Calcul d itinéraires ferroviaires.
|
|
|
- Aurélien Adam Lamarche
- il y a 9 ans
- Total affichages :
Transcription
1 p. 1/2 Calcul d itinéraires ferroviaires. Destination Origine
2 p. 2/2 Déroulement du projet Etape 1 : calcul d itinéraires ferroviaires. lecture des fichiers de données construction des structures de données calcul d itinéraires optimaux (algorithme de Dijsktra) 13 février : 1er rapport intermédiaire Etape 2 : tests, délais moyens, clustering. génération aléatoire d instances et tests calcul des délais moyens entre deux villes problème de clustering interface graphique (optionnel) 10 avril : rapport final
3 p. 3/2 Evaluation Le travail est à faire seul ou par groupe de deux (en aucun cas par groupe de trois ou plus). Le rapport intermédiaire et le rapport final donnent lieu à une présentation écrite et orale du travail effectué incluant une description succinte des structures de données utilisées et des principales fonctions. Rapport intermédiaire : 2 pages et 10 min. de présentation. Rapport final : 5 pages et 15 min. de présentation.
4 p. 4/2 Lecture des données. Syntaxe du fichier de données <nombre de villes n> <abcisse ville 1> <ordonnée ville 1>... <abcisse ville n> <ordonnée ville n> <nombre de lignes m> <definition de la ligne 1>... <definition de la ligne m>
5 p. 5/2 Lecture des données. Définition d une ligne : <nombre de villes k> <ville 1> <ville 2>... <ville k> <nombre de passages journaliers p> <P1 horaire 1> <P1 horaire 2>... <P1 horaire k>... <Pp horaire 1> <Pp horaire 2>... <Pp horaire k>
6 p. 6/2 Lecture des données : exemple h44 18h41 21h16 03h30 07h27 10h h33 22h13 02h10 05h02 06h42 10h39 12h50 14h30 18h27 Codage des horaires : nombre de minutes
7 p. 7/2 Algorithme de Dijkstra Fixer d[v] pour tout v V et d[s] = 0 Placer tous les sommets v V dans un tas T ordonné selon d[v]. S, l ensemble des sommets traités est vide Tant que T n est pas vide faire Extraire de T le sommet u de marque d(u) minimum Ajouter u à l ensemble S des sommets traités. Pour chaque voisin v de u faire Si d[v] > d[u] + l(u, v) alors faire d[v] d[u] + l(u, v), mettre à jour le tas T pere[v] = u Renvoyer d[t]
8 p. 8/2 Construction des structures de données. Déf. On dit qu une ville v est un successeur d une ville v si v est le successeur de v sur au moins une ligne. Structure de données. pour chaque ville v, calculer la liste des successeurs de v. pour chaque successeur v de v, calculer la liste des trajets de v à v ordonnée par date de départ croissante ; un trajet est caractérisé par un horaire de départ et un horaire d arrivée.
9 p. 9/2 Première étape Ecrire un programme qui lit les fichiers de données au format indiqué et qui calcule les structures de données. Problème : On se trouve dans une ville s à l heure h, quel itinéraire suivre pour se rendre le plus vite possible dans une ville d? Algorithme : modifier la signification des marques dans l algorithme de Dijkstra, i.e. la marque d une ville v sera l heure d arrivée au plus tôt en v en partant de s à l heure h. Le programme devra permettre de calculer la date d arrivée au plus tôt en d et d afficher un itinéraire optimal (listes de villes traversées et horaires).
10 p. 10/2 Calcul du délai moyen entre deux villes On veut calculer le délai moyen m(v, u) pour se rendre de la ville v à la ville u. Ce délai inclue le temps d attente dans chacune des villes intermédiaires et dans la ville de départ. Délai Délai moyen sur chaque intervalle de temps 10h 8h 6h 4h 2h 8h 9h 14h 17h 22h 5h 8h Horaires de départ Départs : 9h, 14h, 17h, 22h, 5h Temps trajets : 3h, 4h, 3h, 5h, 3h
11 p. 11/2 Calcul du délai moyen entre deux villes Soient h 0 = 0, h n = 24 et soient h 1,..., h n 1 les horaires de départ des trains à partir de la ville de départ. Entre deux départs de trains consécutifs h i 1 et h i, le temps de trajet diminue de façon linéaire, le délai moyen pendant cet intervalle est donc m i = (delai(h i 1 ) + delai(h i ))/2. Le délai moyen sur 24 heures est donné par m(u, v) = n i=1 m i(h i h i 1 ) h n h 0. Votre programme devra permettre de calculer et d afficher le délai moyen entre deux villes u et v données.
