Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Etude des machines thermiques. Olivier GRANIER

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Etude des machines thermiques. Olivier GRANIER"

Transcription

1 PCSI - Physique Lycée Clemenceau PCSI (O.Granier) Etude des machines thermiques

2 PCSI - Physique I Le moteur à explosion à 4 temps (Cycle de eau de Rochas, 86) Simulation java

3 PCSI - Physique

4 PCSI - Physique Cycle réel Simulation java Cycle théorique

5 PCSI - Physique Cycle théorique de eau de Rochas (86), réalisé par Otto (876) : Hypothèses simplificatrices : Durant le cycle, les propriétés du fluide changent. On n en tient pas compte et on considère le gaz comme un GP. C est toujours le même gaz qui subit le cycle. Les transformations sont réversibles : C : compression adiabatique CD : isochore (étincelle de la bougie) DE : détente adiabatique E : refroidissement isochore

6 PCSI - Physique Rendement du cycle : Le cycle est moteur (W < 0) : le fluide reçoit de la chaleur lors de la transformation CD et donne de la chaleur au milieu extérieur lors de la transformation E. Remarque : W désigne ici la somme des travaux reçus par le gaz lors du cycle (c est-à-dire lors des 4 transformations). Le rendement ρ du cycle (du moteur) est défini par : ρ travail reçu par l' extérieur énergie calorifique fournie Soit, ici : ρ ( W ) W CD CD

7 PCSI - Physique Calcul du rendement ρ : U W + CD + 0 D après le er principe,, soit : E W CD E L expression du rendement devient : CD + E ρ + CD E CD Or (transformations isochores) : D où : CD E U U CD E ρ + nc nc D, mol, mol E C ( ( D C E ) )

8 Lycée Clemenceau PCSI - Physique Pour les deux isentropiques (adiabatiques réversibles), on peut écrire : En notant que A C et D A, il vient : γ γ C C γ γ E E D D A C γ E A D γ

9 Lycée Clemenceau PCSI - Physique On en déduit l expression du rendement : On note le taux de compression : A E A E + γ γ ρ γ ρ A A α γ α ρ Pour α compris entre 8 et 0 et avec γ 7 / 5 : 56 0, ρ

10 PCSI - Physique II La machine thermique de Carnot Source chaude Source de travail Exemple d une centrale nucléaire Source froide

11 PCSI - Physique Principe général d une machine thermique : Un fluide subit des cycles de transformations au cours desquels il échange du travail et de la chaleur avec l extérieur. Si le fluide fournit «effectivement» du travail à l extérieur, la machine est un moteur. Si le fluide reçoit du travail et prend de la chaleur à la source froide, la machine thermique est un réfrigérateur (ou un climatiseur). Si le fluide reçoit du travail et fournit de la chaleur à la source chaude, la machine thermique est une pompe à chaleur. Si le fluide échange de la chaleur avec deux sources de chaleur, la machine est ditherme.

12 PCSI - Physique Le cycle du moteur réversible de Carnot (cycle moteur ditherme) : Le schéma de principe est le suivant : W < 0 Source chaude > Fluide > 0 < 0 Source froide < Le fluide reçoit de la chaleur de la source chaude, fournit du travail au milieu extérieur et rejette une partie de l énergie calorifique reçue à la source froide (impossibilité du moteur monotherme).

13 PCSI - Physique racé du cycle de Carnot réversible (cas du moteur) : Le cycle est constitué de deux adiabatiques réversibles (pas d échanges de chaleurs) et de deux isothermes (au contact des deux sources de chaleur). P C Adiabatique réversible Isotherme à D Adiabatique réversible Simulation java Isotherme à A

14 PCSI - Physique 3 Rendement du moteur de Carnot réversible : Le rendement est défini par : ρ travail reçu par l' extérieur énergie calorifique fournie W Où W représente le travail total reçu par le fluide lors du cycle. D après le er principe : W soit W D où : ρ + +

15 PCSI - Physique Un bilan entropique pour le fluide lors d un cycle s écrit : S S + cycle échange S création S cycle 0 ( le long d' un cycle) S échange + S création 0 ( transformation réversible) D où : + 0 ( égalité de Clausius)

16 PCSI - Physique On en déduit que : Et : ρ + ρ Ce rendement est toujours inférieur à ; par exemple, avec : 0 C ; 00 C ; ρ 0,68 6,8%! On remarque que ce rendement ne dépend pas de la nature du fluide qui subit le cycle (GP, gaz réel, eau, ), mais uniquement des températures des sources chaude et froide.

17 PCSI - Physique 4 Moteur de Carnot irréversible : Le cycle de Carnot est désormais irréversible (par exemple, les transferts de chaleur ne se font plus de manière réversible au contact des deux sources de chaleur). W < 0 Source chaude > Fluide > 0 < 0 Source froide < On va montrer que le rendement de ce cycle irréversible est inférieur à celui du cycle réversible, fonctionnant entre les deux mêmes sources.

18 PCSI - Physique Un bilan entropique pour le fluide lors d un cycle s écrit : S S + cycle échange S cycle 0 ( le long d' un cycle) S échange + S création S création > 0 ( transformation irréversible) D où : S échange + + Scréation < 0 < 0 ( inégalité de Clausius)

19 PCSI - Physique Le rendement est toujours défini par : ρ W + Mais l inégalité de Clausius donne : < soit < ( avec > 0) D où : ρ + < héorème de Carnot Rendement irréversible Rendement réversible

20 PCSI - Physique 5 Machines frigorifiques de Carnot : Le cycle de Carnot est désormais parcouru dans l autre sens (sens contraire des aiguilles d une montre) : W > 0 Source chaude > Fluide < 0 > 0 Source froide < Si on s intéresse à la source chaude, cette machine frigorifique est une pompe à chaleur. Si on s intéresse à la source froide, cette machine frigorifique est un réfrigérateur (ou un climatiseur).

