Faire un agrandissement d une figure c est multiplier toutes les longueurs par un même nombre k plus grand que 1.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Faire un agrandissement d une figure c est multiplier toutes les longueurs par un même nombre k plus grand que 1."

Transcription

1 CHAPITRE 10 AGRANDISSEMENT ET REDUCTION I. NOTION D AGRANDISSEMENT ET REDUCTION Faire un agrandissement d une figure c est multiplier toutes les longueurs par un même nombre k plus grand que 1. Exemple : Le 2 ème triangle est un agrandissement du 1 er, les longueurs ont été multipliées par 1,5 En effet : 3 1,5 = 4,5 4 1,5 = 6 et 5 1,5 = 7,5. Le coefficient d agrandissement k est égal à 1,5. Faire une réduction d une figure c est multiplier toutes les longueurs par un même nombre k plus grand compris entre 0 et 1. Exemple : Le 2 ème triangle est une réduction du 1 er, les longueurs ont été divisées par 2. On préfère dire qu elles ont été multipliées par 1 2. En effet : = = 3 et = 4 Le coefficient d agrandissement k est égal à 1 c'est-à-dire à 0,5. 2 Page 1 sur 7

2 Calcul du coefficient k : Coefficient d agrandissement = Longueur agrandie Coefficient de réduction = Dans le 1 er exemple : 4,5 3 = 6 4 = 7,5 1,5 = 1,5. Dans le 2 ème exemple : 2 4 = 3 6 = 4 8 = 1 2. II. EFFET SUR LES ANGLES Dans un agrandissement ou une réduction, les angles sont conservés. Les angles les deux triangles du premier exemple du paragraphe I son égaux, de même pour les triangles du deuxième exemple. III. EFFET SUR LES AIRES A. ACTIVITE Quand on agrandit une figure, l aire aussi augmente mais pas de la même façon que les longueurs. Considérons les deux rectangles ci-dessous : Il est clair que le 2 ème est un agrandissement du 1 er de coefficient 3. Que se passe-il pour les aires? 1cm 2cm = 2 cm² 3cm 6cm = 18 cm² L aire du 1 er est égale à 2 cm² et celle du 2 ème est égale à 18 cm². L aire a été multipliée par 9! Page 2 sur 7

3 Explication : Chacune des deux dimensions du petit rectangle est multipliée par 3. Son aire, qui est le produit des deux dimensions, est donc multipliée par 3 3 c'est-à-dire par 9. Autre exemple : Considérons un rectangle quelconque de longueur L et de largeur l. Faisons un agrandissement de coefficient 10. Les longueurs des côtés sont multipliées par 10 mais pas l aire! Il est facile de démontrer que l aire du grand rectangle est 100 fois plus grande. En effet : L aire du petit rectangle est égale à L l. La longueur du grand est 10L et sa largeur 10l. L aire du grand est égale à 10L 10l soit L l soit 100 L l c'est-à-dire 100 fois l aire du petit. Cas d une réduction : le principe est le même. Revenons au premier exemple de l activité. On peut dire aussi que le petit rectangle est une réduction du grand de coefficient 1. L aire du petit 3 est égale à l aire du grand multipliée par soit 1 9. B. THEOREME (ADMIS) Si les longueurs d une figure sont multipliées par un nombre k (positif), alors l aire est multipliée par k 2. IV. EFFET SUR LES VOLUMES A. ACTIVITE De la même façon, lors d un agrandissement, le volume n augmente pas de la même façon que les longueurs. Considérons les deux cubes ci-dessous : 1 cm 3 cm Il est clair que le 2 ème est un agrandissement du 1 er de coefficient 3. Que se passe-il pour les volumes? Page 3 sur 7

4 1cm 1cm 1cm = 3 cm 3 3cm 3cm 3cm = 27 cm 3 Le volume du 1 er est égal à 3 cm 3 et celui du 2 ème est égal à 27 cm 3. Le volume a été multiplié par 27! Explication : Chacune des trois dimensions du petit cube est multipliée par 3. Son volume qui est le produit des trois dimensions, est donc multipliée par c'est-à-dire par 27. Autre exemple : Considérons un pavé quelconque de longueur L, de largeur l et de hauteur h. Faisons un agrandissement de coefficient 10. Les longueurs des côtés sont multipliées par 10 mais pas le volume! Il est facile de démontrer que le volume du grand pavé est 1000 fois plus grand. En effet : L aire du petit rectangle est égale à L l h. La longueur du grand est 10L, sa largeur 10l et sa hauteur 10h. Le volume du grand est égal à 10L 10l 10h soit L l h soit 1000 L l h c'est-à-dire 1000 fois le volume du petit. B. THEOREME (ADMIS) Si les longueurs d une figure sont multipliées par un nombre k (positif), alors le volume est multiplié par k 3. V. RESUME Dans un agrandissement de coefficient k : Dans une réduction de coefficient k : Longueur agrandie k > 1 0 < k < 1 Longueur agrandie = k Aire agrandie = Aire initiale k 2 Volume agrandi = Volume initial k 3 = k Aire réduite = Aire initiale k 2 Volume réduit = Volume initial k 3 Page 4 sur 7

