Architectures de sélection d actions. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 1 / 101

Dimension: px
Commencer à balayer dès la page:

Download "Architectures de sélection d actions. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 1 / 101"

Transcription

1 Architectures de sélection d actions V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 1 / 101

2 Plan Introduction 1 Introduction V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 2 / 101

3 Introduction Introduction Comment choisir une action qui va mener à l accomplissement des buts de l agent De manière autonome De manière réactive De manière pro-active Comment éviter les oscillations entre actions Architecture de Sélection d Actions V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 3 / 101

4 Introduction suite Introduction Plusieurs techniques possibles dépendantes : du type d architecture des agents des applications V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 4 / 101

5 Part I Architecture BDI V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 5 / 101

6 Plan Introduction 2 Introduction 3 Logique modale pour agents BDI 4 Principes des agents BDI 5 Exemple d implémentation d agents BDI 6 Conclusion V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 6 / 101

7 Principes Introduction [Rao and Georgeff, 1995] L architecture BDI est issue de l étude philosophique du raisonnement pratique. Et consiste à décider à tout moment : Quoi faire, Comment le faire. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 7 / 101

8 Introduction suite Introduction Quand vous avez une décision à prendre vous examinez les choix qui s offrent à vous (les options ou Désirs) et vous en choisissez un dans lequel vous vous engagez. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 8 / 101

9 Introduction suite Introduction Quand vous avez une décision à prendre vous examinez les choix qui s offrent à vous (les options ou Désirs) et vous en choisissez un dans lequel vous vous engagez. Les choix offerts sont fonctions de vos croyances (Beliefs). L option choisie devient une Intention. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 8 / 101

10 Introduction suite Introduction Quand vous avez une décision à prendre vous examinez les choix qui s offrent à vous (les options ou Désirs) et vous en choisissez un dans lequel vous vous engagez. Les choix offerts sont fonctions de vos croyances (Beliefs). L option choisie devient une Intention. Tom a un final le lendemain. Il a le choix de faire la fête ou de rester chez lui pour bosser son examen. S il choisit de faire la fête il va s investir consciencieusement dans ce choix. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 8 / 101

11 Introduction suite Introduction Les hypothèses L intention mène à des actions. L agent va essayer d agir pour aboutir à la satisfaction de l intention. L intention va avoir une persistance dans le temps...mais pas trop. L intention est en lien avec mes croyances (Beliefs) futures. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 9 / 101

12 Introduction Introduction suite et fin En résumé [Wooldridge, 2003] Les intentions dirigent le raisonnement moyen-fins Les intentions contraignent les délibérations futures Les intentions persistent Les intentions influencent les croyances futures V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 10 / 101

13 Plan Logique modale pour agents BDI 2 Introduction 3 Logique modale pour agents BDI 4 Principes des agents BDI 5 Exemple d implémentation d agents BDI 6 Conclusion V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 11 / 101

14 Logique modale pour agents BDI [Weiss, 1999] En logique classique la sémantique d une formule renvoit vraie ou faux. La logique modale propose d autre type de vérité comme il est possible que ou il est nécessaire que V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 12 / 101

15 CTL Logique modale pour agents BDI En fait on considère que la vérité d une formule dépend d un contexte qu on appelle monde possible Une des utilisations de ces mondes possibles est de les considérer comme un historique Logique du temps arborescent V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 13 / 101

16 Logique modale pour agents BDI Quantificateurs de CTL Aφ sur toutes les branches φ Eφ sur certaines les branches φ V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 14 / 101

17 Logique modale pour agents BDI (Bel i φ) i croit que φ est vraie (Des i φ) i désire que φ est vraie (Int i φ) i a l intention de réaliser φ V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 15 / 101

18 Logique modale pour agents BDI Logique pour agents BDI (Des i φ) = (Bel i φ) (Int i φ) = (Des i φ) et donc (Int i φ) = (Bel i φ) V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 16 / 101

19 Logique modale pour agents BDI B=Beliefs, D=Desire, I=Intention B relation d accessibilité des croyances ou opérateur modal. Pour chaque agent et chaque moment tout ce que l agent croit possible. D ou désirs associe à tout moment ce que veut l agent. Un agent a un désir φ a un moment ssi φ est vraie dans les mondes D-accessibles de l agent. I ou intentions associe à tout moment pour chaque agent les conditions vraies pour les futurs de l agent ce qui définit un ensemble de chemins sélectionnés/préférés. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 17 / 101

20 Plan Principes des agents BDI 2 Introduction 3 Logique modale pour agents BDI 4 Principes des agents BDI 5 Exemple d implémentation d agents BDI 6 Conclusion V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 18 / 101

21 Principes des agents BDI Des croyances courantes (Beliefs) une fonction de révision des croyances (brf) une fonction de génération d options (options) des options courantes qui représentent les actions possibles une fonction de filtre qui représente le processus de délibération de l agent et qui calcule les intentions de l agent un ensemble d intentions courantes une fonction de sélection d actions (execute) qui détermine l action à exécuter en fonction des intentions courantes. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 19 / 101

22 Principes des agents BDI B:=B 0 ; I:=I 0 ; tant que True faire p:=getpercept(); B:=brf(B,p); D:=options(D,I); I:=filter(B,D,I); π:=plan(b,i); execute(π); fin Algorithme 1 : Algorithme naïf d un agent BDI V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 20 / 101

23 Exemple Principes des agents BDI Beliefs Desires Intentions exécuté accompli verre verre boire - - g-add(boire) verre boire { soda, - g-add(soda) boisson } aucunsoda boire - frigo frigo, g- add(boire) verre boire { boisson } prendreboisson prendreboisson boire - - boire boire V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 21 / 101

24 Principes des agents BDI Problèmes et hypothèses liés à l algorithme Les intentions posent le problème de comment les réaliser Les intentions fournissent un filtre pour adopter d autres intentions S il y a échec lors de la réalisation d une intention l agent retente Les agents croient que leurs intentions sont possibles E φ Les agents ne croient pas qu ils ne peuvent pas réussir leurs intentions A φ Les agents croient que sous certaines conditions ils peuvent réussir leurs intentions A φ Les agents ne s attendent pas à tous les effets de leur intention V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 22 / 101

25 Principes des agents BDI B:=B 0 ; I:=I 0 ; tant que True faire p:=getpercept(); B:=brf(B,p); D:=options(D,I); I:=filter(B,D,I); π:=plan(b,i); execute(π); fin V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 23 / 101

26 Principes des agents BDI B:=B 0 ; I:=I 0 ; tant que True faire p:=getpercept(); B:=brf(B,p); D:=options(D,I); I:=filter(B,D,I); π:=plan(b,i); execute(π); fin tant que non vide(π) ou succès(i,b) ou impossible(i,b) faire α:=head(π); execute(α); π:=tail(π); p:=getpercept(); B:=brf(B,p); si reconsider(i,b) alors D:=options(π); I:=filter(B,D,I); si non sound(π,i,b) alors π:=plan(b,i); fin V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 23 / 101

27 Remarques Principes des agents BDI Architecture pour SMA cognitifs Comportements fortement prédictibles Problèmes de sémantique et d efficacité Complexité d analyse et conception V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 24 / 101

28 Plan Exemple d implémentation d agents BDI 2 Introduction 3 Logique modale pour agents BDI 4 Principes des agents BDI 5 Exemple d implémentation d agents BDI 6 Conclusion V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 25 / 101

