Sommaire. Introduction. Opérations typiques. Langages. Architectures

Dimension: px
Commencer à balayer dès la page:

Download "Sommaire. Introduction. Opérations typiques. Langages. Architectures"

Transcription

1 OLAP IED

2 Sommaire Introduction Opérations typiques Langages Architectures

3 Introduction Contexte un entrepôt de données offre des données - nombreuses - homogènes - exploitables - multidimensionnelles - consolidées comment exploiter ces données à des fins d analyse?

4 Entrepôts de Données et OLAP Traditionnellement : - les requêtes OLTP sont exécutées sur les données sources - l entrepôt est mis à jour chaque nuit - les requêtes OLAP sont exécutées sur les données de l entrepôt

5 Exemple ventes(pièce, date, vendeur, montant) produits(pièce, modèle, couleur) vendeurs(nom, ville, département, état, pays) temps(jour, semaine, mois, trimestre, année)

6 Hiérarchies Total Total Trimestr e Semaine 40 Octob re 03/10/20 06 Crucifor me Total Vi s Ble u Franc e 9 5 Cerg y Kat e Etatsunis C A San- Jose Bo b

7 Modèle conceptuel notation de Golfarelli (1998)

8 Requête typique simple - Dicing et Slicing SELECT département, mois, AVG(montant) as moyenne FROM ventes, vendeurs, produits WHERE ventes.vendeur = vendeurs.nom AND ventes.codeproduit = produits.codeproduit AND couleur = ' noir ' GROUP BY département, mois HAVING moyenne > 5000; Where : Slicing Group by : Dicing

9 Exemple de traitement typique (1)

10 Exemple de traitement typique (2) Les ventes de vis sont plus faibles que prévu... Quelles couleurs sont responsables? SELECT couleur, SUM(montant) FROM ventes, produits WHERE ventes.codeproduit = produits.codeproduit AND modèle = 'vis' GROUP BY couleur ;

11 Exemple de traitement typique (2)

12 Exemple de traitement typique (3) Quelles années sont responsables? SELECT couleur, années, SUM(montant) FROM ventes, produits, temps WHERE ventes.codeproduit = produits.codeproduit AND ventes.date = temps.jour AND modèle = 'vis' GROUP BY couleur, années ;

13 Exemple de traitement typique (3)

14 Exemple de traitement typique (4) Quels trimestres sont responsables? SELECT couleur, trimestre, SUM(montant) FROM ventes, produits, temps WHERE ventes.codeproduit = produits.codeproduit AND ventes.date = temps.jour AND modèle = 'vis' GROUP BY couleur, trimestre ;

15 Exemple de traitement typique (4)

16 Exemple de traitement typique (5) Quels vendeurs sont responsables? SELECT vendeur, somme FROM( SELECT vendeur, SUM(montant) as somme FROM ventes, produits, temps WHERE ventes.codeproduit = produits.codeproduit AND ventes.date = temps.jour AND ventes.vendeur = vendeurs.nom AND modèle = 'vis' GROUP BY trimestre, vendeur) WHERE trimestre = jui-sep ;

17 Exemple de traitement typique (5)

18 Modèle de stockage de données table de données ventes pièces régions années quantités écrous est clous est vis ouest écrous est total 220 écrous total total 390 pièce, région, année -> quantité total total total 1200

19 Modèle de stockage de données cube de données

20 Granularité

21 Terminologie cube ventes cellule écrous, est, 1997, 100 référence écrous, est, 1997 mesure 100 dimension lieu niveau régions membre/paramètre est

22 Exemple d implémentation Projet T3 de Microsoft, Unisys, EMC, Knosys (2001) DW 7.7 milliards de lignes 8 tables de faits 1.2 To construction d une architecture MOLAP récupération, agrégations, indexations,compression un cube de 471 Go 53 heures (40000 lignes/seconde)

23 Quelques solutions nom éditeur Express-server/OLAP DB2 OLAP Server Metacube SQL Server Crystal Business Information Warehouse PowerPlay MicroStrategy Essbase SAP Oracle IBM Informix Microsoft Business Object Cognos MicroStrategy Hyperion

24 Opérations typiques 3 catégories d opérations, élémentaires catégorie restructuration granularité ensembliste concerne représentation niveau de détail extraction

25 Reconstruction Rotation Pivot Switch Split Nest Push Présentations ne sont pas gérées par SQL

26 Rotation anné e régio pièce n écrou s clou s vi s es 7 oue t su nor st d d

27 Rotation nord vis clous écrous 10 vis est ouest sud nord

28 Pivot anné e régio n pièce oue esst t su d nor d écrou s clou s vi s

29 Pivot nord vis clous écrous 10 vis nord sud ouest est 10 10

30 Switch

31 Switch nord vis clous écrous 10 sud vis clous 10 écrous 40 20

32 Split, nest, push Split (régions) Nest (pièces, régions) Push(années)

33 Split (Régions) ventes est écrous vis clous ventes ouest écrous vis clous ventes sud écrous vis clous 10 ventes nord écrous 10 vis clous 40 20

34 Nest ventes nest est ouest écrous nord 10 sud est ouest vis nord sud est ouest clous nord sud 10

35 Push ventes push est ouest nord sud écrous vis clous

36 Visualisation (1)

37 Visualisation (2)

38 Granularité Groupements Agrégation Roll-up Drill-down

39 Granularité

40 Roll-up et Drill-down Drilldown Rollup

41 Opérations ensemblistes Manipulations classiques Extraction des informations Dicing Slicing Cube Sélection Projection

42 Dicing et Slicing Slici ng Dicing : partition

43 Cube CUBE pièce, année, région BY SUM montant SELECT SUM (montant) FROM Ventes GROUP BY grouping-list

44 Sélection ventes >=50 (régions = nord ou régions = sud) et (pièces = clous ou pièces = écrous) et (années = 1998 ou années = 1999)

45 Projection

46 Tables et Cube de données ROLAP : Tables de données/agrégations MOLAP : Cubes de données/agrégations HOLAP : Tables + Cubes

47 Extensions de SQL MDX de Microsoft ANSI SQL 99

48 MDX de Microsoft (1) clause paramètres valeur SELECT FROM WHERE dimensions avec 1 relation par axe plusieurs membres cube de données 1 nom de cube dimensions avec 1 tuple 1 seul membre