5 VI. APPLICATIONS Enoncé1 : La maquette d une maison a une hauteur de 30 cm, une surface au sol d aire 1,2 m² et un volume de 0,3 m 3. La maison réelle est un agrandissement de la maquette. Le coefficient d agrandissement est 10. Calculer la hauteur réelle H, l aire A de la surface réelle au sol et le volume réel V. Le coefficient d agrandissement est 10 donc : H = 30 cm 10 = 300 cm = 3 m A = 1,2 m² 10² = 1,2 m² 100 = 120 cm² V = 0,3 m = 0,3 m = 300 cm 3 Enoncé 2 : Un objet a une hauteur de 2 m et un volume V égal à 120 dm 3. Un autre objet est une réduction du premier. Sa hauteur est égale à 1,60 m. a) Calculer le coefficient de réduction. b) Calculer son volume V. a) Soit k le coefficient de réduction. = 1,6 = 0,8 (Il s agit d une réduction, k est bien plus petit que 1). 2 b) V = V k 3 = 120 dm 3 0,8 3 = 61,44 dm 3 Enoncé 3 : Un rectangle a une aire A égale à 12 cm² et les diagonales de longueur 5 cm. On réalise un agrandissement de ce rectangle de façon que les diagonales aient une longueur égale à 8 cm. a) Calculer le coefficient d agrandissement. b) Calculer l aire A du grand rectangle. a) Soit k le coefficient d agrandissement. Longueur agrandie = 8 = 1,6 (Il s agit d un agrandissement, k est bien plus grand que 1). 5 b) A = A k 2 = 12 cm 2 1,6 2 = 30,72 cm 2 Page 5 sur 7

6 Enoncé 4 : La Tour Eiffel, qui est construite en fer, mesure environ 300 m de haut et sa masse M est égale à tonnes. On fabrique maquette en fer de 1 m de haut. a) Calculer le coefficient de réduction. b) Calculer la masse M de la maquette (le coefficient de réduction des masses est le même que celui des volumes. a) Soit k le coefficient de réduction. = = 1 = 0,01 (Il s agit d une réduction, k est bien plus petit que 1). 100 b) Il en va des masse comme des volumes donc : M = M k 3 = tonnes 0,01 3 = 0,008 tonnes = 8 kg. VII. SECTION D UN PYRAMIDE OU D UN CONE S S D C A B A R O D C A B A O A. THEOREME (ADMIS) Lorsqu on coupe une pyramide (ou un cône) par un plan parallèle à la base on obtient une petite pyramide (ou un petit cône) qui est une réduction due la grande pyramide (du grand cône). Le coefficient de réduction k est égal à SA SA = SB SB = A B AB = SO SO = O A OA etc Rappel : on a aussi (voir chapitre 7) (A B ) // (AB) (B C ) // (BC).. (A O )//(AO) Page 6 sur 7

7 B. APPLICATION La figure représente une pyramide régulière dont la base est un pentagone régulier. Elle a été coupée par un plan parallèle à la base. I et J sont les centres respectifs de la base et de la section. A et A sont les aires de la base et de la section. V et V sont les volumes de la grande et de la petite pyramide. On donne : SJ = 12 cm, SI = 20 cm et A = 150 cm². 1) Calculer V. 2) Quelle est la nature de la section? 3) Calculer le coefficient de réduction des longueurs k. 4) Calculer A. 5) Calculer V. a) V = Aire de la base hauteur 3 = 150 cm2 20 cm 3 = cm 3 b) La section est une réduction de la base donc c est un pentagone régulier. c) = SJ SI = = 0,6. d) A = A k 2 = 150 cm 2 0,6 2 = 150 0,36 cm 2 = 54 cm 2 e) V = V k 3 = 1000 cm 3 0,6 3 = ,216 cm 3 = 21,6 cm 3 Page 7 sur 7

TD d exercices de Géométrie dans l espace.

TD d exercices de Géométrie dans l espace. TD d exercices de Géométrie dans l espace. Exercice 1. (Brevet 2006) Pour la pyramide SABCD ci-contre : La base est le rectangle ABCD de centre O. AB = 3 cm et BD = 5cm. La hauteur [SO] mesure 6 cm. 1)

Plus en détail

côté X côté = aire X = 16 côté X côté = aire X = 49 côté X côté = aire X = 81 côté X côté = aire X = 9

côté X côté = aire X = 16 côté X côté = aire X = 49 côté X côté = aire X = 81 côté X côté = aire X = 9 Trouve la longueur du côté du carré dont l aire est de 16 cm²? X = 16 La longueur du côté du carré, dont l aire est de 16 cm², est de.. cm Trouve la longueur du côté du carré dont l aire est de 49 cm²?

Plus en détail

Exercices de 5 ème Chapitre 8 Volumes Énoncés. 3. Quelle est la nature des faces latérales de ce solide et la nature de leur représentation?

Exercices de 5 ème Chapitre 8 Volumes Énoncés. 3. Quelle est la nature des faces latérales de ce solide et la nature de leur représentation? Énoncés Exercice 1 1. Quel est la nature précise du solide représenté ci-contre? Compléter sa perspective cavalière. 2. Donner le nombre de sommets, d'arêtes et de faces de ce solide. 3. Quelle est la

Plus en détail

2. Si x désigne le prix d un article, exprimer en fonction de x le prix de cet article après une baisse de 20%.

2. Si x désigne le prix d un article, exprimer en fonction de x le prix de cet article après une baisse de 20%. 3 ème REVISIONS BREVET EXERCICE 1 : Soit P = (x 2) (2x + 1) (2x + 1)² 1. Développer et réduire P. 2. Factoriser P. 3. Résoudre l équation (2x + 1) (x + 3) = 0 4. Pour x = 3, écrire P sous forme fractionnaire.