21 PCSI - Physique Efficacité d une machine thermique : (cas réversible) Réfrigérateur Pompe à chaleur Énergie fournie : W > 0 Énergie fournie : W > 0 ut : «grande» ut : - «grande» Efficacité : énergie énergie er principe : récupérée fournie e W Efficacité : énergie récupérée e énergie fournie er principe : W D où : W + e D où : W + e + + 0

22 PCSI - Physique Efficacité d une machine thermique : (cas réversible) Réfrigérateur Égalité de Clausius (toujours valable) : D où : + 0 ; e e / Pompe à chaleur Égalité de Clausius (toujours valable) : D où : + e 0 ; e / /

23 PCSI - Physique Applications numériques : Pour un réfrigérateur : 300 K ; 60 K : e Pour une pompe à chaleur : 93 K ; 80 K : e 6,5,5 Ce résultat montre qu un kwh dépensé pour faire fonctionner la pompe à chaleur fournit autant de chaleur que la dissipation par effet Joule de,5 kwh de travail électrique dans un radiateur électrique! Dans le cas d un fonctionnement irréversible : e réfrigérateur < ; e pompe à chaleur <

24 PCSI - Physique III Études de machines en écoulement Moteur à réaction Pompe à chaleur avec changement d état Centrale géothermique Réfrigérateur à fréon (vidéo) Réfrigérateur à fréon (animation cabri) urbine à gaz (animation cabri)

25 PCSI - Physique

Les machines thermiques

Les machines thermiques Les machines thermiques II. Les machines thermiques Une machine thermique permet une conversion d'énergie. Pour fonctionner en régime permanent, elles effectuent des cycles. Très souvent, un fluide est

Plus en détail

Thermodynamique Chapitre 6 : Les machines thermiques

Thermodynamique Chapitre 6 : Les machines thermiques Lycée François Arago Perpignan M.P.S.I. 2012-2013 Thermodynamique Chapitre 6 : Les machines thermiques Nous arrivons à ce qui a véritablement motivé la fondation de la thermodynamique : l étude des machines

Plus en détail

Thermodynamique. Chapitre 6. Machines thermiques

Thermodynamique. Chapitre 6. Machines thermiques Thermodynamique Chapitre 6 Machines thermiques I Tout ce que nous pouvons dire sans rien savoir (ou presque) Machines thermiques Nous arrivons à ce qui a véritablement motivé la fondation de la thermodynamique

Plus en détail

Conséquences des deux principes Machines thermiques Potentiels thermodynamiques

Conséquences des deux principes Machines thermiques Potentiels thermodynamiques S3 PMCP 2015/2016 D de thermodynamique n 5 Conséquences des deux principes Machines thermiques Potentiels thermodynamiques 1 Cycle avec une seule source de chaleur. Soit un système pouvant, pendant un

Plus en détail

LES 2 PRINCIPES DE LA THERMODYNAMIQUE

LES 2 PRINCIPES DE LA THERMODYNAMIQUE PSI Brizeux Ch. T1 : Les deux principes de la thermodynamique 1 C H A P I T R E 1 LES 2 PRINCIPES DE LA THERMODYNAMIQUE APPLICATIONS 1. LES FONDEMENTS DE LA THERMODYNAMIQUE 1.1. La variable température

Plus en détail

UE 303 - Thermodynamique - 2010/2011

UE 303 - Thermodynamique - 2010/2011 UE 303 - Thermodynamique - 2010/2011 Contrôle Continu du 03/11/2010. Durée: 2h00mn Exercice 1 : On suppose que l atmosphère est un gaz réel en équilibre dans le champ de pesanteur. L équation d état de

Plus en détail

Thermodynamique des gaz parfaits

Thermodynamique des gaz parfaits Chapitre 24 Sciences Physiques - BTS Thermodynamique des gaz parfaits 1 Le modèle du gaz parfait 1.1 Définition On appelle gaz parfait un ensemble de molécules sans interaction entre elles en dehors des

Plus en détail

III PRODUCTION DE FROID, POMPE A CHALEUR. Machine à gaz permanent (sans changement de phase) Fonctionne suivant un cycle de Joule inverse

III PRODUCTION DE FROID, POMPE A CHALEUR. Machine à gaz permanent (sans changement de phase) Fonctionne suivant un cycle de Joule inverse III PRODUCION DE FROID, POMPE A CHALEUR Un cycle frigorifique est un système thermodynamique qui permet de transférer de la chaleur d un milieu vers un autre à température plus élevée. D après le second

Plus en détail

LA THERMODYNAMIQUE. La thermodynamique est l étude de l énergie thermique, son transfert, sa transformation, sa dégradation et sa dispersion.

LA THERMODYNAMIQUE. La thermodynamique est l étude de l énergie thermique, son transfert, sa transformation, sa dégradation et sa dispersion. LA THERMODYNAMIQUE La thermodynamique est l étude de l énergie thermique, son transfert, sa transformation, sa dégradation et sa dispersion. La thermodynamique étudie le comportement thermique de la matière.