49 MDX de Microsoft (2) navigation PARENT le parent d un membre CHILDREN les enfants d un membre MEMBERS les membres d un niveau ou d une dimension structuration CROSSJOIN imbrication ranking TOPCOUNT les premiers membres

50 Exemple MDX (1) SalesCube à cinq dimensions : - SalesPerson - Geography (Countries > Regions > States > Cities) - Quarters (Quarters > Months > Days) - Years - Products - Measures (Sales, PercentChange, BudgetedSales)

51 Exemple MDX (2) SELECT FROM WHERE CROSSJOIN({Venkatrao, Netz}, {USA North.CHILDREN, USA South, Japan}) ON COLUMNS, {Qtr1.CHILDREN, Qtr2, Qtr3, Qtr4.CHILDREN} ON ROWS SalesCube (Sales, [1991], Products.All)

52 ANSI SQL-99 Ajouts OLAP par rapport à SQL-92 : - GROUPING SETS : extension de GROUP BY - CUBE, ROLLUP : cas particulier de GROUPING SETS - ranking : extension pour ORDER BY - windowing : cumuls ou moyenne glissante Supporté notamment par DB2

53 Exemple SQL99 SELECT jour, ville, SUM(ventes) FROM c1 GROUP BY jour,ville C1 jour ville ventes Jour_1 ville_1 v_11 Jour_1 ville_2 v_12 Jour_2 ville_1 v_ Jour_q ville_p v_qp

54 Cube SQL99 (1) calcul de l UNION de GROUP BY de chaque sous-ensemble des attributs en paramétre SELECT jour, ville, SUM(ventes) FROM c1 GROUP BY CUBE(jour,ville) génère l union des groupements suivants {(jour,ville),(jour),(ville),vide }

55 Cube SQL99 (2) jour ville ventes Jour_1 ville_1 v_11 Jour_1 ville_2 v_12 Jour_1 NULL v_1_all Jour_2 ville_1 v_ Jour_q NULL v_q_all NULL ville_1 v_all_ NULL ville_p v_all_p NULL NULL v_all_all

56 Roll_up - SQL99 (1) Calcul de l UNION de GROUP BY de chaque préfixe des attributs en paramètre SELECT jour, ville, SUM(ventes) FROM c1 GROUP BY ROLLUP(jour,ville) génère l union des groupements suivants {(jour,ville),(jour),vide }

57 Roll_up - SQL99 (2) jour ville ventes Jour_1 ville_1 v_1_1 Jour_1 ville_2 v_1_2 Jour_1 NULL v_1_all Jour_2 ville_1 v_2_ NULL NULL v_all_all

58 Roll_up - SQL99 (3) SELECT jour, ville, SUM(ventes) FROM c1 GROUP BY ROLLUP(jour), ROLLUP(ville) génération des agrégats pour les groupements : {(jour ),vide} {(ville),vide} = {(jour,ville),(jour),(ville),vide}

59 Grouping Sets - SQL99 (1) soient les faits : c1 jour ville pièce ventes Jour_1 ville_1 pièce_1 v_111 Jour_1 ville_2 pièce_1 v_121 Jour_2 ville_1 pièce_2 v_ Jour_q ville_p pièce_r v_qpr

60 Grouping Sets - SQL99 (2) GROUP BY multiples en précisant quelles UNION sont souhaitées l imbrication d attributs permet de séparer les GROUP BY simples de l UNION de GROUP BY CUBE et ROLLUP sont des cas particulier de GROUPING SETS

61 Grouping Sets - SQL99 (3) GROUP BY GROUPING SETS ((jour, ville, pièce)) GROUP BY jour, ville, pièce GROUP BY GROUPING SETS (jour, ville, pièce) GROUP BY GROUPING SETS (jour,(ville,pièce)) GROUP BY jour UNION GROUP BY ville UNION GROUP BY pièce GROUP BY jour UNION GROUP BY ville, pièce

62 Architectures ROLAP MOLAP HOLAP

63 ROLAP - technologie de stockage relationnelle - star schéma ou snowflake schéma - middleware de traduction dynamique maturité de la technologie relationnelle génération de SQL encore peu efficace

64 Cuboïdes Cube = Treillis de cuboïdes

65 Précalcul des agrégats (1) Cube de données = faits = tous les cuboïdes 3 possibilités - ne pas stocker d agrégat coûteux en temps - stocker tous les agrégats coûteux en espace - ne stocker qu une partie des agrégats... mais lesquels?

66 Précalcul des agrégats (2) matérialiser des cuboïdes choisis en fonction - du grain (niveau d agrégation) - des requêtes utilisateurs le grain doit être suffisamment fin pour pouvoir répondre aux requêtes

67 Précalcul des agrégats (3) Exemple ventes(produit, vendeur, année, prix) 3 dimensions : produit, vendeur, année 8 possibilités de groupement SELECT SUM(prix) FROM ventes GROUP BY...

68 Précalcul des agrégats (4) GROUP BY nombre de tuples nom de la vue produit, vendeur, année 6 M pva produit, vendeur 6 M pv produit, année 0.8 M pa vendeur, année 6 M va produit 0.2 M p vendeur 0.1 M v année 0.01 M a Null 1 vide

69 Précalcul des agrégats (5) matérialiser tous les agrégats coûte 19 M matérialiser - vue pva - vue pa - vues p, v et a - vue vide coûte 7,11 M

70 Notations Q1 < Q2 ssi Q1 peut être traitée via Q2 - ancêtre(x) = {y x < y} - descendant(x) = {y y < x} - suivant(x) = {y x < y, pas de z tel que x < z, z < y} p < pv, ancêtre(pva) = {pva}, descendant(pv) = {pv,p,v,vide}, suivant(p) = {pv,pa}

71 Stratégie répondre à une requête Q 1. choisir un ancêtre QA matérialisé de Q 2. adapter Q à QA 3. évaluer la requête adaptée sur QA coût de la réponse à Q = nombre de tuples de QA

72 Techniques d indexation (ROLAP) listes inversées index de vecteurs de bits (bitmap indexing) index de jointure (join indexing)

73 MOLAP technologie des bases de données multidimensionnelles - structure de stockage = tableaux - correspondance directe avec la vue multidimensionnelle gestion de la faible densité (sparsity) - techniques de compression spécifiques - structure d index spécifiques problème d extensibilité

74 Stockage MOLAP implantation row major A[0][0] A[2][2]

75 Stockage MOLAP d dimensions, N k membres dans la dimension k la fonction p donne la position dans le tableau en fonction de chaque indice i d Exemple : a[2][3][4] avec 3 dimensions de 10 membres p(2,3,4) = 234

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing

Bases de données multidimensionnelles OLAP. OnLine Analytical Processing Bases de données multidimensionnelles OLAP OnLine Analytical Processing OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour la mise en place d'un Système d'information décisionnel

Plus en détail

Bases de données multidimensionnelles OLAP

Bases de données multidimensionnelles OLAP Bases de données multidimensionnelles OLAP OLAP OLAP (On Line Analytical Processing): Ensemble des outils nécessaires pour l analyse multidimensionnelle. Les données sont historisées, résumées, consolidées.