29 IRMA Exemple d implémentation d agents BDI [Chaib-Draa, 2003] Une librairie de plans Beliefs ou croyances Desires sous forme de tâches Intentions sous-ensemble de désirs que l agent a choisi et sur lesquels il s est engagé V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 26 / 101

30 Exemple d implémentation d agents BDI IRMA suite et fin un moteur d inférence pour raisonner sur le monde un analyseur moyen-fin détermine quels plans sont les mieux adaptés pour réaliser les intentions un analyseur d opportunité monitore l environnement et peut générer de nouvelles options un processus de filtrage détermine quelles options sont compatibles avec les intentions courantes un processus de délibération pour décider quelles sont les intentions à adopter V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 27 / 101

31 Plan Conclusion 2 Introduction 3 Logique modale pour agents BDI 4 Principes des agents BDI 5 Exemple d implémentation d agents BDI 6 Conclusion V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 28 / 101

32 Conclusion Conclusion Une des architectures agent les plus utilisés jusque là Lien intuitif avec actes de langages Formalisation de nombreux aspects V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 29 / 101

33 Part II Architectures modulaires V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 30 / 101

34 Plan Subsomption 7 Subsomption 8 Architecture ANA de P. Maes V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 31 / 101

35 Subsomption [Brooks and Connell, 1986] Architecture modulaire verticale Interaction par rapport dominance/dominé V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 32 / 101

36 Subsomption Dominant Stimulus Dominé Réponse V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 33 / 101

37 Subsomption éviter les obstacles Stimulus se rapprocher du but Réponse V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 34 / 101

38 Exemple de genghis Subsomption [Brooks, 1989] V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 35 / 101

39 Subsomption Architecture de genghis Se Lever Marche Simple 2Balance Perceptions Hauteur Patte Moustaches 6Balance Explorer Suiveur Commande V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 36 / 101

40 Plan Architecture ANA de P. Maes 7 Subsomption 8 Architecture ANA de P. Maes V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 37 / 101

41 Définitions Architecture ANA de P. Maes [Maes, 1989] Définition Un module i est défini par un quadruplet (c i, a i, d i, α i ). Où c i est une liste de pré-conditions à remplir avant d activer le module a i et d i sont les effets attendus du module sous la forme de listes d ajouts et de retraits α i est le niveau d activation du module. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 38 / 101

42 Définitions Architecture ANA de P. Maes Il y a un arc successeur d un module x vers un module y pour tout p a x c y Il y a un arc prédecesseur d un module x vers un module y pour tout p c x a y il y a un arc inhibiteur d un module x à un module y pour tout p c x d y V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 39 / 101

43 Architecture ANA de P. Maes Principes : activation Activation par les perceptions : ajout d énergie aux modules qui matchent partiellement l état de l environnement Activation par les buts : ajout d énergie aux modules qui accomplissent un des buts de l agent (add-list) Inhibition par buts protégés : on enlève de l énergie à un module si un des buts déjà réalisé fait partie de sa liste des retraits (delete-list) V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 40 / 101

44 Architecture ANA de P. Maes Principes : propagation Activation des successeurs : on augmente l énergie des successeurs d un module actif Activation des prédecesseurs : on augmente l énergie des prédecesseurs d un module non actif Inhibition des modules conflictuels : chaque module diminue l énergie des modules qui sont en conflit avec lui V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 41 / 101

45 Algorithme Architecture ANA de P. Maes tant que True faire Impacter niveaux d action par env et buts ; Propagation d énergie par les arcs du graphe; Dégrader énergie; si 1 module exécutable et niveau d énergie seuil d activation alors ce module devient actif; remise à 0 du niveau d énergie de ce module; si deux modules répondent à ces conditions alors choix aléatoire; remise à 0 du niveau d énergie de ce module; si aucun module alors seuil diminué de 10% fin V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 42 / 101

46 Architecture ANA de P. Maes Paramètres globaux θ : le seuil pour qu un module devienne actif φ : l énergie qu une proposition vraie observée injecte dans le réseau γ : l énergie qu un but injecte dans le réseau δ : l énergie qu un but protégé enlève du réseau V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 43 / 101

47 Exemple Architecture ANA de P. Maes Soit un robot avec deux mains qui doit se peindre lui-même avec un spray et poncer une planche. Une fois peint le robot n est plus opérationnel. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 44 / 101

48 Architecture ANA de P. Maes Exemple suite PICK-UP-SPRAYER condition-list : sprayer-somewhere hand-is-empty add-list : sprayer-in-hand delete-list : sprayer-somewhere hand-is-empty PICK-UP-SANDER condition-list : sander-somewhere hand-is-empty add-list : sander-in-hand delete-list : sander-somewhere hand-is-empty PICK-UP-BOARD condition-list : board-somewhere hand-is-empty add-list : board-in-hand delete-list : board-somewhere hand-is-empty V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 45 / 101

49 Architecture ANA de P. Maes Exemple suite put down sprayer put down sander put down board predecesseur pick up sprayer pick up sander pick up board inhibiteur spray paint self sand board in hand place board in vise sand board in vise V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 46 / 101

50 Conclusion Architecture ANA de P. Maes Architecture de sélection d actions connectioniste et délibérative Apprentissage des paramètres possible Problème de choix entre actions avec niveau d énergie équivalent Difficulté de prise en compte de buts multiples V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 47 / 101

51 Part III Systèmes Auto-organisé V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 48 / 101

52 Plan Introduction 9 Introduction 10 SMA Holonique Framework générique Exemple : le maillage adaptatif Conclusion 11 Système immunitaire Introduction Réseau idéotypique Structures Exemple : robots footballeurs 12 Sélection par clonage Conclusion 13 Conclusion générale V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 49 / 101

53 Introduction Apparition dynamique de structures intéressantes Etat stable vus comme des solutions (ECO-résolution) Modélisation intentionnelle on va provoquer l émergence de structures organisationnelles pertinentes V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 50 / 101

54 Introduction suite Introduction Plusieurs niveaux d interprétation/modélisation nécessaire pour expliquer l émergence en terme d organisations. Les choses n existent que de la façon dont on les perçoit à une certaine échelle. B. Mandelbrot V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 51 / 101

55 Plan SMA Holonique 9 Introduction 10 SMA Holonique Framework générique Exemple : le maillage adaptatif Conclusion 11 Système immunitaire Introduction Réseau idéotypique Structures Exemple : robots footballeurs 12 Sélection par clonage Conclusion 13 Conclusion générale V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 52 / 101

56 SMA Holonique Définition structures naturelles ou artificielles qui ne sont ni touts ni parties au sens absolu. (Kostler, 1967) Chaque holon peut être composé d un ensemble de sous-holons et/ou être membre d un holon qui le contient Cette holarchie définit une structure organisationnelle apte à réagir de manière dynamique aux changements de l environnement Chaque holon utilise au mieux les ressources et répond au mieux aux buts du système V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 53 / 101

57 Exemple SMA Holonique V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 54 / 101

58 Exemple suite SMA Holonique V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 55 / 101

59 Structure d un holon SMA Holonique Framework générique Comment les sous-holons sont organisés pour former un super-holon? trois solutions [Gerber et al., 1999] V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 56 / 101

60 Structure d un holon SMA Holonique Framework générique Comment les sous-holons sont organisés pour former un super-holon? trois solutions [Gerber et al., 1999] Fusion V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 56 / 101

61 Structure d un holon SMA Holonique Framework générique Comment les sous-holons sont organisés pour former un super-holon? trois solutions [Gerber et al., 1999] Fusion Groupes modérés V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 56 / 101