12 p. 12/2 Distance On définit la distance d(u, v) entre deux villes u et v de la façon suivante : d(u, v) = m(u, v) + m(v, u) 2 Votre programme devra calculer la matrice des distances entre chaque paire de villes. Remarque. Cette distance est définie de façon à être symétrique, i.e. d(u, v) = d(v, u) ce qui n est pas le cas pour m(u, v).
13 p. 13/2 Clustering Pour un entier k donné, on veut partionner les villes en k clusters V 1, V 2,..., V k de telle sorte que la plus grande distance entre deux villes d un même cluster soit la plus petite possible.
14 p. 14/2 Clustering : solution initiale L algorithme suivant permet d obtenir une solution (pas nécessairement optimale) : Trouver deux villes v 1 et v 2 à distance maximum l une de l autre. Placer v 1 dans V 1 et v 2 dans V 2. Pour i = 3,..., k faire Trouver une ville v i à distance maximum des villes {v 1,..., v i 1 }. Placer la ville v i dans un nouveau groupe V i. Pour chaque ville v / {v 1,..., v k }, placer v dans le groupe de la ville v i la plus proche de lui. Déf. La distance entre une ville v et un sous-ensemble S de villes est d(v, S) = min{d(v, u) : u S}.
15 p. 15/2 Clustering : recherche locale Méthode : construire une solution initiale (aléatoirement ou avec le premier algorithme). tenter d améliorer cette solution en déplaçant une ville d un groupe à un autre. recommencer Stratégie : recherche du meilleur déplacement recherche (aléatoire) d un déplacement améliorant
16 p. 16/2 Challenge temps limite de calcul de 600 secondes par problème mémoire limitée à 1 Go jeu de problèmes donné modalités à venir
17 p. 17/2 Critères d évaluation et Barême Critères d évaluation : travail effectué (calcul d itinéraires, délais moyens, clustering, interface), développement : lisibilité, simplicité du code, structuration du projet, algorithmes : compréhension, amélioration des méthodes, qualité de la présentation Barême : lecture (3pts), structure de données (3pts), Dijkstra (6pts) générateur (3pts), calcul des délais moyens (3pts), clustering (3pts), interface graphique (3pts)
18 p. 18/2 Génération du réseau. fonction Génération(n, d, m, min, max) (génère un réseau ferroviaire de m lignes) (avec entre min et max passages journaliers) (dans un graphe de n gares de densité d) début générer aléatoirement les positions géographiques des villes, calculer les distances euclidiennes entre les villes, pour chaque arete à générer faire fin faire fin fonction choisir une ville u au hasard, connecter u à la ville la plus proche qui n est pas voisine, pour chaque ligne faire choisir p avec min p max, générer une ligne avec p passages journaliers,
19 p. 19/2 Génération d une ligne. choisir une gare de départ et une gare objectif la ligne est constuite en partant de la gare de départ : on étend la ligne chaque fois en choisissant au hasard parmi les gares voisines rapprochantes (au sens des plus courts chemins) s il n y a pas assez de gares dans la ligne l essai est abandonné si la ligne est trop longue la ligne est tronquée a x b 5 5
20 p. 20/2 Interface graphique. http ://pageperso.lif.univ-mrs.fr/ edouard.thiel/ez-draw/index.html Présentation à venir
21 mars 2012. Simulations et Méthodes de Monte Carlo. DADI Charles-Abner. Objectifs et intérêt de ce T.E.R. Générer l'aléatoire.
de 21 mars 2012 () 21 mars 2012 1 / 6 de 1 2 3 4 5 () 21 mars 2012 2 / 6 1 de 2 3 4 5 () 21 mars 2012 3 / 6 1 2 de 3 4 5 () 21 mars 2012 4 / 6 1 2 de 3 4 de 5 () 21 mars 2012 5 / 6 de 1 2 3 4 5 () 21 mars
Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux
Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Puissances d un nombre relatif
Puissances d un nombre relatif Activités 1. Puissances d un entier relatif 1. Diffusion d information (Activité avec un tableur) Stéphane vient d apprendre à 10h, la sortie d une nouvelle console de jeu.