Plus en détail

Feuille de révision n 3 pour le brevet

Feuille de révision n 3 pour le brevet Feuille de révision n 3 pour le brevet Cette feuille est constituée d exercices tirés des annales des brevets des années antérieures et traite les chapitres abordés en classe depuis le deuxième brevet

Plus en détail

Propriété (admise) : la section d un cube par un plan parallèle à une face est un

Propriété (admise) : la section d un cube par un plan parallèle à une face est un Vérification des acquis (oral). Découverte de la section d un pavé droit par un plan (faire fiche activité 1). I- SECTION DE PARALLELEPIPEDE RECTANGLE PAR UN PLAN 1) Plan Pour avoir une représentation

Plus en détail

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION CHAPITRE 2 FONCTIONS I. INTRODUCTION Une fonction est «une machine à transformer des nombres». Par eemple, la fonction «carré» désigne la «machine» qui transforme les nombres en leurs carrés. Ainsi elle

Plus en détail

Théorème de Thalès et sa réciproque Rappel : signification de «réciproque»

Théorème de Thalès et sa réciproque Rappel : signification de «réciproque» Théorème de Thalès et sa réciproque Rappel : signification de «réciproque» «Si un bâtiment a un clocher alors ce bâtiment est une église» la réciproque est vraie «Si un bâtiment est une église alors ce

Plus en détail

COURS : GÉOMÉTRIE DANS L ESPACE

COURS : GÉOMÉTRIE DANS L ESPACE CHAPITE 6 COUS : GÉOMÉTIE DANS L ESPACE Extrait du programme de la classe de 3 ème : Sphère CONTENU COMPÉTENCES EXIGIBLES COMMENTAIES - Savoir que la section d une sphère par un plan est un cercle. - Savoir

Plus en détail

Brevet des collèges, correction 27 juin 2013 Métropole La Réunion Antilles-Guyane

Brevet des collèges, correction 27 juin 2013 Métropole La Réunion Antilles-Guyane Brevet des collèges, correction 27 juin 201 Métropole La Réunion Antilles-Guyane Exercice 1 4 points Avec un logiciel : on a construit un carré ABD, de côté 4 cm. on a placé un point M mobile sur [AB]

Plus en détail

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame Diplôme National du Brevet Épreuve blanche Proposition de corrigé Externat Notre Dame Vendredi 9 décembre 2011 durée de l'épreuve : 2 h I - Activités numériques II - Activités géométriques III Problème

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges PONDICHÉRY Avril 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour 4 points. EXERCICE 1 Cet

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Exercices de 6 ème Chapitre 6 Périmètres et aires Énoncés

Exercices de 6 ème Chapitre 6 Périmètres et aires Énoncés Énoncés Exercice 1 Nommer tous les rectangles, les losanges et les carrés de la figure ci-contre dont les noms sont constitués uniquement de consonnes. J I B M A O E L K U Y Exercice onner la nature précise

Plus en détail

SEANCE 1. Séquence 9 SEQUENCE 9 ORDRE. JE REVISE LES ACQUIS DE LA 5 e 1) a < b < c b < a < c c < a < b c < b < a 4,819 4,82 4,821 4,83 3) = >

SEANCE 1. Séquence 9 SEQUENCE 9 ORDRE. JE REVISE LES ACQUIS DE LA 5 e 1) a < b < c b < a < c c < a < b c < b < a 4,819 4,82 4,821 4,83 3) = > Séquence 9 SEQUENCE 9 ORDRE Ce que tu devais faire JE REVISE LES ACQUIS DE LA 5 e a < b < c b < a < c c < a < b c < b < a 4,819 4,82 4,821 4,83 3 < 14 3 14 3 14 = > 2 10 2 10 2 10 4) 5) 4 3 1 999 1 997

Plus en détail

Comparatif des programmes de mathématiques Cycle 3 et 6 ème

Comparatif des programmes de mathématiques Cycle 3 et 6 ème Comparatif des programmes de mathématiques Cycle 3 et 6 ème 1 - Nombres et calcul Cycle 3 L étude organisée des nombres est poursuivie jusqu au milliard, mais des nombres plus grands peuvent être rencontrés

Plus en détail

4 points sont réservés à : - la présentation générale de la copie : bien écrit / propre / questions numérotées / réponses soulignées..

4 points sont réservés à : - la présentation générale de la copie : bien écrit / propre / questions numérotées / réponses soulignées.. 3 ème CORRECTION détaillée du Brevet blanc n 2 4 points sont réservés à : - la présentation générale de la copie : bien écrit / propre / questions numérotées / réponses soulignées.. Vous devez vous efforcer

Plus en détail

Correction du brevet blanc du 12 Mai 2011. 1ère étape : 2 3 + 1 = 2 3 + 3 3 = 5 3. 2ème étape : 3ème étape : 25 9 ( 2 2

Correction du brevet blanc du 12 Mai 2011. 1ère étape : 2 3 + 1 = 2 3 + 3 3 = 5 3. 2ème étape : 3ème étape : 25 9 ( 2 2 PARTIE NUMÉRIQUE (14 points) Correction du brevet blanc du 12 Mai 2011 Exercice 1 1.a. Le nombre de départ est 1 1ère étape : 1 + 1 = 2 2ème étape : 2² = 4 3ème étape : 4 1² 4-1²= 4 1 = 3 Le résultat final

