivi de la qualité. Méthode MSP : généralités Le suivi de la qualité La politique qualité d une entreprise impose que celle maîtrise sa fabrication. Pour cela, elle doit être capable d évaluer la «qualité» de son processus de production et ceci parfois

Plus en détail

Statistiques : indicateurs de dispersion

Statistiques : indicateurs de dispersion 33 Statistiques : indicateurs de dispersion Capacités Comparer deux séries statistiques à l aide d indicateurs de tendance centrale et de dispersion Connaissances Indicateurs de dispersion : étendue, s

Plus en détail

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE

GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Département Universitaire de Recherche et d Enseignement en Médecine Générale GUIDE D AIDE STATISTIQUE A LA PREPARATION DE LA THESE Enseignants : Esther GUERY, Julien LE BRETON, Emilie FERRAT, Jacques

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

APERÇU SUR L'ENSEIGNEMENT DES PROBABILITÉS ET STATISTIQUES AU VIETNAM

APERÇU SUR L'ENSEIGNEMENT DES PROBABILITÉS ET STATISTIQUES AU VIETNAM DOCUMENT A Enseignement des Mathématiques Séminaire International Toulouse 5-9 juillet 1975 Extrait du Résumé des Communications APERÇU SUR L'ENSEIGNEMENT DES PROBABILITÉS ET STATISTIQUES AU VIETNAM par

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

Statistique à deux variables

Statistique à deux variables Statistique à deux variables 1 Étendue en millions de kilomètres carrés 14 13,5 13 12,5 12 11,5 11 10,5 10 1978 y = 0,0424x + 96,522 1983 1988 1993 1998 2003 2008 Quel avenir pour l ours polaire? Le graphique

Plus en détail

Pierre Marchand Consultant

Pierre Marchand Consultant Pierre Marchand Consultant 1 Avant-propos Mot de bienvenue Présentation du formateur Logistique Mise en garde Modifications par rapport à 2012-2013 Les exemples présentés proviennent des paramètres de

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Mesures et incertitudes

Mesures et incertitudes En physique et en chimie, toute grandeur, mesurée ou calculée, est entachée d erreur, ce qui ne l empêche pas d être exploitée pour prendre des décisions. Aujourd hui, la notion d erreur a son vocabulaire

Plus en détail

Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti»

Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti» Correction de l exercice 2 du cours Gestion de patrimoine : «Analyse d un produit structuré à capital garanti» Question 1 : représenter graphiquement le taux de rentabilité du produit à capital garanti

Plus en détail

Détermination d une méthode de calcul de capabilités avec des lois non gaussiennes

Détermination d une méthode de calcul de capabilités avec des lois non gaussiennes Détermination d une méthode de calcul de capabilités avec des lois non gaussiennes Thibaut Martini To cite this version: Thibaut Martini. Détermination d une méthode de calcul de capabilités avec des lois

Plus en détail

COURS DE MATHEMATIQUES TERMINALE STG

COURS DE MATHEMATIQUES TERMINALE STG COURS DE MATHEMATIQUES TERMINALE STG Chapitre 1. TAUX D EVOLUTION... 5 1. TAUX D EVOLUTION ET COEFFICIENTS MULTIPLICATEURS... 5 a. Taux d évolution... 5 b. Coefficient multiplicateur... 5 c. Calcul d une

Plus en détail

Pourcentage d évolution

Pourcentage d évolution Pourcentage d évolution I) Proportion et pourcentage. 1) Proportion Soit E un ensemble fini et A une partie de l ensemble E. est le nombre d éléments de E et le nombre d éléments de A. La proportion ou

Plus en détail

Introduction à l'analyse statistique des données

Introduction à l'analyse statistique des données INTRODUCTION À L'ANALYSE STATISTIQUE DES DONNÉES CONCEPTS DE BASE Un certain nombre de concepts, préalables indispensables à la compréhension des analyses présentées, sont définis ici. De même pour quelques

Plus en détail

Correction du baccalauréat STMG Polynésie 17 juin 2014

Correction du baccalauréat STMG Polynésie 17 juin 2014 Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé

Plus en détail

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée.

UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans sa documentation) est autorisée. Université René Descartes- Paris V Licence de Psychologie Année L1, Semestre S1-2005 /2006 Page 1/5 UE ADP1 Durée de l'épreuve : 1 heure 30 mn. Aucun document n'est autorisé. Seule la calculette (sans

Plus en détail

ÉTUDE DE MORTALITÉ DANS LES RENTES INDIVIDUELLES ANNÉE D ASSURANCE 1995-1996

ÉTUDE DE MORTALITÉ DANS LES RENTES INDIVIDUELLES ANNÉE D ASSURANCE 1995-1996 ÉTUDE DE MORTALITÉ DANS LES RENTES INDIVIDUELLES ANNÉE D ASSURANCE 1995-1996 Document 20131 1. INTRODUCTION Les travaux sur l étude de mortalité dans les rentes individuelles se sont poursuivis. Cette

Plus en détail

CAPTEURS - CHAINES DE MESURES

CAPTEURS - CHAINES DE MESURES CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,

Plus en détail