Plus en détail

1. Gaz parfait et transformations thermodynamiques

1. Gaz parfait et transformations thermodynamiques 1. Gaz parfait et transformations thermodynamiques Pour l'air : r = R / M = 0,871 kj / (kg.k), avec M masse molaire c p =1,005 kj/kg K, c v = 0,718 kj/kg K = 1.93 kg / m 3 à 0 C et à 1013 mbars Pour un

Plus en détail

CHAPITRE 10 LES GAZ PARFAITS

CHAPITRE 10 LES GAZ PARFAITS 1 CHAPIRE 10 LES GAZ PARFAIS I PROPRIEES HERMODYNAMIQUES DES GAZ PARFAIS 1 Définition Dans un gaz parfait il n'y a aucune interaction entre les molécules. 2 Equation d'état L'équation d'état permet d'écrire

Plus en détail

mini INTERROS de Prépas & Deug SUP-SPÉ Thermodynamique Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE

mini INTERROS de Prépas & Deug SUP-SPÉ Thermodynamique Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE mini INTERROS de Prépas & Deug MPSI-PCSI-PTSI SUP-SPÉ Thermodynamique MP-MP*-PC-PC*-PT-PT* Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE pages 1. Introduction à la thermodynamique.......................

Plus en détail

Les Machines thermodynamiques

Les Machines thermodynamiques Les achines thermodynamiques Table des matières 1) DEFINITION 2 2) ENTROPIE : SECOND PRINCIPE DE LA THERODYNAIQUE 2 3) ACHINES ONOTHERES 2 4) ACHINES DITHERES 3 41) SCHEA DE PRINCIPE 3 42) INEGALITE DE

Plus en détail

THERMODYNAMIQUE SUP. Sommaire. G.P. Thermodynamique Sup 2013

THERMODYNAMIQUE SUP. Sommaire. G.P. Thermodynamique Sup 2013 THERMODYNAMIQUE SUP Sommaire I.Fonctions d'état...3 A.Calcul direct du travail de compression W pour un système gazeux...3 B.Calcul de l'énergie thermique échangée en partant de W...3 C.Utilisation des

Plus en détail

DES MACHINES THERMIQUES

DES MACHINES THERMIQUES E.C. P- EUDE HEORIUE DES MACHINES HERMIUES CHAPIRE 5 Doument à ompléter I GÉNÉRALIÉS SUR LES MACHINES HERMIUES Dans e hapitre, nous nous intéressons aux mahines thermiques. Ce sont des dispositis qui permettent

Plus en détail

Illustrations : Exp du bateau à eau, machine Bollée

Illustrations : Exp du bateau à eau, machine Bollée Thermodynamique 4 Machines thermiques Illustrations : Exp du bateau à eau, machine Bollée Simulation gtulloue // cycles moteur A savoir - Définir une machine thermique - Bilan énergétiques et entropiques

Plus en détail

I. BUT DE LA MANIPULATION II. INTRODUCTION ET PHENOMENOLOGIE T 2 T 1

I. BUT DE LA MANIPULATION II. INTRODUCTION ET PHENOMENOLOGIE T 2 T 1 C. Cycle de Stirling. BUT DE LA MANPULATON Etude du cycle thermodynamique de Stirling, relevés des cycles. Mesure du rendement d'un moteur à air chaud pour différents régimes de rotation. Etude des rendements

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP PHYSIQUE 1. Durée : 4 heures. Les calculatrices sont autorisées. * * *

EPREUVE SPECIFIQUE FILIERE MP PHYSIQUE 1. Durée : 4 heures. Les calculatrices sont autorisées. * * * SESSION 004 EPREUVE SPECIFIQUE FILIERE MP PYSIQUE Durée : 4 heures Les calculatrices sont autorisées. N : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de

Plus en détail

Chapitre 4 : Les machines dynamothermiques (MF et PAC)

Chapitre 4 : Les machines dynamothermiques (MF et PAC) Objectifs Lahrouni, A. hap 4 Thermo 2 FSSM hapitre 4 : Les machines dynamothermiques (MF et PA) La connaissance du principe de fonctionnement des machines frigorifiques à compression et l application des

Plus en détail

TD 1. On considère une mole de gaz (CO 2 ) qui obéit à l'équation de Van der Waals. (p + a/v 2 ) (v-b) = RT.

TD 1. On considère une mole de gaz (CO 2 ) qui obéit à l'équation de Van der Waals. (p + a/v 2 ) (v-b) = RT. TD 1 1: On considère une mole de gaz (CO 2 ) qui obéit à l'équation de Van der Waals. (p + a/v 2 ) (v-b) = RT. 1) Etablir l'expression du travail reçu par le gaz, au cours d'une compression isotherme réversible

Plus en détail

Thermodynamique de l atmosphère

Thermodynamique de l atmosphère Thermodynamique de l atmosphère 1 Introduction Notion de parcelle d air L atmosphère est composée d un ensemble de molécules. Pour la description de la plupart des phénomènes étudiés, le suivi des comportements

Plus en détail

Énergétique du bâtiment : Ventilation et quelques équipements 2

Énergétique du bâtiment : Ventilation et quelques équipements 2 1 Énergétique du bâtiment : Ventilation et quelques équipements 2 M. Pons CNRS-LIMSI, Rue J. von Neumann, BP133, 91403 Orsay Cedex http://perso.limsi.fr/mpons 1 Organisation Deuxième partie Notions de

Plus en détail

11 mars 2003 228. 9 Cycles moteurs

11 mars 2003 228. 9 Cycles moteurs 11 mars 2003 228 9 Certains générateurs de puissance comme la centrale thermique à vapeur opèrent effectivement selon un cycle, c.-à-d. que le fluide actif retourne à son état initial après avoir subi

Plus en détail

Thermodynamique BTS 1984-2004 Gaz parfaits

Thermodynamique BTS 1984-2004 Gaz parfaits Thermodynamique BTS 1984-2004 Gaz parfaits Gaz parfaits...3 BTS Fluides énergie environnement épreuve de physique 2001...3 BTS Travaux publics 1990...3 BTS Bâtiment 1994...3 BTS Esthétique et Cosmétique