62 Structure d un holon SMA Holonique Framework générique Comment les sous-holons sont organisés pour former un super-holon? trois solutions [Gerber et al., 1999] Fusion Groupes modérés Fédération V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 56 / 101

63 SMA Holonique Framework générique [Rodriguez et al., 2003] Standalone : initialisation, un holon tout seul Head : représentant d un holon à l extérieur, gère le holon Part : membre d un holon Multipart : membre de plusieurs holons V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 57 / 101

64 SMA Holonique Framework générique : structure Framework générique V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 58 / 101

65 Interactions inter-holons SMA Holonique Framework générique Fusion Standalone 1 * Head > merge <accept refuse V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 59 / 101

66 Interactions intra-holon SMA Holonique Framework générique Holon Management Multipart * 1 Head 1 Part * V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 60 / 101

67 Satisfactions SMA Holonique Framework générique Self Satisfaction (SS i ) produite pour un holon i par ses actions. Collaborative Satisfaction (CSi H ) produite pour un holon i par ses collaboration avec les autres membres du super-holon H. Accumulative Satisfaction (AS i ) produite pour un holon i par ses collaborations avec les membres des super-holons. AS i = CS p i p superholon(i) p (1) V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 61 / 101

68 Satisfactions (suite) SMA Holonique Framework générique Instant Satisfaction (IS i ) Current satisfaction of holon i CS i + SS i R i = Part Head i HMAS IS i = AS i + SS i R i = MultiPart SS i R i = Stand Alone (2) R i : role joué par le holon i. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 62 / 101

69 Dynamique des rôles SMA Holonique Framework générique Stand Alone [ SS < NS ] Head [ SS < NS ] [ LS > SS or REJECTED ] [ ( SS < NS ) and ( SS > Head.SS ) ] Fusioning [LS < SS] Part V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 63 / 101

70 SMA Holonique Framework générique : affinité Framework générique Critère de décision pour le choix du holon avec qui fusioner Heuristique pour l émergence de structures organisationnelles Attirance/complémentarité de services/ressources V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 64 / 101

71 Le maillage adaptatif SMA Holonique Exemple : le maillage adaptatif V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 65 / 101

72 SMA Holonique Exemple : adaptation du framework Exemple : le maillage adaptatif Satisfaction NS = couverture maximale des stations émettrices SS = ressource d un holon Head.SS = ressource d une maille V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 66 / 101

73 SMA Holonique Exemple : adaptation du framework Exemple : le maillage adaptatif Affinité Affinité liée à la distance (contrainte géométrique) On conserve des mailles convexes Affinité liée à la ressource (couverture) On tente d obtenir des mailles de ressource homogène V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 67 / 101

74 SMA Holonique Exemple : le maillage adaptatif Head Parts Holon trying to fusion Acceptance distance Average Distance V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 68 / 101

75 Conclusion SMA Holonique Conclusion Framework générique pour SMA auto-organisés Difficulté de conception de la distance et du paramétrage des satisfactions V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 69 / 101

76 Plan Système immunitaire 9 Introduction 10 SMA Holonique Framework générique Exemple : le maillage adaptatif Conclusion 11 Système immunitaire Introduction Réseau idéotypique Structures Exemple : robots footballeurs 12 Sélection par clonage Conclusion 13 Conclusion générale V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 70 / 101

77 Vue calculatoire du SI Système immunitaire Introduction [Farmer et al., 1986] parallèle, distribué, système complexe (non prévisible). V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 71 / 101

78 Principes généraux Système immunitaire Introduction Collectif : La réponse du SI est collective c est l anticorps dont le paratope correspond le mieux à l épitope de l antigène. Auto-régulé : au travers de stimulation-inhibition la population d anticorps évolue selon les agressions. Auto-organisation : la structure du SI varie selon les évolutions de l environnement. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 72 / 101

79 Mécanismes de base Système immunitaire Introduction Le SI fonctionne selon trois grands principes Reconnaissance (intrus/non intrus) Apprentissage Mémoire associative V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 73 / 101

80 Comment ça marche? Système immunitaire Introduction Système Immunitaire au repos Antibody 1 Antibody 2 Antibody 3 V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 74 / 101

81 Comment ça marche? Système immunitaire Introduction Antigen Un Antigène arrive Antibody 1 Antibody 2 Antibody 3 V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 74 / 101

82 Comment ça marche? Système immunitaire Introduction Antigen l Antigène est reconnu (self/non self) Antibody 1 Antibody 2 Antibody 3 V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 74 / 101

83 Comment ça marche? Système immunitaire Introduction Antigen Antibody 3 Mémoire Associative Antibody 1 Antibody 2 Antibody 3 Antibody 3 Antibody 3 V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 74 / 101

84 Comment ça marche? Système immunitaire Introduction Immune System au repos et amélioré (apprentissage) Antibody 1 Antibody 2 Antibody 3 V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 74 / 101

85 Réseau idéotypique Système immunitaire Réseau idéotypique [Jerne, 1974] Les anticorps communiquent par des liens de stimulation-inhibition et identifie les intrusions (antigènes) L idéotope d un anticorps est reconnu par les autres anticorps comme un antigène. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 75 / 101

86 Système immunitaire Réseau idéotypique de Jerne Structures [Watanabe et al., 1999] Antigen epitope B Cell 3 B Cell 2 idiotope 3 paratope 3 B Cell 1 idiotope 2 paratope 2 idiotope 1 Stimulation paratope 1 Suppression V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 76 / 101

87 Système immunitaire Mécanisme d adaptation Structures Mécanisme d auto-régulation. Maintenance d un ensemble approprié de cellules. Optimisation de la réaction à l environnement. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 77 / 101

88 Comportement du SI Système immunitaire Structures [Watanabe et al., 1999] Bone marrow Immune Network remove natural death incorporation new antibody proliferation V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 78 / 101

89 Système immunitaire Structures Résolution par Auto-organisation Emerged service idiotypic network=h agent B agent V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 79 / 101

90 Structure des agents Système immunitaire Structures [Watanabe et al., 1999] précondition attributs, code, données, comportement Paratope Spécification de l agent références au à d autres B-Agent à stimuler ou inhiber avec le degré correspondant (affinité) Idéotope V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 80 / 101

91 Structure du SMA Système immunitaire Structures [Suzuki and Yamamoto, 2000] Antibody 1 paratope behaviour m1i mi1 Antibody 1 paratope behaviour Antibody j paratope behaviour mji Antibody i paratope behaviour mik Antibody k paratope behaviour Antibody N Antibody M paratope behaviour mni Antigen 1 mim paratope behaviour V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 81 / 101

92 Méchanisme d affinités Système immunitaire Structures Ab i est choisit, {Ab j1,..., Ab jn } sont sélectionnés Ab i reçoit des récompenses : les affinités de {Ab j1,..., Ab jn } avec Ab i augmentent Ab i reçoit des pénalités : les affinités de Ab i avec {Ab j1,..., Ab jn } augmentent V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 82 / 101

93 Calcul de l affinité Système immunitaire Structures m 12 = T p Ab1 + T Ab2 r T Ab2 Ab1 (3) is the number of times penalty reinforcement signals were received when Ab1 was selected. T Ab1 p is the number of times reward reinforcement signals were received when Ab2 was selected. T Ab2 r TAb1 Ab2 is the number of times both, Ab1 and Ab2, have reacted to specific antigens. V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 83 / 101

