EXEMPLE : FAILLITE D ENTREPRISES
|
|
|
- Didier Brunelle
- il y a 10 ans
- Total affichages :
Transcription
1 EXEMPLE : FAILLITE D ENTREPRISES Cet exemple a pour objectif d étudier la faillite d entreprises. Les données proviennent de l ouvrage de R.A.Johnson et D.W Wichern : «Applied Multivariate Statistical Analysis», Prentice-Hall, Ces données financières annuelles ont été recueillies sur des entreprises approximativement deux ans avant leur faillite, et à peu prés à la même époque, sur des sociétés financièrement solides. On dispose de quatre ratios pour décrire la situation financière de 46 entreprises. X1 = Cash flow/ Dette totale X2 = Revenu net / Total des actifs au bilan X3 = Actif réalisable et disponible / Passif courant X4 = Actif réalisable et disponible / Ventes nettes Y= 1 si faillite, 2 sinon Dans cette annexe nous présentons brièvement les résultats obtenus avec le logiciel SAS. Présentation des données INSTRUCTIONS SAS data donnees; input X1 X2 X3 X4 Y $ num $; datalines; ; proc print data=donnees; data donnees; set donnees; if Y=1 then Y='Faillite'; if Y=2 then Y='OK';
2 TABLEAU 1 : LES DONNEES OBS X1 X2 X3 X4 Y NUM
3 1) CONSTRUCTION D UN MODELE DE REGRESSION LOGISTIQUE RELIANT Y AUX VARIABLES X1, X2, X3, X4. INSTRUCTIONS SAS proc logistic data=donnees simple; model Y= X1 X2 X3 X4; Le tableau 2 permet de comparer le groupe 1 et le groupe 2 sur l ensemble des variables explicatives. On remarque que pour le groupe 2 les moyennes des variables X1, X2, X3 sont plus élevées. En revanche les moyennes de X4 sont très voisines pour les deux groupes. Data Set: WORK.DONNEES Response Variable: Y Response Levels: 2 Number of Observations: 46 Link Function: Logit TABLEAU 2 : DESCRIPTION DES VARIABLES The LOGISTIC Procedure Response Profile Ordered Value Y Count 1 Faillite 21 2 OK 25 Simple Statistics for Explanatory Variables Standard Variable Y Mean Deviation Minimum Maximum X1 Faillite OK Total X2 Faillite OK Total X3 Faillite OK Total X4 Faillite OK Total
4 Les tests du quotient des vraissemblances, du score ou de Wald présentés dans le tableau 3 conduisent tous au rejet de l hypothèse H 0 de nullité de l ensemble des coefficients. H 0 : β 1 = β 2 = β 3 = β 4 = 0 Néanmoins, seule la variable X3 a un apport marginal significatif dans le modèle complet. TABLEAU 3 : MODELE DE REGRESSION LOGISTIQUE RELIANT Y AUX VARIABLES X1, X2, X3, X4. The LOGISTIC procedure Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC SC Log L Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio <.0001 Score Wald Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept X X X X Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits X1 <0.001 < X <0.001 > X X > Association of Predicted Probabilities and Observed Responses Percent Concordant 94.1 Somers' D Percent Discordant 5.7 Gamma Percent Tied 0.2 Tau-a Pairs 525 c ) UTILISATION DE LA REGRESSION LOGISTIQUE PAS A PAS DESCENDANTE POUR OBTENIR UN MODELE DONT TOUS LES COEFFICIENTS DE REGRESSION SONT SIGNIFICATIFS INSTRUCTIONS SAS proc logistic data=donnees ; model Y= X1 X2 X3 X4 /selection=backward; output out=stat; Les tableaux 4 et 5 et nous montrent les étapes d une sélection descendante. Les variables X2 et X4 sont successivement éliminées. Sur cet exemple l utilisation d une procédure de sélection ascendante, non présentée dans ce document conduit au choix du même modèle.
5 TABLEAU 4 : SELECTION DESCENDANTE ETAPES 1 ET 2 Step 1. Effect X2 is removed: Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC SC Log L Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio <.0001 Score <.0001 Wald Residual Chi-Square Test Chi-Square DF Pr > ChiSq Step 2. Effect X4 is removed: Model Fit Statistics Intercept Intercept and Criterion Only Covariates AIC SC Log L Testing Global Null Hypothesis: BETA=0 Test Chi-Square DF Pr > ChiSq Likelihood Ratio <.0001 Score <.0001 Wald Residual Chi-Square Test Chi-Square DF Pr > ChiSq NOTE: No (additional) effects met the 0.05 significance level for removal from the model.
