Socle Commun des Connaissances Mathématiques - MathenPoche/Sésamath
|
|
|
- Anne-Marie Chagnon
- il y a 9 ans
- Total affichages :
Transcription
1 Indexation Compétence exigible au socle dès à présent. 95 Compétence exigible au socle ultérieurement. Compétence non exigible au socle. 5 Compétence sous-entendue. 2 6 Sixième V V V V 6N Nombres entiers et décimaux Connaître l écriture décimale et utiliser la valeur des chiffres en fonction de leur rang dans l'écriture. Connaître et utiliser les fractions décimales pour écrire ou décomposer un nombre décimal. Comparer deux nombres entiers ou décimaux, ranger une liste de nombres. Encadrer un nombre, intercaler un nombre entre deux autres. Placer un nombre sur une demi-droite graduée. Lire l abscisse d un point ou en donner un encadrement. Donner une valeur approchée décimale (par excès ou par défaut) à l'unité, au dixième, au centième près. 2 6N2 Addition, soustraction, multiplication Connaître et utiliser le vocabulaire : double, triple, quadruple. Connaître les tables d'addition et de multiplication et les résultats qui en dérivent. Multiplier un nombre par 0 ; 00 ; 000, etc. Multiplier un nombre par 0, ; 0,0 ; 0,00, etc. Choisir les opérations qui conviennent au traitement d'une situation donnée. Additionner des nombres entiers ou décimaux (calcul mental, à la main, instrumenté). Soustraire des nombres entiers ou décimaux (calcul mental, à la main, instrumenté) Multiplier des nombres entiers ou décimaux (calcul mental, à la main, instrumenté). Connaître la signification du vocabulaire : somme, différence, produit, Établir un ordre de grandeur d'une somme, d'un produit, d'une différence Établir un ordre de grandeur (différence). 2 Connaître la signification du vocabulaire : terme, facteur. 6N Division Connaître et utiliser le vocabulaire : moitié, tiers, quart. Connaître et utiliser le vocabulaire : dividende, diviseur, quotient, reste. Reconnaître les situations qui peuvent être traitées à l'aide d'une division euclidienne. Interpréter le résultat d une division euclidienne (quotient et reste). Calculer une division euclidienne (calcul mental, posé, instrumenté). Calculer une addition de nombres décimaux (calcul mental, posé, instrumenté). Calculer une soustraction de nombres décimaux (calcul mental, posé, instrumenté). Calculer une multiplication de nombres décimaux (calcul mental, posé, instrumenté). Connaître et utiliser le vocabulaire : multiple, diviseur Connaître et utiliser les critères de divisibilité par 2 ; 5 ; 0. Connaître et utiliser les critères de divisibilité par ; ; 9. Diviser un nombre entier ou décimal par un nombre entier (calcul mental, à la main, instrumenté). Diviser par 0 ; 00 ; 000 6N Écriture fractionnaire Utiliser l'écriture fractionnaire pour exprimer un partage. Interpréter le quotient de nombres entiers a/b au nombre qui multiplié par b donne a. Placer le quotient de nombres entiers sur une demi-droite graduée dans des cas simples. 2 Connaître le vocabulaire associé aux écritures fractionnaires (numérateur, dénominateur). Prendre une fraction d'une quantité Reconnaître des écritures fractionnaires égales dans des cas simples. 2 6D Proportionnalité Reconnaître si une situation relève de la proportionnalité. Traiter une situation de proportionnalité en utilisant un rapport de linéarité entier ou décimal. Traiter une situation de proportionnalité en utilisant un rapport de linéarité quotient. 2 Traiter une situation de proportionnalité en utilisant le coefficient entier ou décimal. Traiter une situation de proportionnalité en utilisant l image de l unité (règle de trois). Connaître le sens de l'expression «prendre...% de». Appliquer un taux de pourcentage. 6N6 Tableaux et graphiques Lire, utiliser et interpréter des données à partir d'un tableau. Lire, interpréter et compléter un tableau à double entrée. 2 2