Plus en détail

Polygones, triangles et quadrilatères

Polygones, triangles et quadrilatères Polygones, triangles et quadrilatères I) Les polygones 1) Définition : Un polygone est une figure fermée composée de plusieurs segments (au moins trois). 2) Vocabulaire a) Les côtés Chaque segment qui

Plus en détail

RAPPELS ET EXERCICES CORRIGÉS DE MATHÉMATIQUES

RAPPELS ET EXERCICES CORRIGÉS DE MATHÉMATIQUES Gendarme adjoint volontaire 8:Concours 170x240 08/10/13 10:41 Page127 Exemple : 6x + 10 = 11x 15 11x = 6x + 10 + 15 11x = 6x + 25 11x 6x = 25 5x = 25 x = 5 EXERCICES CORRIGÉS Exercices Exercice 1 1. Que

Plus en détail

N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : 0 1 2 3 4 5 6 7 8 9

N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : 0 1 2 3 4 5 6 7 8 9 N1 : LES CHIFFRES Comme pour écrire des mots, il y a besoin des lettres, pour écrire des nombres il y a besoin des chiffres : 0 1 2 3 4 5 6 7 8 9 N2 : LES NOMBRES Avec ces chiffres, on peut écrire des

Plus en détail

Par Clément en vacances sur la Côte d Azur Le 26 décembre 2010

Par Clément en vacances sur la Côte d Azur Le 26 décembre 2010 Par Clément en vacances sur la Côte d Azur Le 26 décembre 2010 1 La forme la plus simple Le carré Quatre sommets. Quatre côtés égaux. Quatre angles droits. L angle droit (angle de 90 ) Les côtés AB et

Plus en détail

(2) 1 Côté du carré par rapport au rayon du disque :

(2) 1 Côté du carré par rapport au rayon du disque : Cet article est rédigé par des élèves. Il peut comporter des oublis et imperfections, autant que possible signalés par nos relecteurs dans les notes d'édition. La géométrie de Pierre Année 01-014 LEGENDRE

Plus en détail

Programme de 5 ème en mathématiques

Programme de 5 ème en mathématiques Programme de 5 ème en mathématiques 1. PRIORITE DES OPERATIONS ; DISTRIBUTIVITE 3 I. Suite d opérations sans parenthèses 3 II. Suites d opérations avec parenthèses 4 III. Ecritures avec des lettres 5 IV.

Plus en détail

Mathématiques niveau CFG

Mathématiques niveau CFG Mathématiques niveau CFG Chapitre 4 : Géométrie COURS 4 : QUADRILATERES 1. IDENTIFIER UN QUADRILATERE ABCD est une figure géométrique formée de 4 côtés et de 4 sommets : c est un quadrilatère Le segment

Plus en détail

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME

FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME 2012 FORMULAIRE DE MATHEMATIQUES CLASSE DE TROISIEME NOUS VOUS PRESENTONS ICI UN FORMULAIRE CONTENANT LES DEFINITIONS, PROPRIETES ET THEOREMES VUS EN COURS DE MATHEMATIQUES TOUT AU LONG DE VOTRE SCOLARITE

Plus en détail

Corrections preparation BB 2012

Corrections preparation BB 2012 Corrections preparation BB 2012 Brevet 2007 - Solution Activités numériques 1 Les explications ne sont pas demandées mais nous vous les fournissons tout de même. 1) la bonne réponse est 9x 2 + 30x + 25

Plus en détail

Cours de mathématiques pour la classe de Sixième

Cours de mathématiques pour la classe de Sixième Cours de mathématiques pour la classe de Sixième Anne Craighero - Florent Girod 1 Année scolaire 2014 / 2015 1. Externat Notre Dame - Grenoble Table des matières 1 Nombres décimaux 4 I lire et écrire des

Plus en détail

Brevet Blanc de Mathématiques n 1

Brevet Blanc de Mathématiques n 1 Collège français Sadi Carnot Diego Suarez 21/11/2015 Brevet Blanc de Mathématiques n 1 Série collège Durée de l épreuve : 2 h 00 Conseils au candidat : - Le sujet comporte quatre pages numérotées de 1/4

Plus en détail

Cours de sixième. Sixième

Cours de sixième. Sixième Sixième 1. Les nombres entiers et les décimaux. 2. Additions, soustraction. 3. Multiplication. 4. Division euclidienne. 5. Division décimale. 6. Parallèles et perpendiculaires. Constructions. 7. Mesurer

Plus en détail

Cours de mathématiques de sixième

Cours de mathématiques de sixième Cours de mathématiques de sixième Bertrand Carry SOMMAIRE 1. Nombres entiers, nombres décimaux... 1 1.1 Ecriture et lecture de nombres... 1 1.2 Comparaison de deux nombres... 2 1.3 Valeurs approchées...

Plus en détail

TRAVAIL PRATIQUE. 2x + 1. x + 1

TRAVAIL PRATIQUE. 2x + 1. x + 1 A - Polynômes et factorisation Résultats d apprentissage générau C COMMUNICATION RP RÉSOLUTION DE PROBLÈMES L LIENS R RAISONNEMENT E ESTIMATION ET CALCUL MENTAL T TECHNOLOGIE V VISUALISATION généraliser

Plus en détail

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES ACADÉMIE DE NANCY-METZ OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES Session 2011 Séries S et STI Durée : 4 heures L usage d une calculatrice est autorisé. Les candidats doivent traiter les quatre exercices.