Plus en détail

MACHINE DE STIRLING. TSt 1 1 THEORIE. 1.1 Thermodynamique - grandeurs dʼétat

MACHINE DE STIRLING. TSt 1 1 THEORIE. 1.1 Thermodynamique - grandeurs dʼétat TSt 1 MACHINE DE STIRLING 1 THEORIE 1.1 Thermodynamique - grandeurs dʼétat La thermodynamique est lʼétude, à lʼaide dʼun nombre limité de grandeurs macroscopiques, de systèmes formés dʼun très grand nombre

Plus en détail

PAC. principe général

PAC. principe général POMPE à CHALEUR 1 2 3 4 PAC principe général 5 Circuit de captage Q f T f < évaporateur le fluide frigorigène se réchauffe Liquide haute pression T 4 T c < < < Vapeur basse pression Détendeur

Plus en détail

Chapitre VII ANALYSE THERMODYNAMIQUE DES CYCLES THÉORIQUES. LE CYCLE BEAU DE ROCHAS

Chapitre VII ANALYSE THERMODYNAMIQUE DES CYCLES THÉORIQUES. LE CYCLE BEAU DE ROCHAS Chapitre VII ANALYSE THERMODYNAMIQUE DES CYCLES THÉORIQUES. LE CYCLE BEAU DE ROCHAS Remarque préliminaire sur l analyse thermodynamique du fonctionnement d un moteur Pour aborder l analyse thermodynamique

Plus en détail

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr.

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr. COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015 Pr. Aziz OUADOUD Table des matières 1 Introduction 3 1.1 Définitions générales.......................

Plus en détail

Thermodynamique et gaz parfaits

Thermodynamique et gaz parfaits Université Paris 7 PCEM 1 Cours de Physique Thermodynamique et gaz parfaits Étienne Parizot (APC Université Paris 7) É. Parizot Physique PCEM 1 ère année page 1 Résumé du cours précédent : travail énergie

Plus en détail

Domaines d application des techniques du froid. Dimension socio-économique S.C. Φ C Φ F S.F.

Domaines d application des techniques du froid. Dimension socio-économique S.C. Φ C Φ F S.F. Réfrigération solaire rof. Marc Frère Domaines d application des techniques du froid Industrie agro-alimentaire Distribution et transport des denrées alimentaires Applications médicales Conditionnement

Plus en détail

CHAPITRE VI : APPLICATIONS DES DEUX PRINCIPES DE LA THERMODYNAMIQUE. Q Impossible

CHAPITRE VI : APPLICATIONS DES DEUX PRINCIPES DE LA THERMODYNAMIQUE. Q Impossible CHAPITRE VI : APPLICATIONS DES DEUX PRINCIPES DE LA THERMODYNAMIQUE VI.1 DEFINITIONS DES MACHINES THERMIQUES VI.2 DIAGRAMME DE RAVEAU VI.3 LE CYCLE DE CARNOT VI.4 RENDEMENT DE CARNOT VI.4.1 RENDEMENT DE

Plus en détail

Récupération d énergie

Récupération d énergie Récupération d énergie Le sujet propose d étudier deux dispositifs de récupération d énergie soit thermique (problème 1) soit mécanique (problème 2) afin de produire une énergie électrique. Chaque problème

Plus en détail

Le premier principe de la thermodynamique. Marie Paule Bassez http://chemphys.u strasbg.fr/mpb

Le premier principe de la thermodynamique. Marie Paule Bassez http://chemphys.u strasbg.fr/mpb Le premier principe de la thermodynamique Marie Paule Bassez http://chemphys.u strasbg.fr/mpb PLAN 1. Notion de système 2. Réversibilité 3. Travail d'un fluide en dilatation ou en compression 4. Détente

Plus en détail

Chapitre V. MACHINES TRITHERMES... 113 1. Couplage moteur-générateur thermiques... 113 1.1. Machines quadrithermes 113 1.2. Machines trithermes 114

Chapitre V. MACHINES TRITHERMES... 113 1. Couplage moteur-générateur thermiques... 113 1.1. Machines quadrithermes 113 1.2. Machines trithermes 114 SOMMAIRE... V NOMENCLATURE... X Chapitre I. CONVERSION DE L'ÉNERGIE MACHINES THERMIQUES... 1 1. Rappels de thermodynamique... 1 1.1. Définitions et conventions 1 1.2. Conservation de l'énergie en systèmes

Plus en détail

ETUDE DES PHENOMENES THERMOELECTRIQUES PREMIERE PARTIE

ETUDE DES PHENOMENES THERMOELECTRIQUES PREMIERE PARTIE ETUDE DES PHENOMENES THERMOELECTRIQUES Note au candidat. A lire attentivement. Le candidat veillera à respecter impérativement les conventions générales de la thermodynamique : un échange, quelque soit

Plus en détail

MACHINES THERMIQUES (THERMO2)

MACHINES THERMIQUES (THERMO2) École Nationale d Ingénieurs de Tarbes MACHINES THERMIQUES (THERMO2) 1 ère année Semestre 2/2* EXERCICES - Rendement - Cycles Thermodynamiques - Écoulement en régime permanent Vous devez vous munir de

Plus en détail

Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides

Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides 1 Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides I Premier principe de la thermodynamique pour un système ouvert Certains systèmes échangent avec l extérieur, outre

Plus en détail

LE DIAGRAMME ENTHALPIQUE

LE DIAGRAMME ENTHALPIQUE LE DIAGRAMME ENTHALPIQUE L expression cycle vient de la thermodynamique. En effet lorsqu une masse de fluide se retrouve après diverses transformations dans le même état (pression, volume, température)