2 Indexation Organiser des données en choisissant un tableau adapté (à plusieurs colonnes, à double entrée...). 2 Lire et compléter une graduation sur une demi-droite graduée (entiers, décimaux, fractions simples). Lire, utiliser et interpréter un graphique simple (diagrammes en bâtons, graphiques cartésiens). Lire, utiliser et interpréter un graphique simple (diagrammes circulaires ou demi-circulaires). 2 6G Cercle, distance Connaître et utiliser le vocabulaire associé aux éléments géométriques (point, droite, segment,...). Connaître et utiliser le vocabulaire associé à la position d un point (milieu, alignement, appartenance,...). Utiliser des lettres pour désigner des points ou des éléments d une figure. Connaître et utiliser le vocabulaire associé au cercle (centre, rayon, diamètre,...). Reporter une longueur (au compas, à la règle graduée,...). Connaître et utiliser la caractérisation d'équidistance au centre des points d'un cercle. Construire (à la règle et au compas) un triangle connaissant les longueurs de ses côtés. Reproduire ou construire une figure à partir d'un modèle, d'un schéma ou d'un énoncé Reproduire et construire des figures complexes, reconnaître des figures simples dans une figure complexe. Construire une figure simple à l'aide d'un logiciel de géométrie dynamique. [tice] 6G2 Angles droits Connaître et utiliser le vocabulaire associé à la position de deux droites (parallèle, perpendiculaire, sécante,...). Tracer par un point donné la perpendiculaire à une droite donnée. Tracer par un point donné la parallèle à une droite donnée. Connaître et utiliser les propriétés des parallèles et perpendiculaires. Connaître les différents triangles (rectangle, isocèle, équilatéral) et le vocabulaire associé. Connaître les différents quadrilatères (rectangle, losange, carré) et le vocabulaire associé. Connaître les propriétés relatives aux diagonales des quadrilatères particuliers. 6G Symétrie axiale Associer la symétrie axiale à la notion de pliage (constructions sur quadrillage ou calque). Connaître et utiliser la définition de la symétrie axiale. Construire l image d'un point, d'un segment, d'un cercle par une symétrie axiale. Construire ou compléter la figure symétrique par une symétrie axiale ou possédant un axe de symétrie. 6G Espace (pavé droit) Connaître le pavé droit et le vocabulaire de l espace associé. Dessiner ou compléter un patron d un pavé droit. Reconnaître et interpréter une perspective cavalière d un pavé droit. Reconnaître et interpréter le dessin d'un patron d un pavé droit. Dessiner une perspective cavalière d'un pavé droit. Fabriquer un pavé droit de dimensions données à partir du dessin d'un de ses patrons. 6G5 Axes de symétrie Trouver les axes de symétrie éventuels d'une figure. Connaître et utiliser les propriétés de conservation de la symétrie axiale. Connaître et utiliser la définition de la médiatrice d un segment. 2 Connaître et utiliser la caractérisation d'équidistance des points de la médiatrice d un segment. 2 Construire la médiatrice d un segment par différentes méthodes. Connaître et utiliser la définition la bissectrice d un angle. 2 Construire la bissectrice d un angle par différentes méthodes. 6M2 Angles Connaître et utiliser le vocabulaire et les notations associés aux angles (sommet, côtés...). Connaître le vocabulaire (nul, aigu, droit, obtus, plat) et les notations associés aux angles. Comparer des angles sans les mesurer. Mesurer un angle en degrés (avec un rapporteur). 2 Construire un angle de mesure donnée (avec un rapporteur). 2 Connaître les propriétés relatives aux angles des triangles particuliers. 2 6M Aires et périmètres Comparer géométriquement des aires. Déterminer l'aire d'une surface à partir d un pavage simple. Différencier périmètre et aire. Calculer l aire d un rectangle de dimensions données. Connaître et utiliser la formule donnant l'aire d'un rectangle. Calculer l aire d un triangle rectangle.