Plus en détail

Datawarehouse. C. Vangenot

Datawarehouse. C. Vangenot Datawarehouse C. Vangenot Plan Partie 1 : Introduction 1. Objectifs 2. Qu'est ce qu'un datawarehouse? 3. Pourquoi ne pas réutiliser les BD? Partie 2 : Implémentation d'un datawarehouse ROLAP MOLAP HOLAP

Plus en détail

Bases de données multidimensionnelles et mise en œuvre dans Oracle

Bases de données multidimensionnelles et mise en œuvre dans Oracle Bases de données multidimensionnelles et mise en œuvre dans Oracle 1 Introduction et Description générale Les bases de données relationnelles sont très performantes pour les systèmes opérationnels (ou

Plus en détail

Système OLAP Fresqueau

Système OLAP Fresqueau Système OLAP Fresqueau Kamal BOULIL Journées 20 mars Strasbourg Réunion plénière -Fresqueau 07-08 octobre 2013 1 Plan 1. Introduction 1. Projet ANR Fresqueau 2. Systèmes OLAP 2. Système OLAP Fresqueau

Plus en détail

OLAP queries optimization: A framework for combining Rule-Based and Cost-Based approaches

OLAP queries optimization: A framework for combining Rule-Based and Cost-Based approaches OLAP queries optimization: A framework for combining Rule-Based and Cost-Based approaches H. Mouloudi - A. Giacometti - P. Marcel LI - Université François-Rabelais de Tours L. Bellatreche LISI ENSMA -

Plus en détail

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016

Entrepôts de données. NEGRE Elsa Université Paris-Dauphine 2015-2016 Entrepôts de données NEGRE Elsa Université Paris-Dauphine 2015-2016 Contexte et problématique Le processus de prise de décision L entrepôt de données Définition Différence avec un SGBD Caractéristiques

Plus en détail

Les Entrepôts de Données

Les Entrepôts de Données Les Entrepôts de Données Grégory Bonnet Abdel-Illah Mouaddib GREYC Dépt Dépt informatique :: GREYC Dépt Dépt informatique :: Cours Cours SIR SIR Systèmes d information décisionnels Nouvelles générations

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP

BI = Business Intelligence Master Data-ScienceCours 4 - OLAP BI = Business Intelligence Master Data-Science Cours 4 - OLAP UPMC 15 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Entrepôt de données Les entrepôts de données (data warehouse)

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 8 Introduction à OLAP 8.1. Présentation de la semaine Le modèle OLAP (Online Analytical Processing) est un modèle quasiomniprésent en intelligence

Plus en détail

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP)

Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Magasins et entrepôts de données (Datamart, data warehouse) Approche relationnelle pour l'analyse des données en ligne (ROLAP) Définition (G. Gardarin) Entrepôt : ensemble de données historisées variant

Plus en détail

Base de données en mémoire

Base de données en mémoire Base de données en mémoire Plan Bases de données relationnelles OnLine Analytical Processing Difficultés de l OLAP Calculs en mémoire Optimisations 1 Base de données relationnelle Introduction Date Exemple

Plus en détail

Etude de faisabilité visant à mettre en place un entrepôt de données sur les données de l IFN. Analyser et Explorer avec une grande interactivité

Etude de faisabilité visant à mettre en place un entrepôt de données sur les données de l IFN. Analyser et Explorer avec une grande interactivité Établissement chargé de réaliser l inventaire permanent du patrimoine forestier sur tout le territoire métropolitain indépendamment de toute question de propriété. Parmi ces objectifs: Connaissance de

Plus en détail

OLAP : Mondrian + Pentaho. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot

OLAP : Mondrian + Pentaho. Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot OLAP : Mondrian + Pentaho Maguelonne Teisseire Hugo Alatrista Salas hugo.alatrista- salas@teledetec9on.fr Flavien Bouillot Outils Open Source Mondrian : serveur OLAP JFreeReport : ou9l de «Repor9ng» KeHle

Plus en détail

Principes et mise en œuvre du modèle OLAP. -1 ère Partie- La modélisation multidimensionnelle

Principes et mise en œuvre du modèle OLAP. -1 ère Partie- La modélisation multidimensionnelle Principes et mise en œuvre du modèle OLAP -1 ère Partie- La modélisation multidimensionnelle 1 Le modèle multidimensionnel (1) Le modèle multidimensionnel est bien adapté pour représenter des données qui

Plus en détail

2 Serveurs OLAP et introduction au Data Mining

2 Serveurs OLAP et introduction au Data Mining 2-1 2 Serveurs OLAP et introduction au Data Mining 2-2 Création et consultation des cubes en mode client-serveur Serveur OLAP Clients OLAP Clients OLAP 2-3 Intérêt Systèmes serveurs et clients Fonctionnalité

Plus en détail

Bases de Données OLAP

Bases de Données OLAP Bases de Données OLAP Hiver 013/014 Melanie Herschel melanie.herschel@lri.fr Université Sud, Groupe Bases de Données, LRI Systèmes Opérationnels vs. Entrepôts de Données Requêtes Requêtes BD opérationnelles

Plus en détail

Plan. Ce qu est le datawarehouse? Un modèle multidimensionnel. Architecture d un datawarehouse. Implémentation d un datawarehouse

Plan. Ce qu est le datawarehouse? Un modèle multidimensionnel. Architecture d un datawarehouse. Implémentation d un datawarehouse Datawarehouse 1 Plan Ce qu est le datawarehouse? Un modèle multidimensionnel Architecture d un datawarehouse Implémentation d un datawarehouse Autres développements de la technologie data cube 2 Ce qu

Plus en détail

Bases de Données OLAP. Systèmes Opérationnels vs. Entrepôts de Données Requêtes. Donné un Modèle Multidimensionnel

Bases de Données OLAP. Systèmes Opérationnels vs. Entrepôts de Données Requêtes. Donné un Modèle Multidimensionnel 007 006 00 00 00 00 Books s s North America Asia Europe Bases de Données OLAP Hiver 0/0 Melanie Herschel melanie.herschel@lri.fr Université Sud, Groupe Bases de Données, LRI Systèmes Opérationnels vs.