Plus en détail

Problème : Session 2008 (fonctions affines) Partie I : Partie II :

Problème : Session 2008 (fonctions affines) Partie I : Partie II : Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous

Plus en détail

Chapitre V. Polygones semblables

Chapitre V. Polygones semblables hapitre V Polygones semblables 1. Photocopieuse. Sur la photocopieuse du collège, on peut lire les pourcentages d agrandissement ou de réduction préprogrammés : 141%, 115%, 100%, 93%, 82%, 75%, 71%, et

Plus en détail

Collège Blanche de Castille

Collège Blanche de Castille ème A - B - C Brevet blanc 2 de MATHÉMATIQUES Date : 15/04/2014 Durée : 2h Collège Blanche de Castille Coefficient : Note sur : 40 Présentation : /4 Consignes : La présentation, l orthographe et la rédaction

Plus en détail

Corrigé DNB blanc février 2016

Corrigé DNB blanc février 2016 Corrigé DNB blanc février 2016 Exercice 1 Réponse A Réponse B Réponse C 1 2 3 L écriture en notation scientifique du nombre 587 000 000 est : Si on développe et réduit l expression (x + 2)(3x 1) on obtient

Plus en détail

BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points) Exercice

Plus en détail

Brevet blanc de mathématiques Mars 2014 BREVET BLANC MARS 2014 MATHEMATIQUES COLLEGE STANISLAS-NICE. Durée de l épreuve : 2 h 00

Brevet blanc de mathématiques Mars 2014 BREVET BLANC MARS 2014 MATHEMATIQUES COLLEGE STANISLAS-NICE. Durée de l épreuve : 2 h 00 BREVET BLANC MARS 2014 MATHEMATIQUES COLLEGE STANISLAS-NICE Durée de l épreuve : 2 h 00 Ce sujet comporte 5 pages numérotées de 1/5 à 5/5. Dès que ce sujet vous est remis, assurez-vous qu il est complet.

Plus en détail

Brevet blanc à rendre début mars. 1/7

Brevet blanc à rendre début mars. 1/7 Brevet blanc à rendre à la rentrée de mars 20 Partie Numérique Exercice 1. Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question une seule réponse est exacte. Aucune justification

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

Pyram. Cône Cylind. Boule

Pyram. Cône Cylind. Boule Académies et années Prisme Pavé ou cube Volumes Pyram. Cône Cylind. Boule k, Thèmes annexes k 2, k. Trigo. Pythag. Thalès Fctions. Bordeaux 00 x x Grenoble 00 x x x x Grenoble 00 pb x x x x Nancy 00 pb

Plus en détail

3 ème Cours : géométrie dans l espace

3 ème Cours : géométrie dans l espace I. La sphère : a) Définition : La sphère de centre et de rayon R est l ensemble de tous les points qui sont situés à la distance R du point. L intérieur de la sphère (l ensemble des points dont la distance

Plus en détail

Géométrie des Transformations

Géométrie des Transformations Géométrie des Transformations Plan des activités de PREMIÈRE ANNÉE SECONDAIRE Thème 1 Dans le plan et dans l'espace: droites, demi droites, segments de droites et plans Plans dans l'espace Droites, demi

Plus en détail

Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème

Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème Lundi Matin - «Comparatif des programmes de CM2 et 6 ème» Page 1 Tableau comparatif des connaissances et capacités des programmes de CM2 et 6ème CM2 6 ème Plus tard... Vocabulaire divers Le vocabulaire

Plus en détail

3 ème Programme de révisions pour le brevet blanc travail à effectuer pendant les vacances d hiver, à votre rythme, pour être prêt fin mars.

3 ème Programme de révisions pour le brevet blanc travail à effectuer pendant les vacances d hiver, à votre rythme, pour être prêt fin mars. 3 ème Programme de révisions pour le brevet blanc travail à effectuer pendant les vacances d hiver, à votre rythme, pour être prêt fin mars. Trigonométrie : n 11 p : 201 ; n 45 p : 205 ; n 48 p : 205 ;

Plus en détail

Correction du brevet des collèges Polynésie septembre 2009

Correction du brevet des collèges Polynésie septembre 2009 Correction du brevet des collèges Polynésie septembre 2009 Durée : 2 heures ACTIVITÉS NUMÉRIQUES Exercice 1 : QCM Une seule des trois réponses proposées est correcte. Entourez-la. Aucune justification

Plus en détail

DNB, Mathématiques, correction

DNB, Mathématiques, correction 50 80 50 40 0 DNB, Mathématiques, correction juin 204 2 heures Exercice 5 points. Représentation d un agrandissement de cet octogone en l inscrivant dans un cercle de rayon 3 cm. B A 30 20 0 60 30 40 50

Plus en détail

cm², soit environ 21,33 cm².

cm², soit environ 21,33 cm². Exercice p 97, n 4 : SABCD est une pyramide dont la base est le rectangle ABCD. On place sur sa hauteur [ SA ] le point A tel que SA = 6cm. En coupant la pyramide SABCD par un plan passant par le point

Plus en détail

Livret 5 PROPORTIONNALITE

Livret 5 PROPORTIONNALITE Livret 5 PROPORTIONNALITE EVALUATION DIAGNOSTIQUE PROPORTIONNALITE DP1 : utiliser une échelle, trouver un coefficient de proportionnalité DP2 : vérifier la proportionnalité, trouver le coefficient de proportionnalité