Plus en détail

10 Cycles frigorifiques

10 Cycles frigorifiques 14 mars 2003 Introduction 277 10 10.1 Introduction Dans la section 9.1, on a considéré des machines thermiques constituées de quatre processus distincts, mettant en œuvre soit des dispositifs à circulation

Plus en détail

RESUME DIAGRAMME ENTHALPIQUE ET FORMULAIRE. Construction du diagramme enthalpique ou de diagramme Mollier

RESUME DIAGRAMME ENTHALPIQUE ET FORMULAIRE. Construction du diagramme enthalpique ou de diagramme Mollier RESUME DIAGRAMME ENTHALPIQUE ET FORMULAIRE Construction du diagramme enthalpique ou de diagramme Mollier Un système frigorifique se définit toujours par rapport à ces températures de fonctionnement. La

Plus en détail

Chapitre 5 : 2 nd principe : Entropie

Chapitre 5 : 2 nd principe : Entropie Chapitre 5 : 2 nd principe : Entropie 1 er principe : principe d équivalence sens d une évolution : le 1 er principe ne dit pas si le chemin est permis D où la nécessité d introduire le 2 nd principe :

Plus en détail

1. LE MOTEUR THERMIQUE

1. LE MOTEUR THERMIQUE 1. LE MOTEUR THERMIQUE 1.1 Définition Les moteurs thermiques transforment de la chaleur en travail mécanique destiné à équilibrer le travail résistant d un véhicule qui se déplace. Les machines thermiques

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES

CONCOURS COMMUNS POLYTECHNIQUES CONCOURS COMMUNS POLYTECHNIQUES la liaison étant supposée parfaite. Le rouleau n est entraîné en rotation par un moteur extérieur non figuré, sa vitesse de rotation est ω > constante au cours du temps.

Plus en détail

C4. La pompe à chaleur

C4. La pompe à chaleur C4. La pompe à chaleur I. BUT DE LA MANIPULATION Se familiariser avec le fonctionnement d'une pompe à chaleur et en déterminer le coefficient de performance sous différentes conditions d'utilisation. II.

Plus en détail

Machines thermiques. Exercice 1 : Cycle de Lenoir d un récepteur thermique

Machines thermiques. Exercice 1 : Cycle de Lenoir d un récepteur thermique Machines thermiques Exercice 1 : Cycle de Lenoir d un récepteur thermique Une mole de gaz parfait, caractérisé par le coefficient 𝛾 = 𝐶 /𝐶 constant, subit les transformations suivantes : - une détente

Plus en détail

Chapitre 7-Changement d état des corps purs. Cas particulier de l équilibre liquide-vapeur Application aux machines diphasées

Chapitre 7-Changement d état des corps purs. Cas particulier de l équilibre liquide-vapeur Application aux machines diphasées Chapitre 7-Changement d état des corps purs. Cas particulier de l équilibre liquide-vapeur Application aux machines diphasées On s intéressera tout particulièrement aux équilibres biphasés en ne mentionnant

Plus en détail

MAINTENANCE D UNE CHAÎNE DE BAINS DE TRAITEMENT

MAINTENANCE D UNE CHAÎNE DE BAINS DE TRAITEMENT MAINTENANCE D UNE CHAÎNE DE BAINS DE TRAITEMENT Une entreprise est spécialisée dans le traitement de surface par trempage de pièces métalliques de tailles diverses. Un pont roulant permet de faire progresser

Plus en détail

cours n 4 : Chaleur, travail et énergie interne des gaz parfaits.

cours n 4 : Chaleur, travail et énergie interne des gaz parfaits. 1 er cycle universitaire. BS. C. Haouy, professeur de hysique Appliquée Cours de hermodynamique n 4 : chaleur, travail et énergie interne des gaz parfaits. Mise à jour du 21-02-07. Colonne de gauche =

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320 20 mars 2003 Généralités et mélanges de gaz parfaits 320 12 On s est principalement limité jusqu à présent à l étude des substances pures. Or, bon nombre de problèmes thermodynamiques font intervenir des

Plus en détail

Les machines thermiques :

Les machines thermiques : Les machines thermiques : I) Machines thermiques monothermes, dithermes : 1) Description d'une machine thermique : Système (ouvert ou fermé) qui subit des cycles de transformation. échange de transferts

Plus en détail

Les calculatrices sont interdites.

Les calculatrices sont interdites. Les calculatrices sont interdites. NB. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut lui

Plus en détail

Par ners. We will be under the same roof. Ingénierie des Procédés- Etudes Générales Audits Energétiques- Cogénération

Par ners. We will be under the same roof. Ingénierie des Procédés- Etudes Générales Audits Energétiques- Cogénération Ingénierie des Procédés- Etudes Générales Audits Energétiques- Cogénération GUIDE DU FROID Date : 01/2008 Rév. : 0 Par : PARTNERS 18, rue Nelson Mandela2045 L Aouina-Tunis Tél. : (00 216) 71 724 032/760

Plus en détail

AIDE-MÉMOIRE DE THERMODYNAMIQUE. rappels de cours et exercices

AIDE-MÉMOIRE DE THERMODYNAMIQUE. rappels de cours et exercices AIDE-MÉMOIRE DE THERMODYNAMIQUE rappels de cours et exercices Didier Descamps 20 juin 2015 AIDE-MÉMOIRE DE THERMODYNAMIQUE Arts et Métiers ParisTech ENSAM centre de Lille Didier Descamps didier.descamps@ensam.eu

Plus en détail

Applications des deux principes de la Thermodynamique

Applications des deux principes de la Thermodynamique H3 - Applications des deux principes de la hermodynamique page 1/7 Applications des deux principes de la hermodynamique able des matières 1 Machines thermiques 1 1.1 Description des machines thermiques..............