94 Système immunitaire Calcul de la concentration Structures da i (t) dt = (α 1 N N m ji a j (t) α 1 M j=1 M m ik a k (t) + βm i k i )a i (t) k=1 stimulation par anticorps ayant une affinité positive inhibition par anticorps ayant une affinité négative m i =0 1 (stimulé ou non) facteur de dissipation V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 84 / 101

95 Système immunitaire Structures Calcul de la concentration (suite) La valeur calculée est rapporté à un intervalle [0,1] a i (t) = exp(0.5 A i (t)) V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 85 / 101

96 Scénario Système immunitaire Structures ImmuneSystem Antibody environmentanalysis() *antigens() stimulationtest() *[stimulated]broadcast() sendconcentration() computeconcentration() choosewinningantibody() execute() behavior() analyseaction() *reinforcement() updateaffinities() Figure: Séquence typique d interactions V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 86 / 101

97 Principes généraux Système immunitaire Exemple : robots footballeurs Equipe Affectation role Role Affectation objectif Mouvement V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 87 / 101

98 SI de bas niveau Système immunitaire Exemple : robots footballeurs Quelques anticorps : Paratope Spécification de l agent AimFront MoveFront ObstacleLeft MoveFront ObstacleRight TurnLeft Idéotope V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 88 / 101

99 SI de niveau moyen Système immunitaire Exemple : robots footballeurs defense far defense far defense far Figure: Examples of medium level antibodies Precondition Behavior Affinities defense-far NorthEast Table: Medium level immune system antibody example V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 89 / 101

100 SI de haut niveau Système immunitaire Exemple : robots footballeurs Precondition Behavior Affinities TeamInControl and (BallZone goalkeeper, near-defender, =1 or BallZone=2 or Ball- midfielder, left-attacker, rightattacker Zone=3) Table: High level immune system antibody example V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 90 / 101

Architectures de sélection d actions

Architectures de sélection d actions Architectures de sélection d actions V. Hilaire () Intelligence Artificielle Distribuée & Systèmes Multi-Agents IA54 1 / 101 Introduction Plan Introduction V. Hilaire () Intelligence Artificielle Distribuée

Plus en détail

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services

Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services 69 Vers une approche Adaptative pour la Découverte et la Composition Dynamique des Services M. Bakhouya, J. Gaber et A. Koukam Laboratoire Systèmes et Transports SeT Université de Technologie de Belfort-Montbéliard

Plus en détail

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com

Intelligence Artificielle et Systèmes Multi-Agents. Badr Benmammar bbm@badr-benmammar.com Intelligence Artificielle et Systèmes Multi-Agents Badr Benmammar bbm@badr-benmammar.com Plan La première partie : L intelligence artificielle (IA) Définition de l intelligence artificielle (IA) Domaines

Plus en détail

Système immunitaire artificiel

Système immunitaire artificiel République Algérienne Démocratique et Populaire Ministère de l Enseignement Supérieure Université des Sciences et de la Technologie D Oran Mohammed Boudiaf (USTO) Faculté des Sciences Département d Informatique

Plus en détail

Modélisation et Implémentation des Systèmes Complexes

Modélisation et Implémentation des Systèmes Complexes Modélisation et Implémentation des Systèmes Complexes Alain Cardon, Cyrille Bertelle et Damien Olivier Alain.Cardon,Cyrille.Bertelle,Damien.Olivier @univ-lehavre.fr Laboratoire d informatique du Havre

Plus en détail

Programmation de services en téléphonie sur IP

Programmation de services en téléphonie sur IP Programmation de services en téléphonie sur IP Présentation de projet mémoire Grégory Estienne Sous la supervision du Dr. Luigi Logrippo Introduction La téléphonie sur IP comme support à la programmation

Plus en détail

Programmation orientée agent #6. Agents cognitifs. Tiberiu Stratulat

Programmation orientée agent #6. Agents cognitifs. Tiberiu Stratulat Programmation orientée agent #6 Agents cognitifs Tiberiu Stratulat M1 S2 - Université de Montpellier II Resp du module: J. Ferbet et T. Stratulat FMIN207 - Parcours I2A - GL Interaction: concepts de base

Plus en détail

Méthodes de test. Mihaela Sighireanu

Méthodes de test. Mihaela Sighireanu UFR d Informatique Paris 7, LIAFA, 175 rue Chevaleret, Bureau 6A7 http://www.liafa.jussieu.fr/ sighirea/cours/methtest/ Partie I 1 Propriétés 2 Un peu de génie logiciel de test 3 Eléments Problèmes Point

Plus en détail

Laboratoire 4 Développement d un système intelligent

Laboratoire 4 Développement d un système intelligent DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2012 Laboratoire 4 Développement d un système intelligent 1 Introduction Ce quatrième et dernier laboratoire porte sur le développement

Plus en détail

L apprentissage automatique

L apprentissage automatique L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer

Plus en détail

Chapitre 9 HLA distributed simulation approaches for supply chain

Chapitre 9 HLA distributed simulation approaches for supply chain Présentation livre Simulation for Supply Chain Management Chapitre 9 HLA distributed simulation approaches for supply chain B. Archimède, P. Charbonnaud, F. Ounnar, P. Pujo Contexte et motivation Problématique

Plus en détail

Sélectionner la bonne base de données de gestion de configurations pour mettre en place une plate-forme efficace de gestion de services.

Sélectionner la bonne base de données de gestion de configurations pour mettre en place une plate-forme efficace de gestion de services. Solutions de Service Management Guide d achat Sélectionner la bonne base de données de gestion de configurations pour mettre en place une plate-forme efficace de gestion de services. Aujourd hui, toutes

Plus en détail

Analyse abstraite de missions sous PILOT

Analyse abstraite de missions sous PILOT Analyse abstraite de missions sous PILOT Damien Massé EA 3883, Université de Bretagne Occidentale, Brest damien.masse@univ-brest.fr Résumé Nous étudions la possibilité de réaliser un analyseur par interprétation

Plus en détail

Les fonctions exécutives: le vocabulaire et son utilisation

Les fonctions exécutives: le vocabulaire et son utilisation Les fonctions exécutives: le vocabulaire et son utilisation Formation offerte par Dominic Gauthier Conseiller pédagogique Gauthier.dominic@cscapitale.qc.ca 17 octobre 2014 Ordre du jour Fonctions cognitives

Plus en détail

Système adaptatif d aide à la génération de requêtes de médiation

Système adaptatif d aide à la génération de requêtes de médiation Système adaptatif d aide à la génération de requêtes de médiation Dimitre Kostadinov Verónika Peralta Assia Soukane Xiaohui Xue Laboratoire PRiSM, Université de Versailles 45 avenue des Etats-Unis 78035

Plus en détail

Utilisation de SVN. 1 Introduction. 2 Architecture. 3 Références et aide en ligne

Utilisation de SVN. 1 Introduction. 2 Architecture. 3 Références et aide en ligne N7 1IMA TECHNOLOGIE OBJET TP 3 18/02/2015 (Séance TP 2) Objectifs : Comprendre le principe d un outil de gestion de configuration Savoir utiliser SVN (subversion) 1 Introduction Pour travailler en groupe

Plus en détail

Systèmes de dialogue homme-machine

Systèmes de dialogue homme-machine Systèmes de dialogue homme-machine Une introduction rapide Sophie Rosset Groupe Traitement du Langage Parlé Département Communication Homme-Machine LIMSI - CNRS Sophie Rosset (LIMSI) Systèmes de dialogue

Plus en détail

L Intelligence Artificielle

L Intelligence Artificielle Conférence L Intelligence Artificielle Taalabi M. 30/04/2004 Intelligence Artificielle 1 Historique Définition Paradigmes Systèmes experts Concevoir un système expert Système à Inférence floue Applications

Plus en détail

Qu entend-on par leadership?