3 Indexation Calculer l'aire d'un triangle quelconque dont une hauteur est tracée. 2 Connaître et utiliser la formule donnant l'aire d'un disque Connaître, utiliser et convertir les unités d aire. Comparer des périmètres. Calculer le périmètre d un polygone. Connaître et utiliser la formule donnant le périmètre d un cercle. 2 Connaître, utiliser et convertir les unités de longueur et de masse. 6M Volumes Calculer le volume d un pavé droit par un dénombrement d unités. Connaître et utiliser les unités de volume, les relier aux unités de contenance (savoir que L=dm). Convertir les unités de volume. 2 5 Cinquième 5N Priorités, distributivité (décimaux positifs) Priorités opératoires Connaître les priorités opératoires. Effectuer une succession d opérations sur des exemples numériques (calcul mental, posé, instrumenté). Ecrire une expression correspondant à une succession donnée d opérations. Distributivité Développer en utilisant k(a+b)=ka+kb et k(a b)=ka kb sur des exemples numériques. Factoriser en utilisant ka+kb=k(a+b) et ka kb=k(a b) sur des exemples numériques. 5N2 Écritures fractionnaires (positives) Transformer Utiliser l écriture fractionnaire comme l expression d une proportion. Reconnaître des multiples ou diviseurs de nombres entiers (critères, calcul mental, posé, instrumenté). Reconnaître et utiliser des écritures fractionnaires égales sur des exemples numériques. Calculer Diviser deux nombres décimaux (en se ramenant à une division par un entier). Diviser un nombre par 0, ; 0,0 ; 0,00, etc. Donner la valeur approchée décimale (par excès ou par défaut) à l'unité, au dixième, au centième près. Comparer Comparer des écritures fractionnaires de dénominateurs communs ou multiples. 2 Comparer des écritures fractionnaires de dénominateurs différents avec des valeurs approchées. 2 Additionner, soustraire 2 Additionner et soustraire des écritures fractionnaires de dénominateurs communs. Additionner et soustraire des écritures fractionnaires de dénominateurs multiples. 2 Multiplier Multiplier un quotient de nombres entiers par un nombre entier ou décimal sans diviser. Multiplier une écriture fractionnaire par un nombre décimal ou une écriture fractionnaire. 2 5N Nombres relatifs, repérage Notion
4 Indexation Connaître les nombres relatifs, utiliser la notion d opposé. Repérage sur un axe Connaître et utiliser le vocabulaire associé au repérage (origine, abscisse). Lire l abscisse d un point donné sur une droite graduée. Placer un point d abscisse donnée sur une droite graduée (y compris quotients exacts ou approchés). Repérage dans le plan Connaître et utiliser le vocabulaire associé au repérage (repère, origine, abscisse, ordonnée, coordonnées). Lire les coordonnées d un point donné dans un plan repéré. Placer un point de coordonnées données dans un plan repéré. Choisir une l'échelle, graduer une droite ou produire un graphique pour y placer des points donnés. Comparer Ranger des nombres relatifs en écriture décimale. 2 Additionner, soustraire Additionner et soustraire deux nombres relatifs. 2 Déterminer la distance entre deux points d abscisses données sur une droite graduée. Somme algébrique Calculer une expression avec des sommes ou différences de nombres relatifs sur des exemples numériques. Écrire une expression portant sur des sommes ou différences de nombres relatifs sur des exemples numériques. 5N Calcul littéral Expressions Utiliser une expression littérale. Produire une expression littérale. Connaître les conventions d'écriture pour simplifier une expression littérale. 2 Distributivité Développer en utilisant k(a+b)=ka+kb et k(a b)=ka kb sur des exemples littéraux. Factoriser en utilisant ka+kb=k(a+b) et ka kb=k(a b) sur des exemples littéraux. Calculer Tester si une égalité comportant une ou deux inconnues est vraie pour des valeurs numériques données. 2 5N5 Proportionnalité (tableaux) Tableaux Reconnaître si un tableau de valeurs relève de la proportionnalité. Compléter un tableau de proportionnalité en utilisant un rapport de linéarité entier, décimal ou quotient. Compléter un tableau de proportionnalité en utilisant le coefficient entier, décimal ou quotient. Compléter un tableau de proportionnalité en utilisant l image de l unité (règle de trois). Pourcentage Comparer des proportions (effectifs de populations différentes, mélanges). Appliquer un pourcentage. Calculer un pourcentage. 