6 TABLEAU 5 : DESCRIPTION DU MODELE OBTENU PAR SELECTION DESCENDANTE Summary of Backward Elimination Effect Number Wald Step Removed DF In Chi-Square Pr > ChiSq 1 X X Analysis of Maximum Likelihood Estimates Standard Parameter DF Estimate Error Chi-Square Pr > ChiSq Intercept X X Odds Ratio Estimates Point 95% Wald Effect Estimate Confidence Limits X < X Association of Predicted Probabilities and Observed Responses Percent Concordant 93.5 Somers' D Percent Discordant 6.3 Gamma Percent Tied 0.2 Tau-a Pairs 525 c 0.936
7 3) UTILISATION DU TEST LACK OF FIT DE HOSMER ET LEMESHOW INSTRUCTIONS SAS proc logistic data=donnees; model Y=X1 X3 / lackfit; Ce test basé sur la comparaison des effectifs observés et des effectifs prévus dans chaque groupe constitué en fonction du risque de faillite, permet de tester si le modèle construit est correct. Le niveau de probabilité associé à la statistique calculée confirme l intérêt du modèle construit à l aide des variables X1 et X3. TABLEAU 6 : TEST LACK OF FIT DE HOSMER ET LEMESHOW The LOGISTIC Procedure Hosmer and Lemeshow Goodness-of-Fit Test Y = Faillite Y = OK ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ Group Total Observed Expected Observed Expected Goodness-of-fit Statistic = with 7 DF (p=0.6019)
8 4) REPRESENTATION DES DONNEES DANS LE PLAN X1 X3 Instructions SAS data a; set donnees; If y=1 then label='-'; else label='+'; x5=(5.9674/3.0322)-(6.5887/3.0322)*x1; proc plot data=a; plot X3*X1= ''$ num X5*X1='*' / overlay; Commentaires : Le graphique présenté dans le tableau 7 visualise dans le plan défini par les variables X1 et X3 la droite correspondant à la probabilité 0,5 de faire faillite. En notant g la fonction définie par g(x) = 5,9674-6,5887 X1-3,0322 X3 il suffit d écrire qu une probabilité de faire faillite égale à 0,5 correspond à g(x) = 0. Ceci justifie la définition de la variable X5 définie dans le programme SAS et représentée en fonction de X1 dans le graphique proposé au sein du tableau 7. On remarque sur ce graphique qu en prenant un seuil de décision égal à 0,5 quatre individus sont mal reclassés. Il s agit des entreprises 13, 15, 16 et 34. Pour les entreprises 13, 15, 16 la probabilité de faillite prévue par le modèle construit est inférieure à 0,5 ( tableau 8 ). En réalité elles ont fait faillite. L entreprise 34 pour laquelle la probabilité prévue de faillite est égale à 0,9746 ( tableau 8 ) n a elle pas fait faillite.
9 TABLEAU 7 : VISUALISATION DE LA DROITE CORRESPONDANT A UNE PROBABILITE 0,5 DE FAIRE FAILLITE Plot of X3*X1$num. Symbol points to label. Plot of x5*x1. Symbol used is '*'. X3 6 ˆ 5 ˆ ˆ * ˆ * * * * * * ˆ * * * * * * * 1 ˆ 3- * * 6- * ˆ Šƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ X1
10 5) ETUDE DETAILLEE DU MODELE DE REGRESSION LOGISTIQUE CONSTRUIT AVEC LES VARIABLES X1 ET X3 INSTRUCTIONS SAS proc logistic data=donnees1; model Y= X1 X3 / ctable pprob =(0 to 0.48 by 0.04, 0.5, 0.52 to 1 by 0.04 ); output out=out xbeta=xbeta stdxbeta=stdxbeta predicted=predicted lower=lower upper=upper reschi=reschi resdev=resdev ; proc print data=out; var Y predicted lower upper reschi resdev; Commentaires : Le tableau 8 présente les probalités de faillite prévues pour les différentes entreprises, les intervalles de confiance associés et les résidus de Pearson et residus déviance pour l ensemble des individus. On peut remarquer les valeurs très élevées de ces résidus pour les individus déjà cités 13, 15, 16 et 34. Le tableau 9 présente la table de classement des individus en fonction de différents seuils de probabilité. On y trouve en particulier la sensibilité et la spécificité. Remarquons que le niveau de probabilité maximisant ces deux critères se situe entre 0,56 et 0,60. Précisons que les affectations des individus ne sont pas réalisées par resubstitution mais par une méthode s apparentant à de la validation croisée. Ainsi pour le seuil de probabilité 0,5 on trouve six individus mal classés ( il y a trois individus mal classés dans chaque groupe), alors que par resubstition il n y a en tout que 4 individus mal classés. La figure 1 visualise le risque de faillite en fonction des valeurs de la variable X3. Comme il s agit d un modèle à deux variables, on a pris dans ce graphique la valeur moyenne de X1. Ce graphique réalisé avec STATGRAPHICS montre nettement que le risque de faillite diminue quand X3 augmente.