Qu entend-on par leadership? Qu entend-on par leadership? Position d un leader Capacité à diriger L action de diriger Le leadership est une capacité reconnue à un membre d un groupe par les autres membres du groupe de pouvoir influencer

Plus en détail

Comment choisir sa pizza? Test A/B. Comment choisir sa pizza? Comment choisir sa pizza? Difficulté de l évaluation. De manière plus sérieuse...

Comment choisir sa pizza? Test A/B. Comment choisir sa pizza? Comment choisir sa pizza? Difficulté de l évaluation. De manière plus sérieuse... Comment choisir sa pizza? Test A/B Introduction à l apprentissage par renforcement Guillaume Wisniewski guillaume.wisniewski@limsi.fr Université Paris Sud LIMSI J aime beaucoup les «4 Est-ce que je dois

Plus en détail

Les sections 6 et 7. du ComitéNational de la RechercheScientifique

Les sections 6 et 7. du ComitéNational de la RechercheScientifique Les sections 6 et 7 du ComitéNational de la RechercheScientifique (CoNRS) Frédérique Bassino et Michèle Basseville Plan Le comité national Les missions des sections Les sections 6 et 7 Le comiténational

Plus en détail

Cours Systèmes Multi-Agents

Cours Systèmes Multi-Agents Un système multi-agents «Un Système Multi-Agents(SMA) comporte plusieurs agents qui interagissent entre eux dans un environnement commun. Certains de ces agents peuvent être des personnes ou leurs représentants

Plus en détail

Équipes LILaC & ADRIA. Représentation des connaissances et formalisation du raisonnement

Équipes LILaC & ADRIA. Représentation des connaissances et formalisation du raisonnement IRIT Thèmes 3 & 4 Thèmes 4 Équipes LILaC & ADRIA Équipe LILaC Modélisation d agents cognitifs Informatique Intelligence Artificielle Représentation des connaissances et formalisation du raisonnement Logique

Plus en détail

Formations en inter-entreprises

Formations en inter-entreprises Les INTERS de Mercuri International Formations en inter-entreprises Mercuri International en Bref Leader mondial dans le conseil et la formation en efficacité commerciale et développement personnel, notre

Plus en détail

Le Répertoire National des Certifications Professionnelles (RNCP) Résumé descriptif de la certification

Le Répertoire National des Certifications Professionnelles (RNCP) Résumé descriptif de la certification 1 sur 8 26/09/2013 16:49 Le Répertoire National des Certifications Professionnelles (RNCP) Résumé descriptif de la certification Intitulé Licence : Licence Sciences, technologies, santé mention Informatique

Plus en détail

Francis JAMBON Laboratoire d Informatique de Grenoble

Francis JAMBON Laboratoire d Informatique de Grenoble Francis JAMBON Laboratoire d Informatique de Grenoble Mise en œuvre de l oculométrie dans différents contextes d usage Analyse ergonomique Tuteurs intelligents IHM adaptatives Interaction via le regard

Plus en détail

Projet : Plan Assurance Qualité

Projet : Plan Assurance Qualité Projet : Document : Plan Assurance Qualité 2UP_SPEC_DEV1 VERSION 1.00 Objet Ce document a pour objectif de définir la démarche d analyse et de conception objet ainsi les activités liées. Auteur Eric PAPET

Plus en détail

Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG)

Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) Surveillance et maintenance prédictive : évaluation de la latence de fautes Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) SURVEILLANCE Analyser une situation et fournir des indicateurs! Détection de symptômes!

Plus en détail

JOURNÉE THÉMATIQUE SUR LES RISQUES

JOURNÉE THÉMATIQUE SUR LES RISQUES Survol de Risk IT UN NOUVEAU RÉFÉRENTIEL DE GESTION DES RISQUES TI GP - Québec 2010 JOURNÉE THÉMATIQUE SUR LES RISQUES 3 mars 2010 - Version 4.0 Mario Lapointe ing. MBA CISA CGEIT mario.lapointe@metastrategie.com

Plus en détail

Convention sur la lutte contre la désertification

Convention sur la lutte contre la désertification NATIONS UNIES Convention sur la lutte contre la désertification Distr. GÉNÉRALE 29 juillet 2008 FRANÇAIS Original: ANGLAIS COMITÉ CHARGÉ DE L EXAMEN DE LA MISE EN ŒUVRE DE LA CONVENTION Septième session

Plus en détail

Raisonnement symbolique et géométrique pour la robotique mobile

Raisonnement symbolique et géométrique pour la robotique mobile Introduction à la réunion finale Raisonnement symbolique et géométrique pour la robotique mobile J. Guitton, J.L. Farges Control Architectures of Robots - Bourges - 30 mai 2008 1 Plan Introduction Vers

Plus en détail

Management par les processus Les facteurs clés de succès. Lionel Di Maggio Master 1 MIAGE

Management par les processus Les facteurs clés de succès. Lionel Di Maggio Master 1 MIAGE Management par les processus Les facteurs clés de succès Lionel Di Maggio Master 1 MIAGE 1 1. Objectifs et définitions 2. Le retour sur investissement des démarches 3. Les éléments structurants 4. Mise

Plus en détail

Planification et ordonnancement sous incertitudes Application à la gestion de projet

Planification et ordonnancement sous incertitudes Application à la gestion de projet Toulouse, 14 mai 2003 Planification et ordonnancement sous incertitudes Application à la gestion de projet Julien Bidot Plan Séminaire au LAAS Planification de tâches et ordonnancement Domaine d application

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Développement d'une architecture pour l'implantation de stratégies de supervision pour les systèmes hybrides. Edgar Chacon LaSDAI

Développement d'une architecture pour l'implantation de stratégies de supervision pour les systèmes hybrides. Edgar Chacon LaSDAI Développement d'une architecture pour l'implantation de stratégies de supervision pour les systèmes hybrides Edgar Chacon LaSDAI Organisation de la présentation Description du group Projet: Développement

Plus en détail

Résolution générique à la volée de systèmes d équations booléennes et applications

Résolution générique à la volée de systèmes d équations booléennes et applications Résolution générique à la volée de systèmes d équations booléennes et applications Radu Mateescu INRIA Rhône-Alpes / VASY Plan Introduction Systèmes d équations booléennes d alternance 1 Algorithmes de

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

Introduction. Introduction rédigée par Amal EL FALLAH SEGHROUCHNI et Jean-Pierre BRIOT.

Introduction. Introduction rédigée par Amal EL FALLAH SEGHROUCHNI et Jean-Pierre BRIOT. Introduction Les systèmes multi-agents (SMA) constituent aujourd hui une technologie de choix pour la conception et la mise en œuvre d applications réparties et coopératives. La dualité entre agent comme

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Exploiter les EDI avec Optymo

Exploiter les EDI avec Optymo Exploiter les EDI avec Optymo Notes de lecture : dans ce document, les textes soulignés font référence aux libellés des fenêtres ou aux libellés associés à des boutons d Optymo, et les textes en caractères

Plus en détail

Contributions à l'apprentissage automatique de réseau de contraintes et à la constitution automatique de comportements sensorimoteurs en robotique.