Plus en détail

Oracle Décisionnel : Modèle OLAP et Vue matérialisée D BILEK

Oracle Décisionnel : Modèle OLAP et Vue matérialisée D BILEK Oracle Décisionnel : Modèle OLAP et Vue matérialisée SOMMAIRE Introduction Le modèle en étoiles Requêtes OLAP Vue matérialisée Fonctions Roll up et Cube Application Introduction Data Warehouse Moteur OLAP

Plus en détail

Fouille de Données : OLAP & Data Warehousing

Fouille de Données : OLAP & Data Warehousing Fouille de Données : OLAP & Data Warehousing Nicolas Pasquier Université de Nice Sophia-Antipolis Laboratoire I3S Chapitre 2. Data warehousing Définition : qu est-ce que le data warehousing? Entrepôt de

Plus en détail

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani

Datawarehouse: Cubes OLAP. Marlyse Dieungang Khaoula Ghilani Datawarehouse: Cubes OLAP Marlyse Dieungang Khaoula Ghilani Table des matières 1 Data Warehouse 3 1.1 Introduction............................ 3 1.1.1 Définition......................... 3 1.1.2 Architecture........................

Plus en détail

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...)

SQL Server 2014 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services, Power BI...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...)

SQL Server 2012 Implémentation d'une solution de Business Intelligence (Sql Server, Analysis Services...) Avant-propos 1. À qui s'adresse ce livre? 15 2. Pré-requis 15 3. Objectifs du livre 16 4. Notations 17 Introduction à la Business Intelligence 1. Du transactionnel au décisionnel 19 2. Business Intelligence

Plus en détail

F. Opérations multidimensionnelles

F. Opérations multidimensionnelles F. Opérations multidimensionnelles Roll up (drill-up)/drill down (roll down) Roll up (drill-up) : résumer, agréger des données en montant dans une hiérachie ou en oubliant une dimension Drill down (roll

Plus en détail

Entrepôts de données : Systèmes OLAP : ROLAP, MOLAP et OLAP (5) 1 Introduction aux systèmes

Entrepôts de données : Systèmes OLAP : ROLAP, MOLAP et OLAP (5) 1 Introduction aux systèmes Entrepôts de données : Systèmes : R, M et H (5) Bernard ESPINASSE Professeur à Aix-Marseille Université (AMU) Ecole Polytechnique Universitaire de Marseille Septembre 2013 Introduction aux systèmes Systèmes

Plus en détail

Le "tout fichier" Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique

Le tout fichier Le besoin de centraliser les traitements des fichiers. Maitriser les bases de données. Historique Introduction à l informatique : Information automatisée Le premier ordinateur Définition disque dure, mémoire, carte mémoire, carte mère etc Architecture d un ordinateur Les constructeurs leader du marché

Plus en détail

PARTIE 1 : ETAT DE L ART...

PARTIE 1 : ETAT DE L ART... Table des matières INTRODUCTION... 1 Contexte général de l étude... 3 Problématiques... 4 Contributions des nos travaux de recherche... 5 Organisation du mémoire... 6 PARTIE 1 : ETAT DE L ART... 9 CHAPITRE

Plus en détail

Indépendance données / applications

Indépendance données / applications Vues 1/27 Indépendance données / applications Les 3 niveaux d abstraction: Plusieurs vues, un seul schéma conceptuel (logique) et schéma physique. Les vues décrivent comment certains utilisateurs/groupes

Plus en détail

BI = Business Intelligence Master Data-ScienceCours 5 - MDX

BI = Business Intelligence Master Data-ScienceCours 5 - MDX BI = Business Intelligence Master Data-Science Cours 5 - MDX UPMC 23 février 2015 Plan Vision générale ETL Datawarehouse OLAP Reporting Data Mining Définition OLAP En informatique, et plus particulièrement

Plus en détail

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement

Fournir un accès rapide à nos données : agréger au préalable nos données permet de faire nos requêtes beaucoup plus rapidement Introduction Phases du projet Les principales phases du projet sont les suivantes : La mise à disposition des sources Des fichiers Excel sont utilisés pour récolter nos informations L extraction des données

Plus en détail

Entreposage, analyse en ligne et fouille de données

Entreposage, analyse en ligne et fouille de données Entreposage, analyse en ligne et fouille de données Houssem Jerbi IRIT - SIG/ED jerbi@irit.fr Journée COMPIL " Bases de Données" 14/12/2010 PLAN Introduction Bases de données Entrepôt de données Technologie

Plus en détail

Techniques d implémenta3on d OLAP

Techniques d implémenta3on d OLAP Techniques d implémenta3on d OLAP Introduc3on On a vu qu il existait 2 grandes alterna3ves : MOLAP = structure de données adhoc, pour le mul3dimensionnel. ROLAP = implémenta3on à l aide d un SGBD rela3onnel

Plus en détail

Techniques d optimisation des requêtes dans les data warehouses

Techniques d optimisation des requêtes dans les data warehouses Techniques d optimisation des requêtes dans les data warehouses Ladjel Bellatreche LISI/ENSMA Téléport2-1, Avenue Clément Ader 86960 Futuroscope - FRANCE bellatreche@ensma.fr Résumé Un entrepôt de données

Plus en détail

La conception physique des data warehouses

La conception physique des data warehouses La conception physique des data warehouses Ladjel Bellatreche LISI/ENSMA Téléport2-1, Avenue Clément Ader 86960 Futuroscope - France bellatreche@ensma.fr Résumé Un entrepôt de données est une collection

Plus en détail

L2 sciences et technologies, mention informatique SQL

L2 sciences et technologies, mention informatique SQL Bases de données L2 sciences et technologies, mention informatique SQL ou : le côté obscure de la jolie théorie films titre réalisateur année starwars lucas 1977 nikita besson 1990 locataires ki-duk 2005