Plus en détail

Doc 3 transferts thermiques

Doc 3 transferts thermiques Activité Documentaire Transferts d énergie entre systèmes macroscopiques Doc 1 Du microscopique au macroscopique La description de la matière peut être faite au niveau microscopique ou au niveau macroscopique.

Plus en détail

G.P. DS 07 6 février 2008

G.P. DS 07 6 février 2008 DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 4 heures Sujet Modulateur optique... 2 I.Interférence à deux ondes...2 II.Étude d une séparatrice...2 III.Interférométre de Mach-Zehnder...

Plus en détail

T 4 Machines Thermiques

T 4 Machines Thermiques Machines Thermiques PCSI 2 2013 2014 I Généralités Définition : une machine thermique permet de transformer de l énergie thermique en travail et inversement. On peut citer par exemple : les moteurs à essence,

Plus en détail

FICHE EXPLICATIVE Pompes à chaleur électriques

FICHE EXPLICATIVE Pompes à chaleur électriques Certificats d économies d énergie Fiche explicative n FE04 FICHE EXPLICATIVE Pompes à chaleur électriques Fiches d opérations standardisées concernées : Bâtiments résidentiels : BAR-TH-104 : Pompe à chaleur

Plus en détail

LA OTIO DU TRAVAIL E SCIE CES PHYSIQUES

LA OTIO DU TRAVAIL E SCIE CES PHYSIQUES L OTIO DU TRVIL E SCIE CES PHYSIQUES Par nne artini 1. Travail et énergie Dans la vie courante, il y a des termes qui sont souvent utilisés et dont la signification fait penser à celle donnée aux concepts

Plus en détail

+ Engineering Equation Solver

+ Engineering Equation Solver + Engineering Equation Solver EES V. 15/10/12 Partie 2 Master 2 GSI Maitrise de l Energie Julien Réveillon, Prof. Université de Rouen Julien.Reveillon@coria.fr http://www.cfdandco.com + 2/ Exercice Cycle

Plus en détail

Le modèle du gaz parfait

Le modèle du gaz parfait Table des matières 1 : énergie interne, équation d état 1.1 Hypothèses........................................... 1. Énergie interne d un GPM................................... 1.3 Équation d état du GPM....................................

Plus en détail

A.I.2. Application : transformation isotherme d'un gaz parfait

A.I.2. Application : transformation isotherme d'un gaz parfait Ce problème se propose d'explorer le thème du transfert thermique, dans différents domaines de la physique et à travers des applications pratiques et technologiques variées : ainsi seront étudiés tour

Plus en détail

Le moteur Stirling: une alternative bénéfique pour la conversion énergétique du Bio-gaz. par J.P. Vernet Président d EOSgen-technologies

Le moteur Stirling: une alternative bénéfique pour la conversion énergétique du Bio-gaz. par J.P. Vernet Président d EOSgen-technologies Le moteur Stirling: une alternative bénéfique pour la conversion énergétique du Bio-gaz par J.P. Vernet Président d EOSgen-technologies 3 Activités: Eosgen-technologies Bureau d étude mécanique et ingénierie.

Plus en détail

AERO.2-SPE A, SPE B PARTIEL DE THERMODYNAMIQUE :

AERO.2-SPE A, SPE B PARTIEL DE THERMODYNAMIQUE : I.P.S.A. 5 / 9 rue Maurice Grandcoing 94200 Ivry Sur Seine Tél. : 01.56.20.60.71 Date de l'epreuve : 13 janvier 2010 Classe : AERO.2-SPE A, SPE B PARTIEL THERMODYNAMIQUE Professeur : Monsieur BOUGUECHAL

Plus en détail

Production d énergie électrique par centrales thermiques

Production d énergie électrique par centrales thermiques Production d énergie électrique par centrales thermiques par André LALLEMAND Ingénieur, docteur-ès-sciences Professeur des universités à l Institut national des sciences appliquées de Lyon. hermodynamique

Plus en détail

T.P. COMPRESSEUR. T.P. Machines Thermiques : Compresseur / Page : 1/8

T.P. COMPRESSEUR. T.P. Machines Thermiques : Compresseur / Page : 1/8 T.P. COMPRESSEUR T.P. Machines Thermiques : Compresseur / Page : /8 But du T.P. : Tester les performances d un compresseur à piston bi-étagé à refroidissement intermédiaire. Introduction : Les compresseurs

Plus en détail

Gaz et Fluides. Équilibre thermodynamique : 3 conditions sont nécessaires pour qu un système soit à l équilibre thermodynamique

Gaz et Fluides. Équilibre thermodynamique : 3 conditions sont nécessaires pour qu un système soit à l équilibre thermodynamique Gaz et Fluides 1 Généralités sur les systèmes thermodynamiques 1.1 Desription d un système Système thermodynamique : est un système omportant un grand nombre de partiules. Il est fermé s il n éhange pas

Plus en détail

Cours SGE «Modélisation de la pollution atmosphérique» Dynamique

Cours SGE «Modélisation de la pollution atmosphérique» Dynamique Cours SGE «Modélisation de la pollution atmosphérique» Dynamique Christian Seigneur Cerea Plan Structure verticale de l atmosphère Atmosphère libre et couche limite atmosphérique Transport et dispersion

Plus en détail

CHAPITRE IV: ONDES DE CHOCS DROITES

CHAPITRE IV: ONDES DE CHOCS DROITES CHAPITRE IV: ONDES DE CHOCS DROITES Nous avons souligné au chapitre II, ainsi qu au chapitre III, que pour les écoulements à grande vitesse le modèle continu ne permettait pas de décrire la totalité des