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation
IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes
Introduction à la théorie des graphes. Solutions des exercices
CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)
Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter
Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1
Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation
Correction TD algorithmique
Affectation Correction TD algorithmique Exercice 1 algo affect1b b 5 a b+1 b 2 Il vaut faire passer la notion de variable et la notion de stockage mémoire. Une variable n a donc pas d historique et à un
L apprentissage automatique
L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer
Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. [email protected]
Atelier Transversal AT11 Activité «Fourmis» Pierre Chauvet [email protected] Ant : un algorithme inspiré de l éthologie L éthologie Etude scientifique des comportements animaux, avec une perspective
S initier aux probabilités simples «Un jeu de cartes inédit»
«Un jeu de cartes inédit» 29-31 Niveau 3 Entraînement 1 Objectifs S entraîner à estimer une probabilité par déduction. Applications (exemples) En classe : tout ce qui réclame une lecture attentive d une
L exclusion mutuelle distribuée
L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Cours d introduction à l informatique. Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions
Cours d introduction à l informatique Partie 2 : Comment écrire un algorithme? Qu est-ce qu une variable? Expressions et instructions Qu est-ce qu un Une recette de cuisine algorithme? Protocole expérimental
Module Planification
1 Module Planification Interface MS Project 2 a) Charge atelier OF selon délai ou début de fabrication Export charge atelier sous Excel Capacité machine pour la période prédéfinie Date de début et fin
TS 35 Numériser. Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S
FICHE Fiche à destination des enseignants TS 35 Numériser Type d'activité Activité introductive - Exercice et démarche expérimentale en fin d activité Notions et contenus du programme de Terminale S Compétences
Quelques algorithmes simples dont l analyse n est pas si simple
Quelques algorithmes simples dont l analyse n est pas si simple Michel Habib [email protected] http://www.liafa.jussieu.fr/~habib Algorithmique Avancée M1 Bioinformatique, Octobre 2008 Plan Histoire
Objectifs. Clustering. Principe. Applications. Applications. Cartes de crédits. Remarques. Biologie, Génomique
Objectifs Clustering On ne sait pas ce qu on veut trouver : on laisse l algorithme nous proposer un modèle. On pense qu il existe des similarités entre les exemples. Qui se ressemble s assemble p. /55
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon 1/Université
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
Application de K-means à la définition du nombre de VM optimal dans un cloud
Application de K-means à la définition du nombre de VM optimal dans un cloud EGC 2012 : Atelier Fouille de données complexes : complexité liée aux données multiples et massives (31 janvier - 3 février
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Projet d informatique M1BI : Compression et décompression de texte. 1 Généralités sur la compression/décompression de texte
Projet d informatique M1BI : Compression et décompression de texte Le but de ce projet est de coder un programme réalisant de la compression et décompression de texte. On se proposera de coder deux algorithmes
Mise en place d un cluster. De basculement. Et DHCP Failover. Installation. Préparation. Vérification
Mise en place d un cluster De basculement Et DHCP Failover Valentin Banse Thomas Haën-Boucher Thomas Bichon Présentation Installation Préparation B T S S I O 2 2 / 0 4 / 2 0 1 4 Configuration Vérification
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Algorithmes de recherche d itinéraires en transport multimodal
de recherche d itinéraires en transport multimodal Fallou GUEYE 14 Décembre 2010 Direction : Christian Artigues LAAS-CNRS Co-direction : Marie José Huguet LAAS-CNRS Encadrant industriel : Frédéric Schettini
Chap17 - CORRECTİON DES EXERCİCES
Chap17 - CORRECTİON DES EXERCİCES n 3 p528 Le signal a est numérique : il n y a que deux valeurs possibles pour la tension. Le signal b n est pas numérique : il y a alternance entre des signaux divers