Plus en détail

Chapitre IX. L intégration de données. Les entrepôts de données (Data Warehouses) Motivation. Le problème

Chapitre IX. L intégration de données. Les entrepôts de données (Data Warehouses) Motivation. Le problème Chapitre IX L intégration de données Le problème De façon très générale, le problème de l intégration de données (data integration) est de permettre un accès cohérent à des données d origine, de structuration

Plus en détail

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants:

Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Collabora'on IRISA/INRA sur le transfert de nitrates et l améliora'on de la qualité des eaux des bassins versants: Tassadit BOUADI 22 Juin 2010, Saint Jacut 1 Plan Introduc

Plus en détail

Fonctions Analytiques de DB2 V10 et V11. Cécile Benhamou Technical Sales DB2 z/os et Tools DB2 cecile_benhamou@fr.ibm.com

Fonctions Analytiques de DB2 V10 et V11. Cécile Benhamou Technical Sales DB2 z/os et Tools DB2 cecile_benhamou@fr.ibm.com Fonctions Analytiques de DB2 V10 et V11 Cécile Benhamou Technical Sales DB2 z/os et Tools DB2 cecile_benhamou@fr.ibm.com DB2 V10: Fonctions OLAP Moving Sum et Moving Average Fonctions colonnes (aggregate)

Plus en détail

Bases de données multimédias Bases de données multidimensionnelles

Bases de données multimédias Bases de données multidimensionnelles Bases de données multimédias Bases de données multidimensionnelles Contenu BD Multimédia : Caractéristiques Modélisation Interrogation Architectures des SGBD multimédias BD Multidimensionnelles Motivations

Plus en détail

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise

BUSINESS INTELLIGENCE. Une vision cockpit : utilité et apport pour l'entreprise BUSINESS INTELLIGENCE Une vision cockpit : utilité et apport pour l'entreprise 1 Présentation PIERRE-YVES BONVIN, SOLVAXIS BERNARD BOIL, RESP. SI, GROUPE OROLUX 2 AGENDA Définitions Positionnement de la

Plus en détail

SQL. Oracle. pour. 4 e édition. Christian Soutou Avec la participation d Olivier Teste

SQL. Oracle. pour. 4 e édition. Christian Soutou Avec la participation d Olivier Teste Christian Soutou Avec la participation d Olivier Teste SQL pour Oracle 4 e édition Groupe eyrolles, 2004, 2005, 2008, 2010, is BN : 978-2-212-12794-2 Partie III SQL avancé La table suivante organisée en

Plus en détail

Bases de données. Licence Pro QSSI. patrick.marcel@univ-tours.fr http://www.info.univ-tours.fr/ marcel

Bases de données. Licence Pro QSSI. patrick.marcel@univ-tours.fr http://www.info.univ-tours.fr/ marcel Bases de données Licence Pro QSSI patrick.marcel@univ-tours.fr http://www.info.univ-tours.fr/ marcel contexte nous avons vu comment exprimer des requêtes simples nous avons vu des requêtes que nous ne

Plus en détail

BDWA EXAMEN - 27 MARS 2006 Documents autorisés. Exercice 1. Requêtes décisionnelles

BDWA EXAMEN - 27 MARS 2006 Documents autorisés. Exercice 1. Requêtes décisionnelles Nom : Prénom : Page 1 Université Pierre et Marie Curie Paris 6 BDWA EXAMEN - 27 MARS 2006 Documents autorisés Master d'informatique Exercice 1. Requêtes décisionnelles On considère une base de données

Plus en détail

L informatique des entrepôts de données

L informatique des entrepôts de données L informatique des entrepôts de données Daniel Lemire SEMAINE 9 Les opérations OLAP 9.1. Présentation de la semaine Nous avons vu la semaine précédente qu il est possible de définir partiellement le paradigme

Plus en détail

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation

Plan. Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation Data WareHouse Plan Introduction Eléments de la théorie des systèmes d'informations Les entrepôts de données (Datawarehouse) Les datamart Architecture Modélisation 2 Présentation Besoin: prise de décisions

Plus en détail

BdD Base de Données. Clément VERMOT-DESROCHES

BdD Base de Données. Clément VERMOT-DESROCHES BdD Base de Données Clément VERMOT-DESROCHES 17 novembre 2009 Table des matières 1 Présentation Générale 3 1.1 Présentation Générale............................. 3 1.1.1 Définition................................

Plus en détail

Bases de Données Avancées

Bases de Données Avancées 1/26 Bases de Données Avancées DataWareHouse Thierry Hamon Bureau H202 - Institut Galilée Tél. : 33 1.48.38.35.53 Bureau 150 LIM&BIO EA 3969 Université Paris 13 - UFR Léonard de Vinci 74, rue Marcel Cachin,

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Datawarehouse (DW) Le Datawarehouse est une collection de données orientées sujet, intégrées, non volatiles et historisées, organisées

Plus en détail

Bases de données. Modèle décisionnel. Jérôme Rocheteau. Lecture 8. Institut Catholique d Arts et Métiers Site de Nantes

Bases de données. Modèle décisionnel. Jérôme Rocheteau. Lecture 8. Institut Catholique d Arts et Métiers Site de Nantes Bases de données Lecture 8 1 / 25 Bases de données Modèle décisionnel Jérôme Rocheteau Institut Catholique d Arts et Métiers Site de Nantes Lecture 8 Bases de données Lecture 8 2 / 25 1 Structure multidimensionnelle

Plus en détail

Les entrepôts de données

Les entrepôts de données Les entrepôts de données Lydie Soler Janvier 2008 U.F.R. d informatique Document diffusé sous licence Creative Commons by-nc-nd (http://creativecommons.org/licenses/by-nc-nd/2.0/fr/) 1 Plan Introduction

Plus en détail

BDMD NI248. Exercice 1 : Cube

BDMD NI248. Exercice 1 : Cube Nom : Prénom : Page 1 Université Pierre et Marie Curie Paris 6 Master d'informatique BDMD NI248 23 mars 2011 Documents autorisés - 2h Exercice 1 : Cube 5 pts Soit une table Ventes (Magasin, Produit, Couleur,

Plus en détail

Optimisation des bases de données

Optimisation des bases de données Optimisation des bases de données Mise en œuvre sous Oracle Laurent Navarro Avec la contribution technique d Emmanuel Lecoester Pearson Education France a apporté le plus grand soin à la réalisation de