Plus en détail

Étude d une pompe à chaleur

Étude d une pompe à chaleur TP N 15 Étude d une pompe à chaleur - page 89 - - T.P. N 14 - ÉTUDE D'UNE POMPE A CHALEUR 1. FONCTIONNEMENT THÉORIQUE Une pompe à chaleur est une machine thermique dans laquelle le fluide qui subit une

Plus en détail

Lyon : 685 rue Juliette Récamier Paris : 35 rue Claude Tillier 69 970 Chaponnay 75 012 Paris 12 04 37 23 03 40 01 43 48 06 01 Site internet :

Lyon : 685 rue Juliette Récamier Paris : 35 rue Claude Tillier 69 970 Chaponnay 75 012 Paris 12 04 37 23 03 40 01 43 48 06 01 Site internet : Lyon : 685 rue Juliette Récamier Paris : 35 rue Claude Tillier 69 970 Chaponnay 75 012 Paris 12 04 37 23 03 40 01 43 48 06 01 Site internet : www.becsa.fr La consommation électrique Le cycle frigorifique

Plus en détail

EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION

EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION DÉFINITIONS L exergie d un système dans des conditions (T, S, U ) données correspond au travail utile maximal que ce système pourrait fournir en

Plus en détail

En voiture! I. Détection des chocs frontaux et protection des passagers : l airbag

En voiture! I. Détection des chocs frontaux et protection des passagers : l airbag En voiture! Ce problème propose d étudier plusieurs phénomènes physiques mis en oeuvre dans un véhicule automobile. La première partie étudie la détection de chocs frontaux pour déclencher l ouverture

Plus en détail

2.14. Application des propriétés des fonctions d'état évolution des caractéristiques thermiques d'une barre lors d'une traction 43 2.15.

2.14. Application des propriétés des fonctions d'état évolution des caractéristiques thermiques d'une barre lors d'une traction 43 2.15. SOMMAIRE... V NOMENCLATURE... XIV Chapitre I. CONSTANTES PHYSIQUES ET UNITES... 1 1. Valeurs de quelques constantes physiques... 1 2. Facteurs de conversion des unités usuelles... 2 3. Définitions officielles

Plus en détail

Description des systèmes thermodynamiques

Description des systèmes thermodynamiques Chapitre 1 Description des systèmes thermodynamiques Sommaire 1.1 Hypothèses fondamentales de la thermodynamique............ 27 1.2 Grandeurs thermodynamiques......................... 29 1.3 Equilibre

Plus en détail

I. Étude générale des machines thermiques

I. Étude générale des machines thermiques hapitre 6 I. Étude générale des machines thermiques Généralités sur la notion de machine thermique Définitions - Une machine est un système qui convertit une forme d énergie en une autre. - Une machine

Plus en détail

Feuille d'exercices : Diusion thermique

Feuille d'exercices : Diusion thermique Feuille d'exercices : Diusion thermique P Colin 2014/2015 1 Diusion thermique dans une barre * On considère une barre cylindrique de longueur l et de section S constituée d un matériau de conductivité

Plus en détail

Thermodynamique : les fondamentaux

Thermodynamique : les fondamentaux Thermodynamique : les fondamentaux Extrait du programme Thermodynamique : fondamentaux Notions et contenus Capacités exigibles Énergie interne U d un système Vocabulaire et définitions : système, état

Plus en détail

cours n 2 : Travail et diagrammes P(V).

cours n 2 : Travail et diagrammes P(V). er cycle universitaire. BT. c.haouy@ac-nancy-metz.fr Cours de Thermodynamique n : travail et diagrammes P(). Mise à jour du 5/4/6. Colonne de gauche = discours fait au élèves, pas forcément écrit au tableau

Plus en détail

Département Aérospatiale et mécanique.

Département Aérospatiale et mécanique. Département Aérospatiale et mécanique. Laboratoire de Thermodynamique Université de Liège Campus du Sart-Tilman - Bâtiment B49 Parking P33 B-4000 LIEGE (Belgium) tel : +32 (0)4 366 48 00 fax : +32 (0)4

Plus en détail

Cours 7 : Les machines thermiques dithermes

Cours 7 : Les machines thermiques dithermes Cours 7 : Les machines thermiques dithermes 7. Cycles et machines thermiques (rappel) 7. Les moteurs thermiques dithermes (idéales et réelles) 7.3 Les machines frigorifiques (réfrigérateur et pompe à chaleur)

Plus en détail

Cours de physique générale

Cours de physique générale 26 mai 2009 cours de la semaine # 14a Bienvenue au Cours de physique générale Physique II pour étudiants de première année en section de mathématiques Prof. Georges Meylan Laboratoire d astrophysique Site

Plus en détail

ETUDE DU RÉFRIGÉRATEUR

ETUDE DU RÉFRIGÉRATEUR TP - L3 Physique-Plate-forme TTE - C.E.S.I.R.E. - Université Joseph Fourier - Grenoble ETUDE DU RÉFRIGÉRATEUR BUT DU T.P. L objet de ce TP, qui comprend deux parties, est de : comprendre le principe de

Plus en détail

Différents diagrammes pour représenter les cycles thermodynamiques

Différents diagrammes pour représenter les cycles thermodynamiques Différents diagrammes pour représenter les cycles thermodynamiques Diagramme de Clapeyron (ou diagramme P-v) P : Pression V : Volume Diagramme entropique (ou diagramme T-S) T : Température S : Entropie

Plus en détail

SPE A, B et C PARTIEL DE THERMODYNAMIQUE :

SPE A, B et C PARTIEL DE THERMODYNAMIQUE : I.P.S.A. 24, rue Pasteur 94270 Le Kremlin-Bicêtre Tél. : 01.44.08.01.00 Fax. : 01.44.08.01.13 Classe : Date de l'epreuve : 23 mai 2008 SPE A, B et C PARTIEL THERMODYNAMIQUE Professeur : Monsieur BOUGUECHAL

Plus en détail

Froid et Environnement. Denis LEDUCQ, Cemagref

Froid et Environnement. Denis LEDUCQ, Cemagref Froid et Environnement Denis LEDUCQ, Cemagref 2009 1 Table des matières 1 Généralités sur les systèmes frigorifiques 4 1.1 Principe de production du froid................... 5 1.1.1 Cycle monotherme.....................