Ebauche Rapport finale
Ebauche Rapport finale Sommaire : 1 - Introduction au C.D.N. 2 - Définition de la problématique 3 - Etat de l'art : Présentatio de 3 Topologies streaming p2p 1) INTRODUCTION au C.D.N. La croissance rapide
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
Machines virtuelles Cours 1 : Introduction
Machines virtuelles Cours 1 : Introduction Pierre Letouzey 1 [email protected] PPS - Université Denis Diderot Paris 7 janvier 2012 1. Merci à Y. Régis-Gianas pour les transparents Qu est-ce qu une
Présentation du Master Ingénierie Informatique et du Master Science Informatique 2007-2008, Année 2 Université Paris-Est Marne-la-Vallée
Présentation du Master Ingénierie Informatique et du Master Science Informatique 2007-2008, Année 2 Université Paris-Est Marne-la-Vallée Responsable du Master Informatique : Marc Zipstein Responsable de
Indications pour une progression au CM1 et au CM2
Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir
Algorithmes récursifs
Licence 1 MASS - Algorithmique et Calcul Formel S. Verel, M.-E. Voge www.i3s.unice.fr/ verel 23 mars 2007 Objectifs de la séance 3 écrire des algorithmes récursifs avec un seul test rechercher un élément
Introduction à l algorithmique et à la programmation (Info 2)
Introduction à l algorithmique et à la programmation (Info 2) Premier cours: présentation du module, codage et définition de l algorithmique Matthieu Puigt IUT du Littoral Côte d Opale DUT Génie Industriel
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
SYSTÈMES DE CONFÉRENCE. Système de conférence analogique CDS 4000 04. Système de conférence numérique DCS 6000 06
Système de conférence analogique CDS 4000 04 Système de conférence numérique DCS 6000 06 DIS, Danish Interpretation Systems, fait partie des fabricants les plus réputés de systèmes de conférences. DIS
Structure fonctionnelle d un SGBD
Fichiers et Disques Structure fonctionnelle d un SGBD Requetes Optimiseur de requetes Operateurs relationnels Methodes d acces Gestion de tampon Gestion de disque BD 1 Fichiers et Disques Lecture : Transfert
Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation
Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des
Gestion collaborative de documents
Gestion collaborative de documents ANT box, le logiciel qui simplifie votre GED Les organisations (entreprises, collectivités, associations...) génèrent chaque jour des millions de documents, e-mails,
Initiation à LabView : Les exemples d applications :
Initiation à LabView : Les exemples d applications : c) Type de variables : Créer un programme : Exemple 1 : Calcul de c= 2(a+b)(a-3b) ou a, b et c seront des réels. «Exemple1» nom du programme : «Exemple
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche
Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique
Cours d algorithmique pour la classe de 2nde
Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage
Big Data et Graphes : Quelques pistes de recherche
Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
TP3 : Manipulation et implantation de systèmes de fichiers 1
École Normale Supérieure Systèmes et réseaux Année 2012-2013 TP3 : Manipulation et implantation de systèmes de fichiers 1 1 Répertoire de travail courant Le but de l exercice est d écrire une commande
Historique. Architecture. Contribution. Conclusion. Définitions et buts La veille stratégique Le multidimensionnel Les classifications
L intelligence économique outil stratégique pour l entreprise Professeur Bernard DOUSSET [email protected] http://atlas.irit.fr Institut de Recherche en Informatique de Toulouse (IRIT) Equipe Systèmes d
Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes
Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction
Introduction aux algorithmes MapReduce. Mathieu Dumoulin (GRAAL), 14 Février 2014
Introduction aux algorithmes MapReduce Mathieu Dumoulin (GRAAL), 14 Février 2014 Plan Introduction de la problématique Tutoriel MapReduce Design d algorithmes MapReduce Tri, somme et calcul de moyenne
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Programmation en Java IUT GEII (MC-II1) 1
Programmation en Java IUT GEII (MC-II1) 1 Christophe BLANC - Paul CHECCHIN IUT Montluçon Université Blaise Pascal Novembre 2009 Christophe BLANC - Paul CHECCHIN Programmation en Java IUT GEII (MC-II1)
Programmation C. Apprendre à développer des programmes simples dans le langage C