Plus en détail

Affectation d'une valeur à une variable

Affectation d'une valeur à une variable Affectation d'une valeur à une variable Fonctions calculs d'images Faire fonctionner l'algorithme ci contre avec a = 2 et b = 5. Quelle est la réponse affichée par l'algorithme? (question subsidiaire :

Plus en détail

TABLE DES MAtières. plates :

TABLE DES MAtières. plates : TABLE DES MAtières DETERMINATION DE L EFFORT SUR LES DOUILLES, les ancres à tête sphérique et ancres plates : 1. DETERMINATION DU POIDS DE L ELEMENT PREFABRIQUE EN BETON. COEFFICIENT D ADHERENCE ET DE

Plus en détail

11 Géométrie. dans l espace. Chapitre

11 Géométrie. dans l espace. Chapitre hapitre éométrie dans l espace e chapitre reprend prolonge le travail fait en collège en géométrie dans l espace Les activités de conjecture de démonstration de construction de figures sont poursuivies

Plus en détail

Exercice 1 Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x

Exercice 1 Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x Exercice Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x A B E F H G D Le fond de la boîte est le rectangle EFGH. La feuille est au format A4, donc

Plus en détail

Pour obtenir une aire nous aurons deux mesures à relever soient; la longueur et la largeur.

Pour obtenir une aire nous aurons deux mesures à relever soient; la longueur et la largeur. Le poids d un objet Déterminer le poids d un objet est chose courante en industrie, elle permet d évaluer si le poids de l objet n est pas supérieure à l appareil de levage (Grue, pont-roulant, chaîne,

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

Corrigés de mon cahier de calcul Gagné CE2

Corrigés de mon cahier de calcul Gagné CE2 Corrigés de mon cahier de calcul Gagné CE2 1. Les nombres jusqu à 99 (page 3) 1. 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 2. quatre-vingt-treize : 93 soixante-seize : 76

Plus en détail

BREVET BLANC MATHÉMATIQUES AVRIL 2012 CORRECTION

BREVET BLANC MATHÉMATIQUES AVRIL 2012 CORRECTION BREVET BLANC MATHÉMATIQUES AVRIL 202 CORRECTION Barème présentation : point de présentation générale (propreté, clarté de l'écriture), 0,5 points pour l'orthographe (uniquement si trop de fautes simples),

Plus en détail

6 Des triangles rectangles aux relations trigonométriques

6 Des triangles rectangles aux relations trigonométriques 6 Des triangles rectangles aux relations trigonométriques SAÉ 11 La conception d un plan Choisir l emplacement de chaque objet sur la carte. Voici une démarche qui permet de dessiner le plan demandé. Pour

Plus en détail

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1 BREVET BLANC DE MATHEMATIQUES Mai 2010 La calculatrice est autorisée. Le soin et la qualité de la rédaction seront pris en compte dans la notation. N candidat : Observations Présentation et rédaction :

Plus en détail

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S

OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 2012. Série S CLASSES DE PREMIERES GÉNÉRALES ET TECHNOLOGIQUES OLYMPIADES DE MATHÉMATIQUES Académie d AIX-MARSEILLE Session 01 Durée : 4 heures Série S Les calculatrices sont autorisées. Ce sujet comporte 4 exercices

Plus en détail

Partie I : Activités numériques (12 points)

Partie I : Activités numériques (12 points) Correction du brevet blanc février 2011 Exercice n 1 (2 points) 8 + 1 A = 5 6 1 = 8 Partie I : Activités numériques (12 points) Calculer A en détaillant les étapes. Donner le résultat sous forme d une

Plus en détail

Ce document a été numérisé par le CRDP de Paris pour la Base Nationale des Sujets d Examens de l enseignement professionnel

Ce document a été numérisé par le CRDP de Paris pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce document a été numérisé par le CRDP de Paris pour la Base Nationale des Sujets d Examens de l enseignement professionnel Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans

Plus en détail

DIPLÔME NATIONAL DU B REVET

DIPLÔME NATIONAL DU B REVET REPÈRE 14DNBGENMATMEAG1 DIPLÔME NATIONAL DU B REVET SESSION 2014 Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE Durée de l épreuve : 2 h 00 Coefficient : 2 Le candidat répond sur une copie modèle Éducation

Plus en détail

3 ème A DS2 calcul littéral puissances et grandeurs 2014-2015 Sujet 1

3 ème A DS2 calcul littéral puissances et grandeurs 2014-2015 Sujet 1 3 ème A DS2 calcul littéral puissances et grandeurs 2014-2015 Sujet 1 A = 4 x² B = (x + 2)(x - 3) + 2(x + 2) C = (3 2x)² - 4 D = 4x² + 4x + 1 A = (3x - 5)² B = (5x 4)² C = (7x 2)(7x + 2) D = (x + 5)² +

Plus en détail

Mathématiques (10 points)

Mathématiques (10 points) Mathématiques (10 points) Exercice 1 (3 points) Philippe achète 3 planches pour fabriquer une étagère. Le prix de chaque planche est de 5,40. 1. Calculer le prix total des 3 planches. 2. Il obtient une

Plus en détail

Chapitre n 10 : «Les triangles»

Chapitre n 10 : «Les triangles» Chapitre n 10 : «Les triangles» I. Rappels Vocabulaire A, B et C sont les sommets. [ AB], [ BC ] et [ AC ] sont les trois côtés du triangle. BAC, BCA et ABC sont les trois angles du triangle. Le point