11 TABLEAU 8 : PROBABILITES CALCULEES, RESIDUS Obs Y predicted lower upper reschi resdev 1 Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite Faillite OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK OK
12 TABLEAU 9 : TABLE DE CLASSEMENT Classification Table Correct Incorrect Percentages Prob Non- Non- Sensi- Speci- False False Level Event Event Event Event Correct tivity ficity POS NEG
Étude de cas Assurance (d après une étude de Philippe Périé, CISIA)
Étude de cas Assurance (d après une étude de Philippe Périé, CISIA) I.1.Les données L échantillon est constitué de 1106 assurés Belges observés en 1992 et répartis en 2 groupes. - les assurés qui n ont
Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015
Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par
distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position
Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons
Un exemple de régression logistique sous
Fiche TD avec le logiciel : tdr341 Un exemple de régression logistique sous A.B. Dufour & A. Viallefont Etude de l apparition ou non d une maladie cardiaque des coronaires 1 Présentation des données Les
Modèles pour données répétées
Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque
Exemple PLS avec SAS
Exemple PLS avec SAS This example, from Umetrics (1995), demonstrates different ways to examine a PLS model. The data come from the field of drug discovery. New drugs are developed from chemicals that
Données longitudinales et modèles de survie
ANALYSE DU Données longitudinales et modèles de survie 5. Modèles de régression en temps discret André Berchtold Département des sciences économiques, Université de Genève Cours de Master ANALYSE DU Plan
Une introduction. Lionel RIOU FRANÇA. Septembre 2008
Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4
Introduction à la statistique non paramétrique
Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non
Lire ; Compter ; Tester... avec R
Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................
Imputation du salaire d ego dans TeO
Imputation du salaire d ego dans TeO Objet de la note : linéariser la réponse en tranche du salaire, et imputer le salaire en cas de non réponse Champ et principe de la méthode Les individus qui se sont
INITIATION AU LOGICIEL SAS
INITIATION AU LOGICIEL SAS (version 9.1.3 sous Windows) Hélène HAMISULTANE Bibliographie : Initiation au logiciel SAS(9) pour Windows, Coqué N. (juin 2006). www.agroparistech.fr/img/pdf/polysas.pdf SAS
Exemples d application
AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif
SAS de base : gestion des données et procédures élémentaires
1 SAS de base : gestion des données et procédures élémentaires SAS de base : gestion des données et procédures élémentaires Résumé Description des commandes (module SAS de base) les plus utiles de l étape
Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1)
Analyse statistique de données qualitatives et quantitatives en sciences sociales : TP RÉGRESSION LOGISTIQUE (MODÈLES CHAPITRE 1) Modèles de régression logistique à réaliser Une explicative catégorielle
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
MODELE A CORRECTION D ERREUR ET APPLICATIONS
MODELE A CORRECTION D ERREUR ET APPLICATIONS Hélène HAMISULTANE Bibliographie : Bourbonnais R. (2000), Econométrie, DUNOD. Lardic S. et Mignon V. (2002), Econométrie des Séries Temporelles Macroéconomiques
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
1 Modélisation d être mauvais payeur
1 Modélisation d être mauvais payeur 1.1 Description Cet exercice est très largement inspiré d un document que M. Grégoire de Lassence de la société SAS m a transmis. Il est intitulé Guide de démarrage
IBM SPSS Regression 21
IBM SPSS Regression 21 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 46. Cette version s applique à IBM SPSS Statistics
Utilisation du Logiciel de statistique SPSS 8.0
Utilisation du Logiciel de statistique SPSS 8.0 1 Introduction Etude épidémiologique transversale en population générale dans 4 pays d Afrique pour comprendre les différences de prévalence du VIH. 2000
EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE
MICHÈLE PICARD FLIBOTTE EFFICACITÉ ET INNOCUITÉ D UN MÉDICAMENT CONTRE LA MPOC COMPARATIVEMENT À UN CONTRÔLE Essai-stage présenté à la Faculté des études supérieures de l Université Laval dans le cadre
AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678
Sélection prédictive d un modèle génératif par le critère AICp Vincent Vandewalle To cite this version: Vincent Vandewalle. Sélection prédictive d un modèle génératif par le critère AICp. 41èmes Journées
Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG)
Surveillance et maintenance prédictive : évaluation de la latence de fautes Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) SURVEILLANCE Analyser une situation et fournir des indicateurs! Détection de symptômes!