Contributions à l'apprentissage automatique de réseau de contraintes et à la constitution automatique de comportements sensorimoteurs en robotique. Contributions à l'apprentissage automatique de réseau de contraintes et à la constitution automatique de comportements sensorimoteurs en robotique. Mathias PAULIN LIRMM (CNRS, Univ. Montpellier II) 161

Plus en détail

Livre Blanc. Optimiser la gestion et le pilotage des opérations. Août 2010

Livre Blanc. Optimiser la gestion et le pilotage des opérations. Août 2010 Livre Blanc Optimiser la gestion et le pilotage des opérations Août 2010 Un livre blanc édité par : NQI - Network Quality Intelligence Tél. : +33 4 92 96 24 90 E-mail : info@nqicorp.com Web : http://www.nqicorp.com

Plus en détail

ECOLE SUPERIEURE DE L EDUCATION NATIONALE

ECOLE SUPERIEURE DE L EDUCATION NATIONALE ECOLE SUPERIEURE DE L EDUCATION NATIONALE Formation des Chefs d Etablissement d Affectation Management adaptatif et délégations Support participants SOMMAIRE La formation dans son contexte p.3 Les facteurs

Plus en détail

Approche en Ligne pour une Gestion Autonome et Décentralisée des Réseaux MPLS-DiffServ

Approche en Ligne pour une Gestion Autonome et Décentralisée des Réseaux MPLS-DiffServ Approche en Ligne pour une Gestion Autonome et Décentralisée des Réseaux MPLS-DiffServ Rana Rahim-Amoud, Leïla Merghem-Boulahia, Dominique Gaïti rana.amoud@utt.fr Institut Charles Delaunay (ICD FRE CNRS

Plus en détail

Automatisation de la certification formelle de systèmes critiques par instrumentation d interpréteurs abstraits

Automatisation de la certification formelle de systèmes critiques par instrumentation d interpréteurs abstraits 1 d Automatisation de la certification formelle de systèmes critiques par instrumentation d sous la direction de Michaël Périn Soutenance de Thèse de Doctorat Université de Grenoble - Laboratoire Verimag

Plus en détail

Solvabilité II Solution elearning

Solvabilité II Solution elearning Solvabilité II Solution Solvabilité II Solution Jusqu à présent les programmes Solvabilité II se sont surtout concentrés sur les éléments quantitatifs. La mise en place réussie de Solvabilité II exige

Plus en détail

Intelligence Inventive

Intelligence Inventive Outils Communs de Diffusion de l'intelligence Economique Intelligence Inventive Evaluez la capacité d innovation de votre entreprise L intelligence inventive L intelligence inventive est la contribution

Plus en détail

Programmation d'agents intelligents Vers une refonte des fils de raisonnement. Stage de fin d'études Master IAD 2006

Programmation d'agents intelligents Vers une refonte des fils de raisonnement. Stage de fin d'études Master IAD 2006 vendredi 8 septembre 2006 Programmation d'agents intelligents Vers une refonte des fils de raisonnement Stage de fin d'études Master IAD 2006 Benjamin DEVEZE Responsable : M. Patrick TAILLIBERT Plan Plan

Plus en détail

C2O, une plate-forme de gestion et d automatisation de process

C2O, une plate-forme de gestion et d automatisation de process C2O, une plate-forme de gestion et d automatisation de process AVANTAGE PRODUCTION Siège social : 15 rue ampère - 60800 Crépy en Valois Tel: + 33 (0)1 76 77 26 00 - info@avantageproduction.com SARL au

Plus en détail

Textes de référence : articles 313-53-2 à 313-62, 314-3-2 du règlement général de l AMF

Textes de référence : articles 313-53-2 à 313-62, 314-3-2 du règlement général de l AMF Instruction AMF n 2012-01 Organisation de l activité de gestion d OPCVM ou d OPCI et du service d investissement de gestion de portefeuille pour le compte de tiers en matière de gestion des risques Textes

Plus en détail

Partie I Stratégies relationnelles et principes d organisation... 23

Partie I Stratégies relationnelles et principes d organisation... 23 Introduction......................................................................... 1 1. Définition........................................................................ 2 1.1 Le CRM comme processus

Plus en détail

Intelligence artificielle

Intelligence artificielle Intelligence artificielle Fabien Teytaud Université du Littoral Côte d Opale 21 mars 2013 Fabien Teytaud (Université du Littoral Côte d Opale) Intelligence artificielle 21 mars 2013 1 / 14 Résumé (1/3)

Plus en détail

Intelligence Artificielle Introduction

Intelligence Artificielle Introduction Intelligence Artificielle Introduction Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes

Plus en détail

Un centre de simulation : pourquoi et comment? Conférence Management, CHU Toulouse Anne-Claude Allin 9 avril 2014

Un centre de simulation : pourquoi et comment? Conférence Management, CHU Toulouse Anne-Claude Allin 9 avril 2014 Un centre de simulation : pourquoi et comment? Conférence Management, CHU Toulouse Anne-Claude Allin 9 avril 2014 Plan de présentation 2 Vous avez dit simulation? La simulation est une technique d enseignement

Plus en détail

MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln.

MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln. MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln.fr Plan Introduction Généralités sur les systèmes de détection d intrusion

Plus en détail

Thierry BELLET INRETS-LESCOT

Thierry BELLET INRETS-LESCOT Modélisation et simulation cognitive du conducteur automobile : De l analyse des représentations mentales à la simulation dynamique de la prise de décision Thierry BELLET INRETS-LESCOT Le programme COSMODRIVE

Plus en détail

Intelligence Artificielle. Dorra BEN AYED

Intelligence Artificielle. Dorra BEN AYED Intelligence Artificielle Dorra BEN AYED Chapitre 1 Introduction et Présentation Générale Sommaire Introduction Historique Définitions de l IAl Domaines d applicationd Les approches de l IA cognitive,

Plus en détail

CHARTE DU COMITÉ DE GESTION DES RISQUES

CHARTE DU COMITÉ DE GESTION DES RISQUES CHARTE DU COMITÉ DE GESTION DES RISQUES MANDAT Le Comité de gestion des risques (le «Comité») du Conseil d administration (le «Conseil») a pour mandat d assister le Conseil de la Société canadienne d hypothèques

Plus en détail

P oc o e c s e s s u s s u s e t e o u o t u il i s l s d d a c a c c u c e u i e l i l e t e d d i n i t n ég é r g at a io i n Boîte à outils (7)

P oc o e c s e s s u s s u s e t e o u o t u il i s l s d d a c a c c u c e u i e l i l e t e d d i n i t n ég é r g at a io i n Boîte à outils (7) Processus et outils d accueil et d intégration Boîte à outils (7) Accueillir et intégrer Il existe un consensus sur l importance du sujet : Le recrutement ne s arrête pas à l issue de l entretien et de

Plus en détail

Il y a de l'ia dans les programmes de l'agence Nationale de la Recherche Bertrand Braunschweig Responsable de programmes Paris, 3 Novembre 2006

Il y a de l'ia dans les programmes de l'agence Nationale de la Recherche Bertrand Braunschweig Responsable de programmes Paris, 3 Novembre 2006 Il y a de l'ia dans les programmes de l'agence Nationale de la Recherche Bertrand Braunschweig Responsable de programmes Paris, 3 Novembre 2006 www.agence-nationale-recherche.fr Bref historique Un objectif