2 Échelle Utiliser l échelle d une carte ou d un dessin. 2 Calculer l échelle d une carte ou d un dessin. Grandeurs Calculer des durées ou des horaires (procédures raisonnées). 5N6 Statistiques Lecture et interprétation Connaître le vocabulaire statistique (population, caractère, effectif...). Lire, utiliser et interpréter un tableau. Lire, utiliser et interpréter une représentation graphique (histogramme, diagrammes divers). Traitement de données Calculer des effectifs. Calculer des fréquences. 2 Regrouper des données en classes d égale amplitude. Graphiques Présenter des données en choisissant un tableau adapté. Représenter des données sous la forme d'un graphique (histogramme, diagrammes divers). 5G Symétrie centrale Notion Connaître et utiliser la définition de la symétrie centrale. 2 2
5 Indexation Relier la symétrie centrale à la notion de demi-tour (constructions sur quadrillage ou calque). Constructions Construire l image d'un point, d'un segment, d'une droite, d'un cercle par une symétrie centrale. Construire l image d'une demi-droite par une symétrie centrale. Centre de symétrie Trouver le centre de symétrie éventuel d'une figure. Construire ou compléter la figure symétrique par une symétrie centrale ou possédant un centre de symétrie. Propriétés Connaître et utiliser les propriétés de conservation de la symétrie centrale. Savoir que deux droites symétriques sont parallèles. Symétrie axiale Construire l image d'une droite par une symétrie axiale. 5G2 Triangles Angles des triangles Connaître les propriétés relatives aux angles des triangles particuliers. Connaître et utiliser le résultat concernant la somme des angles d un triangle. Savoir appliquer la somme des angles d un triangle aux triangles particuliers. Inégalité triangulaire Connaître et utiliser l inégalité triangulaire. Constructions Construire un triangle connaissant la longueur d un côté et des deux angles qui lui sont adjacents. Construire un triangle connaissant les longueurs de deux côtés et l angle compris entre ces côtés. Construire un triangle connaissant les longueurs des trois côtés (en lien avec l'inégalité triangulaire). Médiatrices, cercle circonscrit Connaître et utiliser la définition de la médiatrice d un segment. Connaître et utiliser la caractérisation d'équidistance des points de la médiatrice d un segment. Construire la médiatrice d un segment par différentes méthodes. Connaître et construire le cercle circonscrit à un triangle. Médianes, hauteurs Connaître, construire et utiliser (en lien avec le calcul d aire) les médianes d un triangle. Connaître, construire et utiliser (en lien avec le calcul d aire) les hauteurs d un triangle. 5G Parallélogrammes Parallélogramme Connaître et utiliser une définition du parallélogramme. Connaître et utiliser les propriétés du parallélogramme. Connaître et utiliser les propriétés réciproques pour démontrer qu'un quadrilatère est un parallélogramme. Construire un parallélogramme en utilisant ses propriétés. Rectangle, losange, carré Connaître et utiliser une définition du rectangle/losange/carré. Connaître et utiliser les propriétés du rectangle/losange/carré. Connaître et utiliser les propriétés réciproques pour démontrer qu'un parallélogramme est un rectangle/losange/carré. Construire un rectangle/losange/carré en utilisant ses propriétés. 5G Aires (et périmètres) Aires Calculer l aire d un parallélogramme. Calculer l aire d un triangle quelconque. Calculer l aire d un disque. Calculer l aire d une surface plane par décomposition en surfaces simples. Périmètres Calculer le périmètre d une figure. Connaître et utiliser la formule donnant le périmètre d un cercle. 5G5 Angles Mesurer, construire Mesurer un angle en degrés (avec un rapporteur). Construire un angle de mesure donnée (avec un rapporteur). Reproduire un angle avec le compas. Vocabulaire Connaître et utiliser le vocabulaire associé à deux angles (opposés, adjacents, complémentaires, supplémentaires).