NON-LINEARITE ET RESEAUX NEURONAUX
NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail
Surveillance de Scripts LUA et de réception d EVENT. avec LoriotPro Extended & Broadcast Edition
Surveillance de Scripts LUA et de réception d EVENT avec LoriotPro Extended & Broadcast Edition L objectif de ce document est de présenter une solution de surveillance de processus LUA au sein de la solution
Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH
Approche par groupe de gènes pour les données longitudinales d expression génique avec une application dans un essai vaccinal contre le VIH Boris Hejblum 1,2,3 & Rodolphe Thiébaut 1,2,3 1 Inserm, U897
STATISTIQUES. UE Modélisation pour la biologie
STATISTIQUES UE Modélisation pour la biologie 2011 Cadre Général n individus: 1, 2,..., n Y variable à expliquer : Y = (y 1, y 2,..., y n ), y i R Modèle: Y = Xθ + ε X matrice du plan d expériences θ paramètres
LE ROLE DES INCITATIONS MONETAIRES DANS LA DEMANDE DE SOINS : UNE EVALUATION EMPIRIQUE.
LE ROLE DES INCITATIONS MONETAIRES DANS LA DEMANDE DE SOINS : UNE EVALUATION EMPIRIQUE. Synthèse des travaux réalisés 1. Problématique La question D7 du plan d exécution du Programme National de Recherches
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin
Analyse discriminante et régression logistique: application au cas de l innovation pour les entreprises du Canton du Tessin Sandro Petrillo Université de Neuchâtel - Diplôme Postgrade en Statistique Projet
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
Présentation du langage et premières fonctions
1 Présentation de l interface logicielle Si les langages de haut niveau sont nombreux, nous allons travaillé cette année avec le langage Python, un langage de programmation très en vue sur internet en
Travaux pratiques avec RapidMiner
Travaux pratiques avec RapidMiner Master Informatique de Paris 6 Spécialité IAD Parcours EDOW Module Algorithmes pour la Fouille de Données Janvier 2012 Prise en main Généralités RapidMiner est un logiciel
«Cours Statistique et logiciel R»
«Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire
Recherche dans un tableau
Chapitre 3 Recherche dans un tableau 3.1 Introduction 3.1.1 Tranche On appelle tranche de tableau, la donnée d'un tableau t et de deux indices a et b. On note cette tranche t.(a..b). Exemple 3.1 : 3 6
Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS
Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence
Évaluation de la régression bornée
Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R
Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems
Didacticiel - Études de cas. Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat.
1 Objectif Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat. Tout le monde l aura compris, je passe énormément de temps à analyser les logiciels
TP: Représentation des signaux binaires. 1 Simulation d un message binaire - Codage en ligne
Objectifs : Ce TP est relatif aux différentes méthodes de codage d une information binaire, et à la transmission en bande de base de cette information. Les grandes lignes de ce TP sont l étude des méthodes
STAGE IREM 0- Premiers pas en Python
Université de Bordeaux 16-18 Février 2014/2015 STAGE IREM 0- Premiers pas en Python IREM de Bordeaux Affectation et expressions Le langage python permet tout d abord de faire des calculs. On peut évaluer
Le Data Mining au service du Scoring ou notation statistique des emprunteurs!
France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative
Grégoire de Lassence. Copyright 2006, SAS Institute Inc. All rights reserved.