Plus en détail

Détection d Intrusions par Diversification de COTS et Diagnostic d Anomalies

Détection d Intrusions par Diversification de COTS et Diagnostic d Anomalies Détection d Intrusions par Diversification de COTS et Diagnostic d Anomalies Frédéric Majorczyk Ayda Saidane Éric Totel Ludovic Mé prénom.nom@supelec.fr Supélec, Rennes, France DADDi 18/11/2005 Frédéric

Plus en détail

PROFIL DE RISQUE INTÉGRÉ DE RENTES DU MOUVEMENT DESJARDINS (RRMD)

PROFIL DE RISQUE INTÉGRÉ DE RENTES DU MOUVEMENT DESJARDINS (RRMD) PROFIL DE RISQUE INTÉGRÉ DU RÉGIME R DE RENTES DU MOUVEMENT DESJARDINS (RRMD) 1 ICA 15 avril 2008 Le RRMD en chiffres Plus de 500 employeurs 35 900 participants actifs 6 600 retraités 12 000 en 2014 5,5

Plus en détail

Sage CRM. Customer Relationship Management (CRM) pour petites et moyennes entreprises

Sage CRM. Customer Relationship Management (CRM) pour petites et moyennes entreprises Sage CRM Customer Relationship Management (CRM) pour petites et moyennes entreprises La clé de votre succès. Sage CRM, en tant que solution CRM primée, livre aux petites et moyennes entreprises dans le

Plus en détail

Intelligence Artificielle Planification

Intelligence Artificielle Planification Intelligence Artificielle Planification Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes

Plus en détail

Modélisation multi-agents - Agents réactifs

Modélisation multi-agents - Agents réactifs Modélisation multi-agents - Agents réactifs Syma cursus CSI / SCIA Julien Saunier - julien.saunier@ifsttar.fr Sources www-lih.univlehavre.fr/~olivier/enseignement/masterrecherche/cours/ support/algofourmis.pdf

Plus en détail

Textes de référence : articles 313-53-2 à 313-60, articles 318-38 à 318-43 et 314-3-2 du règlement général de l AMF

Textes de référence : articles 313-53-2 à 313-60, articles 318-38 à 318-43 et 314-3-2 du règlement général de l AMF Instruction AMF n 2012-01 Organisation de l activité de gestion de placements collectifs et du service d investissement de gestion de portefeuille pour le compte de tiers en matière de gestion des Textes

Plus en détail

Questions clés pour la consultation élargie

Questions clés pour la consultation élargie Processus de planification stratégique de Terre des Hommes Fédération Internationale Questions clés pour la consultation élargie Beaucoup de progrès ont été accomplis lors de l Assemblée Générale (AG)

Plus en détail

La nouvelle dimension de l analyse acoustique et vibratoire

La nouvelle dimension de l analyse acoustique et vibratoire La nouvelle dimension de l analyse acoustique et vibratoire HEAD Gallery Des fonctions innovantes intégrées dans une technologie de pointe ArtemiS suite est la solution logicielle intégrée de HEAD acoustics

Plus en détail

Mesurer la valeur ajoutée par la gestion des ressources humaines

Mesurer la valeur ajoutée par la gestion des ressources humaines Mesurer la valeur ajoutée par la gestion des ressources humaines Par Daniel Held, Dr. ès Sc. Econ. Paru dans Personnel, Janvier 2001, no 416, pp. 34-37 La création de valeur a toujours été le moteur du

Plus en détail

NORME INTERNATIONALE D AUDIT ISA 610. Utilisation des travaux des auditeurs internes

NORME INTERNATIONALE D AUDIT ISA 610. Utilisation des travaux des auditeurs internes NORME INTERNATIONALE D AUDIT ISA 610 Utilisation des travaux des auditeurs internes This International Standard on Auditing (ISA) 610, Using the Work of Internal Auditors, published by the International

Plus en détail

ALICE Prise en main du logiciel

ALICE Prise en main du logiciel Alice : Manuel de prise en main 1/9 Introduction Alice est un programme qui permet de construire des mondes virtuels composés d objets en 3 dimensions. Ces objets respectent la logique de la programmation

Plus en détail

Contributions à l étude des mesures sémantiques

Contributions à l étude des mesures sémantiques Contributions à l étude des mesures sémantiques École des mines d Alès Sébastien Harispe Plan Contributions à l étude des mesures sémantiques Estimation d IC par les fonctions de croyance Plan Contributions

Plus en détail

Semarchy Convergence for MDM La Plate-Forme MDM Évolutionnaire

Semarchy Convergence for MDM La Plate-Forme MDM Évolutionnaire FICHE PRODUIT Semarchy Convergence for MDM La Plate-Forme MDM Évolutionnaire BENEFICES POUR LES DSI Réussir les projets de gouvernance dans les délais et les budgets Démarrer de manière tactique tout en

Plus en détail

Synergies entre Artisan Studio et outils PLM

Synergies entre Artisan Studio et outils PLM SysML France 13 Novembre 2012 William Boyer-Vidal Regional Sales Manager Southern Europe Synergies entre Artisan Studio et outils PLM 2012 2012 Atego. Atego. 1 Challenges & Tendances Complexité des produits

Plus en détail

Choisir des mesures et des indicateurs pour évaluer des programmes. Le 22 janvier 2013

Choisir des mesures et des indicateurs pour évaluer des programmes. Le 22 janvier 2013 Choisir des mesures et des indicateurs pour évaluer des programmes Le 22 janvier 2013 Les présentatrices d aujourd hui Ilana Smyth Associée au programme, Évaluation and recherche Centre d excellence de

Plus en détail

IEMA-4. Appel à participation

IEMA-4. Appel à participation Appel à participation Les tendances, méthodes et outils de mise en place des cellules de veille et d intelligence économique Sensible aux nouveaux enjeux en matière de veille, d intelligence économique

Plus en détail

La nouvelle dimension de l analyse acoustique et vibratoire

La nouvelle dimension de l analyse acoustique et vibratoire La nouvelle dimension de l analyse acoustique et vibratoire HEAD Gallery Des fonctions innovantes intégrées dans une technologie de pointe ArtemiS suite est la solution logicielle intégrée de HEAD acoustics

Plus en détail

CQP Inter-branches Technicien de la Qualité

CQP Inter-branches Technicien de la Qualité CQP Inter-branches Technicien de la Qualité Référentiels d activités et de compétences Référentiel de certification OBSERVATOIRE DES INDUSTRIES CHIMIQUES Désignation du métier ou des composantes du métier

Plus en détail

La gestion des flux d information : EDI

La gestion des flux d information : EDI La gestion des flux d information : EDI Introduction EDI (définition, composants, types et domaines d application) Les enjeux de l EDI La mise en œuvre de l EDI Conclusion Introduction Tâches Création

Plus en détail

QMF-6. Questionnaire de Motivation à la réussite en Formation RÉSULTATS. Yann FORNER XV41ZUJK 15/04/2010 TATA. Féminin. Lycéens.

QMF-6. Questionnaire de Motivation à la réussite en Formation RÉSULTATS. Yann FORNER XV41ZUJK 15/04/2010 TATA. Féminin. Lycéens. Questionnaire de Motivation à la réussite en Formation Yann FORNER RÉSULTATS Nom: Sexe: 15/04/2010 Féminin Âge: 17 Étalonnage: Lycéens Introduction Le Questionnaire de Motivation en situation de Formation

Plus en détail

ET 24 : Modèle de comportement d un système Boucles de programmation avec Labview.