Plus en détail

Table des matières PREAMBULE...I 1 L OUTIL SQL*PLUS... 1-1 2 L INTERROGATION DES DONNEES... 2-1 3 LES OPERATEURS LOGIQUES... 3-1

Table des matières PREAMBULE...I 1 L OUTIL SQL*PLUS... 1-1 2 L INTERROGATION DES DONNEES... 2-1 3 LES OPERATEURS LOGIQUES... 3-1 Table des matières PREAMBULE...I 1 L OUTIL SQL*PLUS... 1-1 Le langage SQL... 1-2 Le langage PL/SQL... 1-4 Qu'est-ce que SQL*Plus?... 1-5 Commandes SQL*Plus... 1-7 Variables de substitution... 1-15 La commande

Plus en détail

Encryptions, compression et partitionnement des données

Encryptions, compression et partitionnement des données Encryptions, compression et partitionnement des données Version 1.0 Grégory CASANOVA 2 Compression, encryption et partitionnement des données Sommaire 1 Introduction... 3 2 Encryption transparente des

Plus en détail

2014/2015. Rapport 4 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ENCADRE PAR : MME L.LAMRINI ANOUAR OUFQIR SMARTSIR

2014/2015. Rapport 4 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ENCADRE PAR : MME L.LAMRINI ANOUAR OUFQIR SMARTSIR 2014/2015 Rapport 4 REALISE PAR : ISMAIL NAIT ABDELLAH OUALI SOUFIANE HOURRI MOHAMED OUSSAFI ENCADRE PAR : ANOUAR OUFQIR MME L.LAMRINI SMARTSIR Table des matières Introduction... 2 Choix de l outil pour

Plus en détail

BUSINESS OBJECTS V5 / V6

BUSINESS OBJECTS V5 / V6 BUSINESS OBJECTS V5 / V6 Durée Objectif 2 jours L objectif de ce cours est de savoir utiliser le logiciel BUSINESS OBJECTS pour faire des interrogations multi - dimensionnelles sur les univers BO et de

Plus en détail

Kit de survie sur les bases de données

Kit de survie sur les bases de données Kit de survie sur les bases de données Pour gérer un grand nombre de données un seul tableau peut s avérer insuffisant. On représente donc les informations sur différentes tables liées les unes aux autres

Plus en détail

Informatique Décisionnelle pour l environnement

Informatique Décisionnelle pour l environnement Territoires, Environnement, Télédétection et Information Spatiale Unité mixte de recherche AgroParisTech - Cirad - Irstea Informatique Décisionnelle pour l environnement Principe, architecture informatique

Plus en détail

Le langage SQL Rappels

Le langage SQL Rappels Le langage SQL Rappels Description du thème : Présentation des principales notions nécessaires pour réaliser des requêtes SQL Mots-clés : Niveau : Bases de données relationnelles, Open Office, champs,

Plus en détail

Datawarehouse and OLAP

Datawarehouse and OLAP Datawarehouse and OLAP Datawarehousing Syllabus, materials, notes, etc. See http://www.info.univ-tours.fr/ marcel/dw.html today architecture ETL refreshing warehousing projects architecture architecture

Plus en détail

ETL Extract - Transform - Load

ETL Extract - Transform - Load ETL Extract - Transform - Load Concept général d analyse en ligne (rappels) Rémy Choquet - Université Lyon 2 - Master 2 IIDEE - 2006-2007 Plan Définitions La place d OLAP dans une entreprise OLAP versus

Plus en détail

Opération DIVISION. Huit opérations de base de l algèbre relationnelle. SELECT [ALL] [DISTINCT] liste d'attributs FROM table

Opération DIVISION. Huit opérations de base de l algèbre relationnelle. SELECT [ALL] [DISTINCT] liste d'attributs FROM table Opération DIVISION Huit opérations de base de l algèbre relationnelle PROJECTION SELECTION JOINTURE SELECT [ALL] [DISTINCT] liste d'attributs FROM table SELECT liste d'attributs FROM table WHERE condition

Plus en détail

K. Smaïli Professeur à l université Nancy2. 1/105 K. Smaïli 2008

K. Smaïli Professeur à l université Nancy2. 1/105 K. Smaïli 2008 K. Smaïli Professeur à l université Nancy2 1/105 K. Smaïli 2008 Introduction au BI (Business Intelligence) Notion de Datawarehouse Cognos Powerplay Powerplay Transformer Impromptu Datamining Le panier

Plus en détail

Requêtes S.Q.L. 1 Création des requêtes sous ACCESS

Requêtes S.Q.L. 1 Création des requêtes sous ACCESS Activité 15 Requêtes S.Q.L. Objectif Interroger une base de données avec des requêtes SQL. Fiche de savoir associée Ressource à utiliser Csi1Projets.pdf (Dossier 4) B.1.1.b. 1 En cliquant sur l'objet "Requêtes"

Plus en détail

Le Data Warehouse. Fait Vente. temps produit promotion. magasin. revenu ... Produit réf. libellé volume catégorie poids. Temps jour semaine date ...

Le Data Warehouse. Fait Vente. temps produit promotion. magasin. revenu ... Produit réf. libellé volume catégorie poids. Temps jour semaine date ... Le Data Warehouse Temps jour semaine date magasin nom ville m 2 région manager... Fait Vente temps produit promotion magasin revenu... Produit réf. libellé volume catégorie poids... Promo nom budget média

Plus en détail

et les Systèmes Multidimensionnels

et les Systèmes Multidimensionnels Le Data Warehouse et les Systèmes Multidimensionnels 1 1. Définition d un Data warehouse (DW) Le Data warehouse (entrepôt de données) est une collection de données orientées sujet, intégrées, non volatiles

Plus en détail

Les bases de données

Les bases de données Les bases de données Introduction aux fonctions de tableur et logiciels ou langages spécialisés (MS-Access, Base, SQL ) Yves Roggeman Boulevard du Triomphe CP 212 B-1050 Bruxelles (Belgium) Idée intuitive

Plus en détail

Urbanisation des SI-NFE107

Urbanisation des SI-NFE107 OLAP Urbanisation des SI-NFE107 Fiche de lecture Karim SEKRI 20/01/2009 OLAP 1 Introduction PLAN OLAP Les différentes technologies OLAP Plate formes et Outils 20/01/2009 OLAP 2 Informatique décisionnelle