Grégoire de Lassence 1 Grégoire de Lassence Responsable Pédagogie et Recherche Département Académique Tel : +33 1 60 62 12 19 [email protected] http://www.sas.com/france/academic SAS dans
LES MODELES DE SCORE
LES MODELES DE SCORE Stéphane TUFFERY CONFERENCE GENDER DIRECTIVE 31 mai 2012 31/05/2012 ActuariaCnam Conférence Gender Directive Stéphane Tufféry 1 Plan Le scoring et ses applications L élaboration d
Rapport de Mini-Projet en ArcGIS Engine
Rapport de Mini-Projet en ArcGIS Engine Réalisée par : Asmae BENMESSAOUD 3ème Année Cycle d Ingénieur Géoinformation Année Universitaire 2010- Sommaire 1 Introduction L analyse géographique et la visualisation
Chapitre 4 : Régression linéaire
Exercice 1 Méthodes statistiques appliquées aux sciences sociales (STAT-D-203) Titulaire : Catherine Vermandele Chapitre 4 : Régression linéaire Le diplôme de Master of Business Administration ou MBA est
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9 L analyse de variance à un facteur permet de vérifier, moyennant certaines hypothèses, si un facteur (un critère de classification,
Biostatistiques : Petits effectifs
Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 [email protected] Plan Données Générales : Définition des statistiques Principe de l
La méthode de régression par discontinuité et l évaluation des politiques de l emploi
La méthode de régression par discontinuité et l évaluation des politiques de l emploi Thomas Lemieux University of British Columbia Le 24 novembre 2009 Plan de la présentation La méthode de régression
L export de SAS vers Excel expliqué à ma fille
L export de SAS vers Excel expliqué à ma fille SAS est un logiciel merveilleux, mais tous n y ont pas accès. Pour contenter la soif de données de vos collègues qui n auraient pas d autre outil à disposition,
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
Nouveau Barème W.B.F. de points de victoire 4 à 48 donnes
Nouveau Barème W.B.F. de points de victoire 4 à 48 donnes Pages 4 à 48 barèmes 4 à 48 donnes Condensé en une page: Page 2 barèmes 4 à 32 ( nombre pair de donnes ) Page 3 Tous les autres barèmes ( PV de
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Exercices sur SQL server 2000
Exercices sur SQL server 2000 La diagramme de classe : Exercices sur SQL server 2000 Le modèle relationnel correspondant : 1 Créer les tables Clic-droit on Tables et choisir «New Table» Créer la table
ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring
ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des
Annexe A de la norme 110
Annexe A de la norme 110 RAPPORTS D ÉVALUATION PRÉPARÉS AUX FINS DES TEXTES LÉGAUX OU RÉGLEMENTAIRES OU DES INSTRUCTIONS GÉNÉRALES CONCERNANT LES VALEURS MOBILIÈRES Introduction 1. L'annexe A a pour objet
Cahiers de l IMA. Fascicule SPSS
Octobre 2008 Numéro 41 Cahiers de l IMA Fascicule SPSS Ingrid Gilles Eva G. T. Green Paola Ricciardi Joos Régis Scheidegger Chiara Storari Thomas Tuescher Pascal Wagner-Egger Ricciardi-Joos Ricciardi-Joos
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Exploiter les statistiques d utilisation de SQL Server 2008 R2 Reporting Services
Exploiter les statistiques d utilisation de SQL Server 2008 R2 Reporting Services Nous verrons dans cet article comment exploiter simplement les données de Log de SQL Server 2008 R2 Reporting Services
Principe de symétrisation pour la construction d un test adaptatif
Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, [email protected] 2 Université
4. Résultats et discussion
17 4. Résultats et discussion La signification statistique des gains et des pertes bruts annualisés pondérés de superficie forestière et du changement net de superficie forestière a été testée pour les
Analyse Financière Les ratios
Analyse Financière Les ratios Présenté par ACSBE Traduit de l anglais par André Chamberland [email protected] L analyse financière Les grandes lignes Qu est-ce que l analyse financière? Que peuvent
TABLE DES MATIÈRES TITRE I- LES ÉTATS FINANCIERS... 7 TITRE II- LA FISCALITÉ CORPORATIVE... 55
TABLE DES MATIÈRES TITRE I- LES ÉTATS FINANCIERS...................................... 7 TITRE II- LA FISCALITÉ CORPORATIVE.................................. 55 Table des matières 3 TITRE I LES ÉTATS
Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00
Instructions pour mettre à jour un HFFv2 v1.x.yy v2.0.00 HFFv2 1. OBJET L accroissement de la taille de code sur la version 2.0.00 a nécessité une évolution du mapping de la flash. La conséquence de ce
Séance 11 : Typologies
Séance 11 : Typologies Sommaire Proc CLUSTER : Typologie hiérarchique... 3 Proc FASTCLUS : Typologie nodale... 8 Proc MODECLUS : Typologie non paramétrique... 11 - Les phénomènes observés (attitudes, comportements,
Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident?