Programmation C Apprendre à développer des programmes simples dans le langage C Notes de cours sont disponibles sur http://astro.u-strasbg.fr/scyon/stusm (attention les majuscules sont importantes) Modalités
Initiation à Excel. Frédéric Gava (MCF) [email protected]
Initiation à Excel Frédéric Gava (MCF) [email protected] LACL, bâtiment P2 du CMC, bureau 221 Université de Paris XII Val-de-Marne 61 avenue du Général de Gaulle 94010 Créteil cedex Plan de cette année
Le jour et ses divisions
Le jour et ses divisions Le cadran de l horloge. Le cadran de l horloge est divisé en 12 heures, marquées par des nombres. Il est aussi divisé en 60 minutes, marquées par des petits traits. L heure (h)
Logiciel Libre Cours 3 Fondements: Génie Logiciel
Logiciel Libre Cours 3 Fondements: Génie Logiciel Stefano Zacchiroli [email protected] Laboratoire PPS, Université Paris Diderot 2013 2014 URL http://upsilon.cc/zack/teaching/1314/freesoftware/
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
L informatique en BCPST
L informatique en BCPST Présentation générale Sylvain Pelletier Septembre 2014 Sylvain Pelletier L informatique en BCPST Septembre 2014 1 / 20 Informatique, algorithmique, programmation Utiliser la rapidité
Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie
Optimisation multi-critère pour l allocation de ressources sur Clouds distribués avec prise en compte de l énergie 1 Présenté par: Yacine KESSACI Encadrement : N. MELAB E-G. TALBI 31/05/2011 Plan 2 Motivation
Feuille TD n 1 Exercices d algorithmique éléments de correction
Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments
Parallélisme et Répartition
Parallélisme et Répartition Master Info Françoise Baude Université de Nice Sophia-Antipolis UFR Sciences Département Informatique [email protected] web du cours : deptinfo.unice.fr/~baude Septembre 2009 Chapitre
La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient
par un nombre entier I La division euclidienne : le quotient est entier Faire l activité division. Exemple Sur une étagère de 4mm de large, combien peut on ranger de livres de mm d épaisseur? La question
Chapitre 5 : Flot maximal dans un graphe
Graphes et RO TELECOM Nancy A Chapitre 5 : Flot maximal dans un graphe J.-F. Scheid 1 Plan du chapitre I. Définitions 1 Graphe Graphe valué 3 Représentation d un graphe (matrice d incidence, matrice d
«Clustering» et «Load balancing» avec Zope et ZEO
«Clustering» et «Load balancing» avec Zope et ZEO IN53 Printemps 2003 1 Python : généralités 1989 : Guido Van Rossum, le «Python Benevolent Dictator for Life» Orienté objet, interprété, écrit en C Mêle
LES SYSTÈMES DE FICHIERS
SECTION M.R.I.M. - L.P. CHATEAU-BLANC 45120 CHALETTE SUR LOING LES SYSTÈMES DE FICHIERS Table des matières : Supports physiques (média) Les fs supportés par MS-Windows Principe de la table d'allocation
TP 1. Prise en main du langage Python
TP. Prise en main du langage Python Cette année nous travaillerons avec le langage Python version 3. ; nous utiliserons l environnement de développement IDLE. Étape 0. Dans votre espace personnel, créer
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
Architecture des ordinateurs TD1 - Portes logiques et premiers circuits
Architecture des ordinateurs TD1 - Portes logiques et premiers circuits 1 Rappel : un peu de logique Exercice 1.1 Remplir la table de vérité suivante : a b a + b ab a + b ab a b 0 0 0 1 1 0 1 1 Exercice
BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007
BAREME ur 40 point Informatique - eion 2 - Mater de pychologie 2006/2007 Bae de donnée PRET de MATERIEL AUDIO VISUEL. Remarque : Le ujet comporte 7 page. Vérifier qu il et complet avant de commencer. Une
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
Initiation. àl algorithmique et à la programmation. en C
Initiation àl algorithmique et à la programmation en C Initiation àl algorithmique et à la programmation en C Cours avec 129 exercices corrigés Illustration de couverture : alwyncooper - istock.com Dunod,
UE Programmation Impérative Licence 2ème Année 2014 2015
UE Programmation Impérative Licence 2 ème Année 2014 2015 Informations pratiques Équipe Pédagogique Florence Cloppet Neilze Dorta Nicolas Loménie [email protected] 2 Programmation Impérative
Licence Sciences et Technologies Examen janvier 2010
Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.