Plus en détail

Les entrepôts de données et l analyse de données

Les entrepôts de données et l analyse de données LOG660 - Bases de données de haute performance Les entrepôts de données et l analyse de données Quelques définitions Entreposage de données (data warehousing): «La copie périodique et coordonnée de données

Plus en détail

Bases de Données OLAP

Bases de Données OLAP Bases de Données OLAP Hiver 2013/2014 Melanie Herschel melanie.herschel@lri.fr Université Paris Sud, LRI Chapitre 1 Introduction Détails administratifs Entrepôts de Données Perspective sur le semestre

Plus en détail

SQL SERVER 2008, BUSINESS INTELLIGENCE

SQL SERVER 2008, BUSINESS INTELLIGENCE SGBD / Aide à la décision SQL SERVER 2008, BUSINESS INTELLIGENCE Réf: QLI Durée : 5 jours (7 heures) OBJECTIFS DE LA FORMATION Cette formation vous apprendra à concevoir et à déployer une solution de Business

Plus en détail

Entrepôt de données (ED) Exercice traité en cours

Entrepôt de données (ED) Exercice traité en cours Enoncé Entrepôt de données (ED) Exercice traité en cours Une grande entreprise à succursales multiples veut rassembler toutes les nuits dans un entrepôt de données des informations sur les s du jour afin

Plus en détail

MTI820 Entrepôts de données et intelligence d affaires. Concep)on physique des données

MTI820 Entrepôts de données et intelligence d affaires. Concep)on physique des données MTI820 Entrepôts de données et intelligence d affaires Concep)on physique des données Département de génie logiciel et des TI MTI820 Hiver 2011 S. ChaFi, C. Desrosiers 1 Le cycle de vie d un projet en

Plus en détail

Les outils OLAP. Proposé par : Mr R.Chalal. Réalisé par : Benakezouh Leïla Tifous Amira

Les outils OLAP. Proposé par : Mr R.Chalal. Réalisé par : Benakezouh Leïla Tifous Amira Les outils OLAP Proposé par : Mr R.Chalal Réalisé par : Benakezouh Leïla Tifous Amira SOMMAIRE Chapitre 1 Chapitre 2 Chapitre 3 Chapitre 4 Chapitre 5 Chapitre 6 OLAP: Définition, 12 règles, opérations

Plus en détail

SQL pour. Oracle 10g. Razvan Bizoï. Tsoft, Groupe Eyrolles, 2006, ISBN : 2-212-12055-9, ISBN 13 : 978-2-212-12055-4

SQL pour. Oracle 10g. Razvan Bizoï. Tsoft, Groupe Eyrolles, 2006, ISBN : 2-212-12055-9, ISBN 13 : 978-2-212-12055-4 SQL pour Oracle 10g Razvan Bizoï Tsoft, Groupe Eyrolles, 2006, ISBN : 2-212-12055-9, ISBN 13 : 978-2-212-12055-4 Table des matières PRÉAMBULE... MODULE 1 : PRÉSENTATION DE L ENVIRONNEMENT... 1-1 Qu'est-ce

Plus en détail

Oracle Database 10g: Les fondamentaux du langage SQL I

Oracle Database 10g: Les fondamentaux du langage SQL I Oracle University Appelez-nous: +33 (0) 1 57 60 20 81 Oracle Database 10g: Les fondamentaux du langage SQL I Durée: 3 Jours Description Ce cours offre aux étudiants une introduction à la technologie de

Plus en détail

Business Intelligence avec Excel, Power BI et Office 365

Business Intelligence avec Excel, Power BI et Office 365 Avant-propos A. À qui s adresse ce livre? 9 1. Pourquoi à chaque manager? 9 2. Pourquoi à tout informaticien impliqué dans des projets «BI» 9 B. Obtention des données sources 10 C. Objectif du livre 10

Plus en détail

Action de formation: SQL Server Business Intelligence & Data Warehouse

Action de formation: SQL Server Business Intelligence & Data Warehouse Action de formation: SQL Server Business Intelligence & Data Warehouse Contenu : Integration Services Présentation de Management Studio - Présenter les différentes tâches de SSMS - Structure des serveurs

Plus en détail

Cours de Bases de Données Avancées 2006-2007 Groupe cinema, Rapport 4

Cours de Bases de Données Avancées 2006-2007 Groupe cinema, Rapport 4 1 Annexes Avec ce rapport il faut rendre en annexe le script SQL corrigé qui permet de créer la base de données selon votre modèle relationnel ainsi que de la peupler avec un nombre de tuples suffisant.

Plus en détail

Les requêtes de consultation. Ex. bibliothèque état de la base. Ex. bibliothèque état de la base. Consultation simple d'une table

Les requêtes de consultation. Ex. bibliothèque état de la base. Ex. bibliothèque état de la base. Consultation simple d'une table Les requêtes de consultation Représente la ma jorité des requêtes SQL (Deuxième partie) Walter RUDAMETKIN Bureau F011 Walter.Rudametkin@polytech-lille.fr Encapsule complètement l'algèbre relationnel Une

Plus en détail

Prototype SOLAP appliqué sur des champs continus en mode raster

Prototype SOLAP appliqué sur des champs continus en mode raster Session démos 24 novembre 2014 Prototype SOLAP appliqué sur des champs continus en mode raster Analyse de hot spots de criminalité Jean-Paul Kasprzyk, doctorant Introduction 2 L informatique décisionnelle

Plus en détail

4. Concepts pour la manipulation des données Implémentation en SQL

4. Concepts pour la manipulation des données Implémentation en SQL 4. Concepts pour la manipulation des données Implémentation en SQL 4.1. OPERATEURS DE L ALGEBRE RELATIONNEL ALGEBRE RELATIONNELLE = { opérateurs sur les relations donnant en résultat des relations } Opérateurs

Plus en détail

SQL Requêtes simples. Outline ... A.D., S.B. Février 2013. .1 Introduction. .2 Requêtes mono-relation. .3 Requêtes multi-relations

SQL Requêtes simples. Outline ... A.D., S.B. Février 2013. .1 Introduction. .2 Requêtes mono-relation. .3 Requêtes multi-relations SQL Requêtes simples BD4 AD, SB Licence MASS, Master ISIFAR, Paris-Diderot Février 2013 BD4 (Licence MASS, Master ISIFAR, Paris-Diderot) SQL 1/19 Février 2013 1 / 19 Outline 1 2 Requêtes mono-relation