6 Indexation Connaître et utiliser le vocabulaire associé à trois angles (alternes-internes, alternes-externes, correspondants). Propriétés Caractériser deux droites parallèles par les angles qu'elles forment avec une sécante. Connaître et utiliser les propriétés relatives aux angles formés par deux parallèles et une sécante pour calculer un angle. 5G6 Prismes et cylindres Vocabulaire Connaître le prisme droit et le vocabulaire de l espace associé. Connaître le cylindre de révolution et le vocabulaire de l espace associé. Perspective Reconnaître et interpréter une perspective cavalière d un prisme droit. Dessiner et interpréter une perspective cavalière d un prisme droit. Reconnaître et interpréter une perspective cavalière d un cylindre de révolution. Dessiner et interpréter une perspective cavalière d un cylindre de révolution. Patron Reconnaître et interpréter le dessin d'un patron d un prisme droit. Fabriquer un patron d'un prisme droit de dimensions données (base triangle ou parallélogramme). Reconnaître et interpréter le dessin d'un patron d un cylindre de révolution. Fabriquer un patron d'un cylindre de révolution de rayon donné. Aire latérale Calculer l aire d un solide par décomposition en surfaces simples. Volumes Calculer le volume d un pavé droit. Calculer le volume d un prisme droit. Calculer le volume d un cylindre de révolution. Connaître, utiliser et convertir les unités de volume ou de contenance. Quatrième N Nombres relatifs Additionner, soustraire Additionner et soustraire des nombres relatifs. Savoir supprimer des parenthèses dans une somme algébrique. Multiplier Multiplier deux nombres relatifs. Multiplier plusieurs nombres relatifs. Diviser Diviser deux nombres relatifs. Déterminer une valeur approchée du quotient de deux nombres décimaux relatifs. Expressions Calculer une expression avec des sommes ou produits de nombres relatifs sur des exemples numériques. Écrire une expression portant sur des sommes ou produits de nombres relatifs sur des exemples numériques. N2 Écritures fractionnaires Comparer Comparer deux écritures fractionnaires de nombres relatifs. 2 Connaître et utiliser l équivalence entre a/b=c/d et ad=bc. Additionner, soustraire Additionner et soustraire des écritures fractionnaires de nombres relatifs. 2 Multiplier Multiplier une écriture fractionnaire par un nombre décimal ou une écriture fractionnaire. Multiplier deux écritures fractionnaires de nombres relatifs. 2 Diviser Connaître et utiliser l égalité a/b = a x /b en lien avec la notion d inverse (notations /x ou x-, calculatrice). Diviser deux écritures fractionnaires de nombres relatifs. N Puissances Notations Connaître et utiliser les expressions a^n et a^-n. Comprendre et utiliser les puissances de 0 (y compris avec la calculatrice). Formules Connaître et utiliser les règles de calcul sur les puissances sur des exemples numériques (exposants très simples). Connaître et utiliser les règles de calcul sur les puissances de 0 sur des exemples numériques (exposants relatifs). 2
7 Indexation Écritures Écrire un nombre décimal sous différentes formes à l aide des puissances de 0. Connaître la notation scientifique et l'utiliser pour obtenir un encadrement ou un ordre de grandeur. N Calcul littéral Réduire Réduire une expression littérale du premier degré à une inconnue. Réduire une expression littérale du second degré ou à plusieurs inconnues. Distributivité Développer en utilisant k(a+b)=ka+kb et k(a b)=ka kb sur des exemples littéraux. Factoriser en utilisant ka+kb=k(a+b) et ka kb=k(a b) sur des exemples littéraux. Effectuer un double développement de la forme (a+b)(c+d). Calculer Calculer une expression littérale pour des valeurs données. N5 Équations, ordre Équations et problèmes Tester si une égalité comportant une ou deux inconnues est vraie pour des valeurs numériques données. Mettre en équation un problème conduisant à une équation du premier degré à une inconnue. Résoudre une équation du premier degré à une inconnue. Comparaison Comparer deux nombres relatifs en écriture décimale. Comparer deux quantités en cherchant le signe de leur différence. Écrire des encadrements résultants de la troncature ou d un arrondi à un rang donné d un nombre positif. Ordre et opérations Connaître et utiliser les opérations sur les inégalités : somme d un terme. Connaître et utiliser les opérations sur les inégalités : produit par un facteur. N6 Proportionnalité (utilisation) Caractérisation graphique Connaître et utiliser la caractérisation graphique de la proportionnalité dans un plan repéré. 2 Quatrième proportionnelle Déterminer une quatrième proportionnelle (en particulier par produit en croix). Pourcentages Calculer un pourcentage. Déterminer le pourcentage relatif à un caractère obtenu après la réunion de deux groupes connus. Applications Utiliser l échelle d une carte ou d un dessin. Connaître la notion de vitesse moyenne (reconnaître un mouvement uniforme). Calculer une vitesse moyenne, une distance parcourue ou une durée de parcours à partir des autres données. 2 Connaître, utiliser et convertir des unités de vitesse. 2 N7 Statistiques Moyenne Calculer la moyenne d une série de données. Calculer une moyenne pondérée des valeurs par leurs effectifs. Fréquence Calculer des fréquences. Tableur Créer ou modifier une feuille de calcul, insérer une formule. [tice] Créer un graphique à partir des données d'une feuille de calcul. [tice] G Triangle rectangle Cercle circonscrit Caractériser le triangle rectangle par son inscription dans un demi-cercle dont le diamètre est un côté du triangle. Caractériser les points d'un cercle par la propriété de l'angle droit avec les extrémités d'un diamètre. Pythagore Caractériser le triangle rectangle par le théorème de Pythagore et sa réciproque. Utiliser le théorème de Pythagore pour calculer la longueur d'un côté d'un triangle rectangle. Utiliser la calculatrice pour la déterminer la racine carrée d un nombre. G2 Triangles et parallèles Droite des milieux Connaître et utiliser la propriété de la droite passant par les milieux de deux côtés d'un triangle.