Plus en détail

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 013 Lectures graphiques (9 points) Les parties sont indépendantes Partie A Tous les clients d un petit restaurant ont opté pour la formule

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges MÉTROPOLE - NTILLES - GUYNE Juin 2014 Durée : 2h00 Calculatrice autorisée Indication portant sur l ensemble du sujet Toutes les réponses doivent être justifiées,

Plus en détail

Repérage et configurations du plan

Repérage et configurations du plan I Repères et coordonnées a) Repères Définition : (O ;I,J) est un repère du plan. Il est constitué d un triplet de points non alignés. O est appelé origine du repère La droite graduée (O ;I) est l axe des

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

PROGRAMME DE TRAVAIL INTERNE

PROGRAMME DE TRAVAIL INTERNE Version 0.1 1/6 Semestre 1 Calcul professionnel 120 périodes selon OrFo 1.1.1 Arithmétique - algèbre Base de sciences naturelles Généralités unités C2 2 + / et calcul avec parenthèses 2 Multiplications

Plus en détail

MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010. Mathématiques. Livret 1. Mme Cochez-ARU2 Page 1/19

MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010. Mathématiques. Livret 1. Mme Cochez-ARU2 Page 1/19 MINISTERE DE LA COMMUNAUTE FRANÇAISE ÉPREUVE EXTERNE COMMUNE CE1D 2010 Mathématiques Livret 1 Mme Cochez-ARU2 Page 19 ATTENTION Pour cette première partie : la calculatrice est interdite tu auras besoin

Plus en détail

I n t r o d u c t i o n a u x ( 2 0 S ) m a t h é m a t i q u e s a p p l i q u é e s e t p r é - c a l c u l 1 0 e a n n é e

I n t r o d u c t i o n a u x ( 2 0 S ) m a t h é m a t i q u e s a p p l i q u é e s e t p r é - c a l c u l 1 0 e a n n é e I n t r o d u c t i o n a u x m a t h é m a t i q u e s a p p l i q u é e s e t p r é - c a l c u l 0 e a n n é e ( 0 S ) Examen de préparation de mi-session Corrigé I n t r o d u c t i o n a u x m a

Plus en détail

CRPE 2011-2012 derniers réglages avant l écrit (2).

CRPE 2011-2012 derniers réglages avant l écrit (2). CRPE 2011-2012 derniers réglages avant l écrit (2). Problème 1 OAB et OAC sont deux triangles distincts, tous les deux isocèles en O et tels que AOB = AOC. D est le symétrique de B par rapport à O. Démontrer

Plus en détail

a) Effectuer les calculs suivants et donner les résultats sous la forme de fractions irréductibles : C = 7 36 R = 36 4 (2 5)²

a) Effectuer les calculs suivants et donner les résultats sous la forme de fractions irréductibles : C = 7 36 R = 36 4 (2 5)² ème Fiches Révisions revet lanc 1/8 Puissances, Fractions : Effectuer les calculs suivants (donner l écriture scientifique de et écrire sous forme d un entier ou d une fraction). 1 = 15 x 10- x (10 ) 4

Plus en détail

Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) 1.1. Proportionnalité.

Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) 1.1. Proportionnalité. Cycle 3 de l'école primaire Connaissances et capacités attendues en mathématiques à la fin du CM2 et à la fin de la classe de 6 ème (*) Classe de 6ème du collège Le texte en caractère droit indique des

Plus en détail

Pythagore : situations supplémentaires

Pythagore : situations supplémentaires Pythagore : situations supplémentaires 1. Un poteau d une longueur de 18 mètres est enfoncé verticalement dans le sol à une profondeur de 2 m. Pour le stabiliser, on l arrime avec quatre cordes (attachées

Plus en détail

Nombres et opérations / 25

Nombres et opérations / 25 Nombres et opérations / 25 Question 1 / 10 Attention, tu as exactement 9 minutes pour effectuer ces 20 opérations. EFFECTUE. 1) 13 x 5 =... 2) le triple de 10,1 =... 3) 1 de 3 =... 2 4 4) 6 x 9 x 15 x

Plus en détail

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine Fonction affine ) Définition et Propriété caractéristique a) Activité introductive Une agence de location de voiture propose la formule de location suivante : forfait de 50 et 0,80 le km. Quel est le prix

Plus en détail

DIPLÔME NATIONAL DU BREVET SESSION 2010

DIPLÔME NATIONAL DU BREVET SESSION 2010 DIPLÔME NATIONAL DU BREVET SESSION 2010 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Le candidat répondra sur une copie EN. Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont deux feuilles

Plus en détail

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice)

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Exercice 1 : Activité mentale Temps estimé : 4 min Dicter chaque calcul deux fois, ou l écrire au tableau et l effacer après 10 secondes.