Plus en détail

Informatique Initiation aux requêtes SQL. Sommaire

Informatique Initiation aux requêtes SQL. Sommaire cterrier.com 1/14 04/03/2008 Informatique Initiation aux requêtes SQL Auteur : C. Terrier ; mailto:webmaster@cterrier.com ; http://www.cterrier.com Utilisation : Reproduction libre pour des formateurs

Plus en détail

PLAN. Les systèmes d'information analytiques. Exemples de décisions

PLAN. Les systèmes d'information analytiques. Exemples de décisions Les systèmes d'information analytiques Dr A.R. Baba-ali Maitre de conferences USTHB PLAN Le cycle de decision Les composants analytiques ETL (Extract, Transform and Load) Entrepot de (Data warehouse) Traitement

Plus en détail

Rappels( Requêtes(OLAP( Rappels( Requêtes(SIO/SID(

Rappels( Requêtes(OLAP( Rappels( Requêtes(SIO/SID( RequêtesOLAP Rappels Aucoursprécédent,onavu Ladis9nc9onOLTP/OLAP Lemodèlemul9dimensionnel,etsonimplémenta9onen rela9onnelschémaenétoile/flocon) Lareprésenta9ondesfaitsetdesdimensionsàl aided uncube Unemesure=une

Plus en détail

Entrepôts de données

Entrepôts de données /132 Entrepôts de données Thierry Hamon Bureau H202 Institut Galilée - Université Paris 13 & LIMSI-CNRS hamon@limsi.fr https://perso.limsi.fr/hamon/teaching/dwa-air3-20152016/ AIR3 DWH 2/132 OLAP Introduction

Plus en détail

Interrogation de bases de données avec le langage SQL

Interrogation de bases de données avec le langage SQL Web dynamique avec PHP et MySQL Interrogation de bases de données avec le langage SQL C. Sirangelo & F. Tort Interroger une base avec SQL Interroger une base de données: extraire des données de la base

Plus en détail

SAP BusinessObjects Web Intelligence (WebI) BI 4

SAP BusinessObjects Web Intelligence (WebI) BI 4 Présentation de la Business Intelligence 1. Outils de Business Intelligence 15 2. Historique des logiciels décisionnels 16 3. La suite de logiciels SAP BusinessObjects Business Intelligence Platform 18

Plus en détail

Introduction aux bases de données

Introduction aux bases de données Introduction aux bases de données Cours 3. : Le langage SQL Vincent Martin email : vincent.martin@univ-tln.fr page personnelle : http://lsis.univ-tln.fr/~martin/ Master 1. LLC Université du Sud Toulon

Plus en détail

Introduction : présentation de la Business Intelligence

Introduction : présentation de la Business Intelligence Les exemples cités tout au long de cet ouvrage sont téléchargeables à l'adresse suivante : http://www.editions-eni.fr Saisissez la référence ENI de l'ouvrage RI3WXIBUSO dans la zone de recherche et validez.

Plus en détail

Révisions sur les Bases de données. Lycée Thiers - PC/PC*

Révisions sur les Bases de données. Lycée Thiers - PC/PC* Bases de données Architecture clients-serveur Architecture trois tiers Vocabulaire des BDD Algèbre relationnelle Création/modification d une table Commandes SQL de manipulation de tables Définition formelle

Plus en détail

La problématique. La philosophie ' ) * )

La problématique. La philosophie ' ) * ) La problématique!" La philosophie #$ % La philosophie &'( ' ) * ) 1 La philosophie +, -) *. Mise en oeuvre Data warehouse ou Datamart /01-2, / 3 13 4,$ / 5 23, 2 * $3 3 63 3 #, 7 Datawarehouse Data warehouse

Plus en détail

Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France

Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France Projet Fresqueau: un entrepôt des données pour analyser la qualité de l eau en France 12 juin 2013 Atelier SOLAP @EDA2013 Démarrage Projet MIDAS - 29 Janvier 2008 1 Plan Projet Fresqueau Objectifs généraux

Plus en détail

Requêtes SQL avec la date et le groupement Chapitre 7 série 3 Base de données AcciRoute SOLUTIONS

Requêtes SQL avec la date et le groupement Chapitre 7 série 3 Base de données AcciRoute SOLUTIONS 2003-07-01 1 Requêtes SQL avec la date et le groupement Chapitre 7 série 3 Base de données AcciRoute SOLUTIONS Voici MRD de la BD AcciRoute pour représenter les rapports d accidents de la route. Le MRD

Plus en détail

Les ntrepôts de onnées. (Data Warehouses) La Modélisation

Les ntrepôts de onnées. (Data Warehouses) La Modélisation Les ntrepôts de onnées (Data Warehouses) La Modélisation 1 Les$Faits La$défini-on$ Unfaitestlapluspe-teinforma-onanalysable.C'estuneinforma-onqui con-entlesdonnéesobservables(les$faits)quel'onpossèdesurunsujetet

Plus en détail

Construction d un EDD avec SQL 2008 R2. D. Ploix - M2 Miage - EDD - Création

Construction d un EDD avec SQL 2008 R2. D. Ploix - M2 Miage - EDD - Création Construction d un EDD avec SQL 2008 R2 Plan Analyse du DW construit Construction de la base DW dans SQL 2008 Construction des tables de faits et dimensions Injection des données Étapes de l injection des

Plus en détail

NFA 008. Introduction à NoSQL et MongoDB 25/05/2013

NFA 008. Introduction à NoSQL et MongoDB 25/05/2013 NFA 008 Introduction à NoSQL et MongoDB 25/05/2013 1 NoSQL, c'est à dire? Les bases de données NoSQL restent des bases de données mais on met l'accent sur L'aspect NON-relationnel L'architecture distribuée

Plus en détail

Entrepôts de données Cours 2 et 3 : modélisation et interrogation. Anne Doucet Anne.Doucet@lip6.fr

Entrepôts de données Cours 2 et 3 : modélisation et interrogation. Anne Doucet Anne.Doucet@lip6.fr Entrepôts de données Cours 2 et 3 : modélisation et interrogation Anne Doucet Anne.Doucet@lip6.fr 1 Plan Modélisation des données Concepts multidimensionnels Opérations Modèle de données ROLAP Étoile,

Plus en détail