8 Indexation Connaître et utiliser la propriété de la droite passant par le milieu d un côté et parallèle à un 2nd côté d'un triangle. Connaître et utiliser la propriété de la longueur d un segment reliant les milieux de deux côtés d un triangle. Thalès Connaître et utiliser la propriété de Thalès dans le triangle (proportionnalité des longueurs). 2 Agrandir ou réduire une figure (angles conservés, longueurs proportionnelles). 2 G Distances et tangentes Distance d'un point à une droite Connaître et utiliser la notion de distance d un point à une droite. Tangente à un cercle Connaître, construire et utiliser la tangente à un cercle en un point. Bissectrice d'un angle Connaître et utiliser la définition la bissectrice d un angle. Construire la bissectrice d un angle par différentes méthodes. Connaître et utiliser la caractérisation d'équidistance des points de la bissectrice d un angle. Connaître et construire le cercle inscrit dans un triangle. Médiatrice d'un segment Construire la médiatrice d un segment par différentes méthodes. G Cosinus (d'un angle aigu) Calculer une longueur Connaître et utiliser le cosinus pour calculer la longueur d un côté de l angle droit d un triangle rectangle. Connaître et utiliser le cosinus pour calculer la longueur de l hypoténuse d un triangle rectangle. Utiliser la touche cos de la calculatrice pour déterminer une valeur approchée. Calculer un angle Connaître et utiliser le cosinus pour calculer un angle aigu d un triangle rectangle. Utiliser la touche cos^- de la calculatrice pour déterminer une valeur approchée. G5 Pyramides et cônes Vocabulaire Connaître la pyramide et le vocabulaire de l espace associé. Connaître le cône de révolution et le vocabulaire de l espace associé. Perspective Reconnaître et interpréter une perspective cavalière d une pyramide. Dessiner et interpréter une perspective cavalière d une pyramide. Reconnaître et interpréter une perspective cavalière d un cône de révolution. Dessiner et interpréter une perspective cavalière d un cône de révolution. Patron Reconnaître et interpréter le dessin d'un patron d une pyramide. Fabriquer un patron d'une pyramide (à base régulière ou dont la hauteur est une arête latérale). Reconnaître et interpréter le dessin d'un patron d un cône de révolution. Fabriquer un patron d'un cône de révolution de rayon donné. Volumes Savoir utiliser la formule V=B h/. Calculer le volume d une pyramide. Calculer le volume d un cône de révolution. Troisième N Nombres entiers et rationnels PGCD Connaître et utiliser un algorithme donnant le PGCD de deux nombres entiers (soustractions, Euclide). Calculer le PGCD de deux nombres entiers. Déterminer si deux nombres entiers sont premiers entre eux (notion de PGCD). Fractions : simplification Simplifier une fraction. Rendre une fraction irréductible. Fractions : calculs Comparer des écritures fractionnaires de nombres relatifs. Additionner et soustraire des écritures fractionnaires de nombres relatifs. Multiplier deux écritures fractionnaires de nombres relatifs. Utiliser les règles de calcul sur les puissances sur des exemples (exposants relatifs) N2 Calcul littéral et équations
9 Indexation Développer, factoriser Factoriser des expressions algébriques dans lesquelles le facteur est apparent. Connaître les identités remarquables. Développer en utilisant une identité remarquable sur des exemples numériques ou littéraux. Factoriser en utilisant une identité remarquable sur des exemples numériques ou littéraux. Équations Mettre en équation un problème conduisant à une équation du premier degré à une inconnue. Résoudre une équation produit de deux expressions du premier degré. N Racines carrées Notion Connaître et utiliser la notion de racine carrée d un nombre (en lien avec la calculatrice). Utiliser les égalités ( a)²=a et (a²)=a avec a>0 sur des exemples numériques. Calculs Connaître et utiliser les règles de calcul sur les radicaux pour une forme plus adaptée à une situation Équations Résoudre l'équation x²=a avec a>0 sur des exemples numériques. N Systèmes d'équations Résoudre algébriquement un système de deux équations du premier degré et en donner une interprétation graphique. Interpréter graphiquement la résolution d'un système de deux équations. N5 Inégalités et inéquations Résoudre une inéquation du premier degré et représenter ses solutions sur une droite graduée. Représenter les solutions d'une inéquation sur une droite graduée. N6 Puissances et grandeurs Puissances Connaître et utiliser les règles de calcul sur les puissances sur des exemples (exposants