Les conducteurs automobiles évaluent-ils correctement leur risque de commettre un accident? Nathalie LEPINE GREMAQ, Université de Toulouse1, 31042 Toulouse, France GRAPE, Université Montesquieu-Bordeaux
Tests statistiques et régressions logistiques sous R, avec prise en compte des plans d échantillonnage complexes
, avec prise en compte des plans d échantillonnage complexes par Joseph LARMARANGE version du 29 mars 2007 Ce cours a été développé pour une formation niveau M2 et Doctorat des étudiants du laboratoire
France SMS+ MT Premium Description
France SMS+ MT Premium Description Summary Subscription : kinematics Subscription via SMS (Kinematic + messages) Subscription via Wap (Kinematic + messages) Subscription via Mix SMS / WAP Subscription
Compléments de documentation Scilab : affichage de texte et formatage de nombres
Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Agrégation externe Année 2002-2003 Compléments de documentation Scilab : affichage de texte et formatage de
Amélioration de la fiabilité d inspection en CND grâce à la fusion d information : applications en rayons X et ultrasons
Amélioration de la fiabilité d inspection en CND grâce à la fusion d information : applications en rayons X et ultrasons Ahmad OSMAN 1a, Valérie KAFTANDJIAN b, Ulf HASSLER a a Fraunhofer Development Center
Héritages, donations et aides aux ascendants et descendants
Dossier Héritages, donations et aides aux ascendants et descendants Bertrand Garbinti, Pierre Lamarche, Laurianne Salembier* Le patrimoine d un ménage est constitué par la somme de tous les biens qu il
Analyse exploratoire des données
Analyse exploratoire des données Introduction à R pour la recherche biomédicale http://wwwaliquoteorg/cours/2012_biomed Objectifs Au travers de l analyse exploratoire des données, on cherche essentiellement
Projet du 5 octobre 2006. du [date] 2006. (Adaptation des fonds propres de base) Sommaire
Circ.-CFB 06/_ Adaptation des fonds propres de base Page 1 Circulaire de la Commission fédérale des banques : Détermination du capital réglementaire en cas d utilisation d un standard comptable international
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Régression linéaire. Nicolas Turenne INRA [email protected]
Régression linéaire Nicolas Turenne INRA [email protected] 2005 Plan Régression linéaire simple Régression multiple Compréhension de la sortie de la régression Coefficient de détermination R
Les Triggers SQL. Didier DONSEZ. Université de Valenciennes Institut des Sciences et Techniques de Valenciennes donsez@univ-valenciennes.
Les Triggers SQL Didier DONSEZ Université de Valenciennes Institut des Sciences et Techniques de Valenciennes [email protected] 1 Sommaire Motivations Trigger Ordre Trigger Ligne Condition Trigger
Présentation des termes et ratios financiers utilisés
[ annexe 3 Présentation des termes et ratios financiers utilisés Nous présentons et commentons brièvement, dans cette annexe, les différents termes et ratios financiers utilisés aux chapitres 5, 6 et 7.
Devoir Data WareHouse
Université Paris XIII Institut Galilée Master 2-EID BENSI Ahmed CHARIFOU Evelyne Devoir Data WareHouse Optimisation, Transformation et Mise à jour utilisées par un ETL Mr R. NEFOUSSI Année 2007-2008 FICHE
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR
Reconstruction de bâtiments en 3D à partir de nuages de points LIDAR Mickaël Bergem 25 juin 2014 Maillages et applications 1 Table des matières Introduction 3 1 La modélisation numérique de milieux urbains
Expression des contraintes. OCL : Object C o n t r a i n t L a n g u a g e
P r o b l é m a t i q u e OCL : O b j e c t C o n s t r a i n t L a n g u a g e Le langage de contraintes d UML Les différents diagrammes d UML permettent d exprimer certaines contraintes graphiquement
Introduction aux outils BI de SQL Server 2014. Fouille de données avec SQL Server Analysis Services (SSAS)
MIT820: Entrepôts de données et intelligence artificielle Introduction aux outils BI de SQL Server 2014 Fouille de données avec SQL Server Analysis Services (SSAS) Description générale Ce tutoriel a pour
Module Administration BD Chapitre 1 : Surcouche procédurale dans les SGBDS
Module Administration BD Chapitre 1 : Surcouche procédurale dans les SGBDS 1. Introduction Nous allons aborder la notion de surcouche procédurale au sein des SGBDS relationnels tels que Oracle (PLSQL)
Medication management ability assessment: results from a performance based measure in older outpatients with schizophrenia.