Plus en détail

Pyramide et Cône de révolution

Pyramide et Cône de révolution Pyramide et Cône de révolution I ) Pyramide 1 ) Présentation : a) Une pyramide est un solide constitué d un polygone appelé base dont les sommets sont reliés à un point, n appartenant pas au plan de base,

Plus en détail

BREVET BLANC n 2 Avril 2012 Épreuve de Mathématiques Durée: 2 heures

BREVET BLANC n 2 Avril 2012 Épreuve de Mathématiques Durée: 2 heures Numéro d'anonymat :. BREVET BLANC n 2 Avril 2012 Épreuve de Mathématiques Durée: 2 heures L utilisation des calculatrices est autorisée. Le sujet est constitué de trois parties indépendantes: Activité

Plus en détail

Agrandissement et réduction de figures

Agrandissement et réduction de figures Agrandissement et réduction de figures Tracer une figure sur papier quadrillé ou pointé à partir d un dessin (avec des indications relatives aux dimensions). 29 Unité Activité 1 Je découvre Dessine la

Plus en détail

point d application F r intensité: 4 unités

point d application F r intensité: 4 unités A. MÉCANIQUE A1. Forces I) appels 1) Effets d une force: définition Une force est une grandeur physique qui se manifeste par ses effets a) effet dynamique : Une force est une cause capable de produire

Plus en détail

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2

Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Cette épreuve comporte trois parties : A AGRAFER A LA COPIE D EXAMEN Epreuve de mathématiques Durée de l épreuve : 2H00 Coefficient : 2 Diplôme nationale du Brevet Session 1999 Série technologique Partie

Plus en détail

Devoir commun de Mathématiques en 4ème

Devoir commun de Mathématiques en 4ème Collège Beauséjour Février 2015 Devoir commun de Mathématiques en 4ème Durée : 2h Ce sujet comporte 6 pages. Dès que ce sujet vous est remis, assurez-vous qu il est complet. Vous aurez à remettre l annexe

Plus en détail

BREVET CENTRES ETRANGERS juin 2012

BREVET CENTRES ETRANGERS juin 2012 ACTIVITES NUMERIQUES (12 POINTS) Exercice 1 1- Calculer 1 4 + 2 x 4. 1 4 + 2 x 4 = 1 4 + 2 4 = 1 + 2 4 = 4 BREVET CENTRES ETRANGERS juin 2012 2- Au goûter, Lise mange 1 du paquet de gâteaux qu elle vient

Plus en détail

Dispositif d évaluation 4 ème EGPA. Mathématiques. Livret de l élève

Dispositif d évaluation 4 ème EGPA. Mathématiques. Livret de l élève Dispositif d évaluation 4 ème EGPA Mathématiques Livret de l élève NOM :.... Prénom : Date de naissance :.... Année scolaire :. Etablissement :.... Etablissement :.... Académie de Lille - 2015 Sommaire

Plus en détail

Les grandes idées mathématiques de la 4 e à la 6 e année

Les grandes idées mathématiques de la 4 e à la 6 e année Les grandes idées mathématiques de la 4 e à la 6 e année Domaine : Le nombre Les concepts numériques Les fractions : fraction propre, fraction impropre, nombre fractionnaire et fractions équivalentes.

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION 2012 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Coefficient 2 Le candidat répondra sur une copie Éducation Nationale. Ce sujet comporte 7 pages numérotées

Plus en détail

45 Développe et réduis les expressions suivantes. A = 3 2 5 3 A = 2 3 15 B = 5 2 2 7 18

45 Développe et réduis les expressions suivantes. A = 3 2 5 3 A = 2 3 15 B = 5 2 2 7 18 44 Diagonale d'un carré A? N 45 Développe et réduis les expressions suivantes. A 5 A 5 A 5 A 5 M,5 cm I A 15 a. Calcule la longueur exacte de la diagonale AI du carré MANI. triangle ANI rectangle en N

Plus en détail

: 01 39 87 63 33 4, rue de l'églantier : 0950025l@ac-versailles.fr 95500 Gonesse www.clg-auguste-gonesse.ac-versailles.fr

: 01 39 87 63 33 4, rue de l'églantier : 0950025l@ac-versailles.fr 95500 Gonesse www.clg-auguste-gonesse.ac-versailles.fr Brevet Blanc n 1 Attention : la page 5 est à joindre à la copie d examen. N'oubliez pas d y indiquer votre numéro de candidat. PARTIE NUMÉRIQUE (12 points) Mathématiques Année scolaire 2011 / 2012 Durée

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Fiche d'exercices Mathématiques Troisième ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ) ( ( ) ) ( ) ( ) ( ) ( ) ( )

Fiche d'exercices Mathématiques Troisième ( ) ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ) ( ( ) ) ( ) ( ) ( ) ( ) ( ) Fiche d'exercices Mathématiques Troisième Chapitre 0: Révisions de quatrième Révisions et préparation à l'évaluation diagnostique 1. Les nombres relatifs. Exercice 1. ( Exercice 2 : Calculer Exercice 3

Plus en détail

Triangles. I - Définition du triangle. II - Somme des angles d un triangle

Triangles. I - Définition du triangle. II - Somme des angles d un triangle Triangles Un chapitre complet sur les triangles. Ne pensez pas que puisqu il n y a qu un mot dans le titre, il sera court, au contraire. Beaucoup de nouvelles notions vont être énoncées dans ce cours sur

Plus en détail

BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse

BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse BREVET BLANC 2 - CORRECTION + BAREME Légende : Bleu=partie=12 points ; Vert=exercice ; Rouge = élément de réponse ACTIVITES NUMERIQUES 30 min - 12 points EXERCICE 1 (extrait de brevet, Nouvelle-Calédonie,

Plus en détail

Chapitre 12 : Périmètres et aires

Chapitre 12 : Périmètres et aires hapitre 12 : Périmètres et aires Périmètres et aires par comptage 1 ire et périmètre par dénombrement Périmètres de figures usuelles 3 étermine, à l'aide de ta règle graduée, le périmètre de chacune des

Plus en détail