relatifs). Vitesse et grandeurs Calculer une vitesse moyenne, une distance parcourue ou une durée de parcours à partir des autres données. Connaître, utiliser et convertir des unités de vitesse. Convertir des grandeurs produits ou quotients (masse volumique, kwh, m /s, tours/s,...). N7 Notions de fonctions Notion de fonction Déterminer l'image d'un nombre par une fonction déterminée par une courbe, un tableau de données ou une formule. Connaître et utiliser le vocabulaire : fonction, image, antécédent, courbe représentative,... Connaître et utiliser la notation x > f(x). N8 Fonctions linéaires et affines Fonction linéaire Déterminer par le calcul l'image et l'antécédent d'un nombre donné dans une fonction linéaire. Déterminer une fonction linéaire à partir de la donnée d'un nombre non nul et de son image. Représenter graphiquement une fonction linéaire. Caractériser l'appartenance d'un point M(x,y) à la représentation graphique d'une fonction linéaire Lire la représentation graphique d'une fonction linéaire (image, antécédent, coefficient directeur). Fonction affine Déterminer par le calcul l'image et l'antécédent d'un nombre donné dans une fonction affine. Déterminer une fonction affine à partir de la donnée de deux nombres et de leurs images. Représenter graphiquement une fonction affine. Caractériser l'appartenance d'un point M(x,y) à la représentation graphique d'une fonction affine par la relation y=ax+b. Lire la représentation graphique d'une fonction affine (image, antécédent, coefficient directeur, ordonnée à l'origine). Proportionnalité Connaître et utiliser la caractérisation graphique de la proportionnalité dans un plan repéré. Établir le lien entre appliquer un pourcentage et multiplier par le coefficient correspondant. N9 Statistiques Médiane, étendue Déterminer une valeur médiane d'une série statistique (liste, tableau, graphique) et en donner la signification. Déterminer les quartiles d'une série statistique (liste, tableau, graphique) et en donner la signification. Déterminer l'étendue d'une série statistique (liste, tableau, graphique). Exprimer et exploiter les résultats de mesures d'une grandeur (notion d'incertitude, validité,...). Probabilités Comprendre et utiliser des notions élémentaires de probabilité.
10 Indexation Calculer des probabilités dans des contextes familiers. G Théorème de Thalès Connaître et utiliser le théorème de Thalès. Connaître et utiliser la réciproque du théorème de Thalès. Agrandir ou réduire une figure (angles conservés, longueurs proportionnelles). G2 Trigonométrie Cosinus Connaître et utiliser les relations du cosinus dans un triangle rectangle. Utiliser les touches cos / cos - de la calculatrice pour déterminer une valeur approchée. Sinus Connaître et utiliser les relations du sinus dans un triangle rectangle. Utiliser les touches sin / sin - de la calculatrice pour déterminer une valeur approchée. Tangente Connaître et utiliser les relations de la tangente dans un triangle rectangle. Utiliser les touches tan / tan - de la calculatrice pour déterminer une valeur approchée. G Géométrie dans l'espace Boule, sphère Connaître la sphère et ses grands cercles. Représenter une sphère et certains de ses grands cercles (en lien avec les méridiens et les parallèles). Sections Connaître la nature de la section d'une sphère par un plan. Connaître et utiliser les sections du cube et du pavé droit par un plan parallèle à une face ou une arête. Connaître et utiliser les sections du cylindre de révolution par un plan parallèle ou perpendiculaire à son axe. Connaître et utiliser les sections du cône de révolution et d'une pyramide par un plan parallèle à la base. Aires et volumes Calculer l aire d'une sphère de rayon donné. Calculer le volume d une boule de rayon donné. Calculer le rayon du cercle intersection connaissant le rayon de la sphère et la distance du plan au centre de la sphère. Représenter la sphère et certains de ses grands cercles (liaison avec les méridiens et les parallèles). Connaître et utiliser l'effet d'un agrandissement ou d'une réduction de rapport k sur les aires ( k2) et sur les volumes ( k). G Angles et polygones Angle inscrit Connaître et utiliser la relation entre un angle inscrit et un angle au centre qui intercepte le même arc. Connaître et utiliser la relation entre deux angles inscrits sur un même cercle interceptant le même arc. Polygones réguliers Construire un triangle équilatéral ou un carré connaissant son centre et un sommet. Construire un hexagone régulier ou un octogone régulier connaissant son centre et un sommet.