ET 24 : Modèle de comportement d un système Boucles de programmation avec Labview. ET 24 : Modèle de comportement d un système Boucles de programmation avec Labview. Sciences et Technologies de l Industrie et du Développement Durable Formation des enseignants parcours : ET24 Modèle de

Plus en détail

L ORSA comme outil de pilotage

L ORSA comme outil de pilotage L ORSA comme outil de pilotage Université d été de l IA 20 juillet 2011 Sommaire Rappel des grands principes de l ORSA L ORSA comme outil de pilotage mise en œuvre 2 La directive Solvabilité II La directive

Plus en détail

Artificial Intelligence AI

Artificial Intelligence AI Pedagogical Introduction Artificial Intelligence AI Lecture 0 Karim Bouzoubaa This Lecture General Information Examples Importance At the end Intelligent Systems Course Content, Other AI courses, Learning

Plus en détail

Application du système immunitaire artificiel ordinaire et améliore pour la reconnaissance des caractères artificiels

Application du système immunitaire artificiel ordinaire et améliore pour la reconnaissance des caractères artificiels Application du système immunitaire artificiel ordinaire et améliore pour la reconnaissance des caractères artificiels Hiba KHELIL, Abdelkader BENYETTOU Laboratoire SIgnal IMage PArole SIMPA Université

Plus en détail

Groupe Eyrolles, 2004 ISBN : 2-212-11504-0

Groupe Eyrolles, 2004 ISBN : 2-212-11504-0 Groupe Eyrolles, 2004 ISBN : 2-212-11504-0 Table des matières Avant-propos................................................ 1 Quel est l objectif de cet ouvrage?............................. 4 La structure

Plus en détail

PRIMAVERA RISK ANALYSIS

PRIMAVERA RISK ANALYSIS PRIMAVERA RISK ANALYSIS PRINCIPALES FONCTIONNALITÉS Guide d analyse des risques Vérification de planning Modélisation rapide des risques Assistant de registres de risques Registre de risques Analyse de

Plus en détail

Les management actions dans le cadre de l ORSA

Les management actions dans le cadre de l ORSA Les management actions dans le cadre de l ORSA Atelier Congrès Institut des Actuaires 20 juin 2014 Intervenants Emmanuel Berthelé, Optimind Winter, Responsable Practice Gildas Robert, Optimind Winter,

Plus en détail

SOLUTIONS RESSOURCES HUMAINES SUD

SOLUTIONS RESSOURCES HUMAINES SUD «Impacts de la pratique de la reconnaissance au travail sur la santé des salariés» Jean-Marie GOBBI La reconnaissance, une préoccupation actuelle Le contexte social Montée de l individualisme Effritement

Plus en détail

Module Mixmod pour OpenTURNS

Module Mixmod pour OpenTURNS Module Mixmod pour OpenTURNS Régis LEBRUN EADS Innovation Works 23 septembre 2013 EADS IW 2013 (EADS Innovation Work) 23 septembre 2013 1 / 21 Outline Plan 1 OpenTURNS et propagation d incertitudes 2 Mixmod

Plus en détail

Algorithmique Partie 1

Algorithmique Partie 1 Algorithmique Partie 1 IUT Informatique de Lens, 1ère Année Université d Artois Frédéric Koriche koriche@cril.fr 2011 - Semestre 1 Modalités Sommaire 1 Modalités 2 Programmation 3 Données 4 Opérateurs

Plus en détail

TABLEAU DE BORD : SYSTEME D INFORMATION ET OUTIL DE PILOTAGE DE LA PERFOMANCE

TABLEAU DE BORD : SYSTEME D INFORMATION ET OUTIL DE PILOTAGE DE LA PERFOMANCE TABLEAU DE BORD : SYSTEME D INFORMATION ET OUTIL DE PILOTAGE DE LA PERFOMANCE INTRODUCTION GENERALE La situation concurrentielle des dernières années a confronté les entreprises à des problèmes économiques.

Plus en détail

Introduction à l Intelligence Artificielle (L3) IA(L3) Agents rationnels

Introduction à l Intelligence Artificielle (L3) IA(L3) Agents rationnels Introduction à l Intelligence Artificielle (L3) Agents rationnels vincent.risch@univ-amu.fr Merci (toujours) à Cyril Terrioux Plan 1 Introduction 2 définition d un agent 3 perception de l environnement

Plus en détail

CRÉER UN COURS EN LIGNE

CRÉER UN COURS EN LIGNE Anne DELABY CRÉER UN COURS EN LIGNE Deuxième édition, 2006, 2008 ISBN : 978-2-212-54153-3 2 Que recouvre le concept d interactivité? Dans une perspective de cours en ligne, une activité interactive est

Plus en détail

Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium. Comparatif Choco/Drools dans le cadre du projet JASMINe

Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium. Comparatif Choco/Drools dans le cadre du projet JASMINe Guillaume SOLDERA (B guillaume.soldera@serli.fr) SERLI Informatique Bull OW2 Consortium dans le cadre du projet JASMINe Avril 2008 Table des matières 1 Introduction 3 1.1 Rappel sur JASMINe.......................................

Plus en détail

Appendice 2. (normative) Structure de niveau supérieur, texte de base identique, termes et définitions de base communs

Appendice 2. (normative) Structure de niveau supérieur, texte de base identique, termes et définitions de base communs Appendice 2 (normative) Structure de niveau supérieur, texte de base identique, termes et définitions de base communs NOTE Dans les propositions de Texte identique, XXX désigne un qualificatif de norme

Plus en détail

PRÉSENTATION TRAVAIL EN COURS - APPRENTISSAGE INTERACTIF. Ianis Lallemand, 21 janvier 2013

PRÉSENTATION TRAVAIL EN COURS - APPRENTISSAGE INTERACTIF. Ianis Lallemand, 21 janvier 2013 PRÉSENTATION TRAVAIL EN COURS - APPRENTISSAGE INTERACTIF Ianis Lallemand, 21 janvier 2013 APPRENTISSAGE INTERACTIF definition Contours encore assez flous dans le champ de l apprentissage automatique. Néanmoins,

Plus en détail

Définitions Approches managériales Approches psychologiques

Définitions Approches managériales Approches psychologiques Séminaire [CID] : Créativité, Innovation, Décision Partie B : DECISION Définitions Approches managériales Approches psychologiques www.evoreg.eu M2i : Management International de l Innovation Emmanuel

Plus en détail

OUTIL D AIDE À LA PLANIFICATION DE LA PÉRENNISATION DE PROJETS

OUTIL D AIDE À LA PLANIFICATION DE LA PÉRENNISATION DE PROJETS OUTIL D AIDE À LA PLANIFICATION DE LA PÉRENNISATION DE PROJETS Direction de la planification, de la performance, des connaissances et des ressources humaines réseau Octobre 2014 RÉDACTION Sylvie Cantin,

Plus en détail

1 : 1 er programmes & prise en main de l environnement

1 : 1 er programmes & prise en main de l environnement 1 : 1 er programmes & prise en main de l environnement 1 Introduction 1.1 Rappel : gestion d arborescence et de fichiers sous UNIX Pour la manipulation de répertoire et de fichier à partir d un terminal

Plus en détail

PROJET RESEAU SOCIAL INTERNE COLLABORATIF

PROJET RESEAU SOCIAL INTERNE COLLABORATIF Direction de l Innovation et de la RSE PROJET RESEAU SOCIAL INTERNE COLLABORATIF CCE du 29 avril 2015 DEFINITION D UN RESEAU SOCIAL INTERNE Qu est-ce qu un Réseau social interne? C est une plateforme collaborative

Plus en détail