Plus en détail

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Le 2 nd principe Notions d entropie. Olivier GRANIER

Lycée Clemenceau. PCSI 1 - Physique. PCSI 1 (O.Granier) Lycée. Clemenceau. Le 2 nd principe Notions d entropie. Olivier GRANIER Lycée Clemenceau CI (O.Granier) Le 2 nd principe Notions d entropie Olivier GRNIER I Nécessité d une nouvelle fonction d état ; l entropie hénomènes réversibles et irréversibles : Quelques exemples de

Plus en détail

Chapitre 6. Électricité. 6.1 Champ électrique. 6.1.1 Interaction électrique

Chapitre 6. Électricité. 6.1 Champ électrique. 6.1.1 Interaction électrique Chapitre 6 Électricité 6.1 Champ électrique 6.1.1 Interaction électrique L étude de l électricité peut se ramener à l étude des charges électriques et de leurs interactions. Rappelons que l interaction

Plus en détail

TRAVAUX PRATIQUES DE THERMODYNAMIQUE

TRAVAUX PRATIQUES DE THERMODYNAMIQUE Année 2010-2011 École Nationale d Ingénieurs de Tarbes Enseignements Semestres 2 et 2 TRAVAUX PRATIQUES DE THERMODYNAMIQUE Intervenants Karl DELBÉ Karl.Delbe@enit.fr 2 Table des matières 1 Avant-propos

Plus en détail

Échange d énergie 1 er principe de la thermodynamique

Échange d énergie 1 er principe de la thermodynamique Échange d énergie 1 er principe de la thermodynamique Table des matières 1) MISE EN PLACE DU PREMIER PRINCIPE 2 1.1) ENERGIE INTERNE D UN SYSTEME 2 1.2) CADRE DU PROGRAMME 2 1.3) ENONCE DU PREMIER PRINCIPE

Plus en détail

SORRE Maxime Contrôle continu de thermodynamique L2 PCSTM LOYER François Physique

SORRE Maxime Contrôle continu de thermodynamique L2 PCSTM LOYER François Physique Index I Définition II Cycle de Stirling i Cycle moteur ii Cycle récepteur III Etude du cycle de Stirling i Points d équilibres ii Echanges moteur iii Echanges récepteur I Conclusion i Avantages et inconvénients

Plus en détail

T4 - Introduction aux machines thermiques

T4 - Introduction aux machines thermiques Une machine thermique est un dispositif destiné à réaliser une conversion entre travail et chaleur. Le chapitre précédent a mis en lumière la différence fondamentale entre ces deux types d énergie. Historiquement,

Plus en détail

Introduction à la description des systèmes thermodynamiques

Introduction à la description des systèmes thermodynamiques Introduction à la description des systèmes thermodynamiques 1. Définitions et généralités : La Thermodynamique est l étude des échanges d énergie ou de matière. La thermodynamique ne délimite a priori

Plus en détail

VERSION STANDARD. Opération unitaire Description sommaire Modules sur le flowsheet

VERSION STANDARD. Opération unitaire Description sommaire Modules sur le flowsheet VERSION STANDARD Opération unitaire Description sommaire Modules sur le flowsheet Mélangeur de courants Utilisé pour mélanger plusieurs courants en un courant sortant unique. Mélangeur statique Mélangeur

Plus en détail

3.) La préparation du biogaz

3.) La préparation du biogaz 3.) La préparation du biogaz Les principaux polluants et leurs effets nocifs Le soufre et ses composés (H 2 S notamment): Corrosion des équipements, dépôt sur les équipements Les condensats: Corrosion

Plus en détail

Révisions de thermodynamique de première année. 2 Questions de cours classiques sur le premier principe

Révisions de thermodynamique de première année. 2 Questions de cours classiques sur le premier principe TD - Révisions de thermodynamique de première année STATIQUE DES FLUIDES 1 Barrage 1. Déterminer la force de pression s exerçant par l air sur un barrage droit, vertical, de hauteur h et de largeur L.

Plus en détail

Thermodynamique TD 4 Machines thermiques

Thermodynamique TD 4 Machines thermiques Lycée Kerichen MPSI 2 2013-2014 Thermodynamique TD 4 Machines thermiques Exercice 1: Bilan thermodynamique d'une machine thermique: On considère une mole de gaz carbonique (dioxyde de carbone) initialement

Plus en détail

Introduction à l'étude des machines thermiques

Introduction à l'étude des machines thermiques Chapitre 3 Introduction à l'étude des machines thermiques Objectifs A la fin du chapitre, l'étudiant doit être capable de - connaitre les différents types de machines thermiques - définir une machine de

Plus en détail

Exercices : THERMODYNAMIQUE

Exercices : THERMODYNAMIQUE Révision de ère année Exercices : THERMODYNAMIQUE Les deux principes de la thermodynamique TH08: détente d' un gaz parfait a) Donner l'expression de l'énergie interne U pour une mole de gaz parfait en

Plus en détail