Medication Management Ability Assessment (MMAA) Patterson TL, Lacro J, McKibbin CL, Moscona S, Hughs T, Jeste DV. (2002) Medication management ability assessment: results from a performance based measure
Mulford C. (1992). The Mother-Baby Assessment(MBA): An Apgar Score for breastfeeding. Journal of Human Lactation, 8(2), 79-82.
MOTHER-BABY ASSESSMENT SCALE Mulford C. (1992). The Mother-Baby Assessment(MBA): An Apgar Score for breastfeeding. Journal of Human Lactation, 8(2), 79-82. Instrument de Mother-Baby Assessment scale mesure
TRAITEMENT DES DONNEES MANQUANTES AU MOYEN DE L ALGORITHME DE KOHONEN
TRAITEMENT DES DONNEES MANQUANTES AU MOYEN DE L ALGORITHME DE KOHONEN Marie Cottrell, Smaïl Ibbou, Patrick Letrémy SAMOS-MATISSE UMR 8595 90, rue de Tolbiac 75634 Paris Cedex 13 Résumé : Nous montrons
Gestion de Portefeuille. Mesures de Performance Ajustées du Risque
Gestion de Portefeuille Mesures de Performance Ajustées du Risque Le Ratio de Sharpe La mesure de performance (ajustée du risque) la plus utilisée Rappel: Propriétés du ratio de Sharpe Mesure de la stratégie:
Pratique de l analyse de données SPSS appliqué à l enquête «Identités et Capital social en Wallonie»
Centre de recherche en démographie et sociétés UCL/IACCHOS/DEMO Pratique de l analyse de données SPSS appliqué à l enquête «Identités et Capital social en Wallonie» 1 2 3+ analyses univariées Type de variables
Scénario: Score d appétence de la carte visa premier
Scénario: Score d appétence de la carte visa premier Résumé Cette aventure reprend rapidement l exploration des données bancaires avant d aborder systématiquement la construction de modèles de prévision
1 Imputation par la moyenne
Introduction au data mining L3 MIS - STA 1616-2010 V. Monbet Données manquantes L'objectif de ce TD est de manipuler et de comparer plusieurs méthodes d'imputation de données manquantes. La première partie
IPSAS 32 «Service concession arrangements» (SCA) Marie-Pierre Cordier Baudouin Griton, IPSAS Board
IPSAS 32 «Service concession arrangements» (SCA) Marie-Pierre Cordier Baudouin Griton, IPSAS Board 1 L élaboration de la norme IPSAS 32 Objectif : traitement comptable des «service concession arrangements»
Tutoriel de formation SurveyMonkey
Tutoriel de formation SurveyMonkey SurveyMonkey est un service de sondage en ligne. SurveyMonkey vous permet de créer vos sondages rapidement et facilement. SurveyMonkey est disponible à l adresse suivante
COMMANDES SQL... 2 COMMANDES DE DEFINITION DE DONNEES... 2
SQL Sommaire : COMMANDES SQL... 2 COMMANDES DE DEFINITION DE DONNEES... 2 COMMANDES DE MANIPULATION DE DONNEES... 2 COMMANDES DE CONTROLE TRANSACTIONNEL... 2 COMMANDES DE REQUETE DE DONNEES... 2 COMMANDES
La problématique des tests. Cours V. 7 mars 2008. Comment quantifier la performance d un test? Hypothèses simples et composites
La problématique des tests Cours V 7 mars 8 Test d hypothèses [Section 6.1] Soit un modèle statistique P θ ; θ Θ} et des hypothèses H : θ Θ H 1 : θ Θ 1 = Θ \ Θ Un test (pur) est une statistique à valeur
Théorie Financière 4E 4. Evaluation d actions et td d entreprises
Théorie Financière 4E 4. Evaluation d actions et td d entreprises Objectifs de la session 1. Introduire le «dividend discount model» (DDM) 2. Comprendre les sources de croissance du dividende 3. Analyser