Resolution limit in community detection
Introduction Plan 2006 Introduction Plan Introduction Introduction Plan Introduction Point de départ : un graphe et des sous-graphes. But : quantifier le fait que les sous-graphes choisis sont des modules.
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
Cours 1 : Qu est-ce que la programmation?
1/65 Introduction à la programmation Cours 1 : Qu est-ce que la programmation? Yann Régis-Gianas [email protected] Université Paris Diderot Paris 7 2/65 1. Sortez un appareil qui peut se rendre
UE 503 L3 MIAGE. Initiation Réseau et Programmation Web La couche physique. A. Belaïd
UE 503 L3 MIAGE Initiation Réseau et Programmation Web La couche physique A. Belaïd [email protected] http://www.loria.fr/~abelaid/ Année Universitaire 2011/2012 2 Le Modèle OSI La couche physique ou le
Annexe 6. Notions d ordonnancement.
Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. [email protected] Résumé Ce document
Bases de données Cours 1 : Généralités sur les bases de données
Cours 1 : Généralités sur les bases de données POLYTECH Université d Aix-Marseille [email protected] http://odile.papini.perso.esil.univmed.fr/sources/bd.html Plan du cours 1 1 Qu est ce qu une
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,
Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très
Présentation du cursus Animateur de Cluster et de réseaux territoriaux Etat du 14 avril 2013
MASTER ANIMATEUR DE CLUSTER ET DE RESEAUX TERRITORIAUX PRESENTATION DU DIPLOME FRANCO-ALLEMAND 1. OBJECTIFS DE LA FORMATION ET COMPETENCES A ACQUERIR: Former des animateurs de cluster et de réseaux territoriaux
I- Définitions des signaux.
101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais
Guide d installation JMap 5.0
Guide d installation JMap 5.0 Installation de JMap L installation de JMap se fait typiquement sur un serveur qui sera accédé par l ensemble des utilisateurs. Lors de l installation, toutes des composantes
Programmation C++ (débutant)/instructions for, while et do...while
Programmation C++ (débutant)/instructions for, while et do...while 1 Programmation C++ (débutant)/instructions for, while et do...while Le cours du chapitre 4 : le for, while et do...while La notion de
Fiche Produit. Sauvegarde en ligne Kiwi Online
Révision d avril 2012 Fiche Produit Sauvegarde en ligne Kiwi Online La solution Kiwi Online a été spécialement conçue pour répondre aux besoins les plus exigeants en termes de fiabilité et de performance,
Bases de programmation. Cours 5. Structurer les données
Bases de programmation. Cours 5. Structurer les données Pierre Boudes 1 er décembre 2014 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. Types char et
Algorithmique avec Algobox
Algorithmique avec Algobox Fiche 2 Cette fiche est la suite directe de la première. 1. Instructions conditionnelles : 1.1. Reprise de la fiche 1 : Lecture d'un algorithme : ORDINATEUR INTERDIT : Après
Assises Européennes du Bâtiment Basse Consommations. Frédéric ric FRUSTA. Président Directeur Général. ENERGIVIE 25 Juin 2010
c1 Assises Européennes du Bâtiment Basse Consommations Frédéric ric FRUSTA Président Directeur Général ENERGIVIE 25 Juin 2010 Diapositive 1 c1 Merci de me fournir le texte complet de la page de titre cql;
Algorithmique et Programmation, IMA
Algorithmique et Programmation, IMA Cours 2 : C Premier Niveau / Algorithmique Université Lille 1 - Polytech Lille Notations, identificateurs Variables et Types de base Expressions Constantes Instructions
Circuits RL et RC. Chapitre 5. 5.1 Inductance
Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite
PROJET ALGORITHMIQUE ET PROGRAMMATION II
PROJET 1 ALGORITHMIQUE ET PROGRAMMATION II CONTENU DU RAPPORT A RENDRE : o Fiche signalétique du binôme o Listing des différents fichiers sources o CD sources o Il sera tenu compte de la présentation du
Gestion des Clés Publiques (PKI)
Chapitre 3 Gestion des Clés Publiques (PKI) L infrastructure de gestion de clés publiques (PKI : Public Key Infrastructure) représente l ensemble des moyens matériels et logiciels assurant la gestion des