11 6e Compétence exigible au socle dès à présent. 66 Compétence exigible au socle ultérieurement. 8 Compétence non exigible au socle. 9 Compétence sous-entendue. 6 Sixième V V V V 6N Nombres entiers et décimaux Connaître l écriture décimale et utiliser la valeur des chiffres en fonction de leur rang dans l'écriture. Connaître et utiliser les fractions décimales pour écrire ou décomposer un nombre décimal. Comparer deux nombres entiers ou décimaux, ranger une liste de nombres. Encadrer un nombre, intercaler un nombre entre deux autres. Placer un nombre sur une demi-droite graduée. Lire l abscisse d un point ou en donner un encadrement. Donner une valeur approchée décimale (par excès ou par défaut) à l'unité, au dixième, au centième près. 2 6N2 Addition, soustraction, multiplication Connaître et utiliser le vocabulaire : double, triple, quadruple. Connaître les tables d'addition et de multiplication et les résultats qui en dérivent. Multiplier un nombre par 0 ; 00 ; 000, etc. Multiplier un nombre par 0, ; 0,0 ; 0,00, etc. Choisir les opérations qui conviennent au traitement d'une situation donnée. Additionner des nombres entiers ou décimaux (calcul mental, à la main, instrumenté). Soustraire des nombres entiers ou décimaux (calcul mental, à la main, instrumenté) Multiplier des nombres entiers ou décimaux (calcul mental, à la main, instrumenté). Connaître la signification du vocabulaire : somme, différence, produit, Établir un ordre de grandeur d'une somme, d'un produit, d'une différence Établir un ordre de grandeur (différence). 2 Connaître la signification du vocabulaire : terme, facteur. 6N Division Connaître et utiliser le vocabulaire : moitié, tiers, quart. Connaître et utiliser le vocabulaire : dividende, diviseur, quotient, reste. Reconnaître les situations qui peuvent être traitées à l'aide d'une division euclidienne. Interpréter le résultat d une division euclidienne (quotient et reste). Calculer une division euclidienne (calcul mental, posé, instrumenté). Calculer une addition de nombres décimaux (calcul mental, posé, instrumenté). Calculer une soustraction de nombres décimaux (calcul mental, posé, instrumenté). Calculer une multiplication de nombres décimaux (calcul mental, posé, instrumenté). Connaître et utiliser le vocabulaire : multiple, diviseur Connaître et utiliser les critères de divisibilité par 2 ; 5 ; 0. Connaître et utiliser les critères de divisibilité par ; ; 9. Diviser un nombre entier ou décimal par un nombre entier (calcul mental, à la main, instrumenté). Diviser par 0 ; 00 ; 000 6N Écriture fractionnaire Utiliser l'écriture fractionnaire pour exprimer un partage. Interpréter le quotient de nombres entiers a/b au nombre qui multiplié par b donne a. Placer le quotient de nombres entiers sur une demi-droite graduée dans des cas simples. 2 Connaître le vocabulaire associé aux écritures fractionnaires (numérateur, dénominateur). Prendre une fraction d'une quantité Reconnaître des écritures fractionnaires égales dans des cas simples. 2 6D Proportionnalité Reconnaître si une situation relève de la proportionnalité. Traiter une situation de proportionnalité en utilisant un rapport de linéarité entier ou décimal. Traiter une situation de proportionnalité en utilisant un rapport de linéarité quotient. 2 Traiter une situation de proportionnalité en utilisant le coefficient entier ou décimal. Traiter une situation de proportionnalité en utilisant l image de l unité (règle de trois). Connaître le sens de l'expression «prendre...% de». Appliquer un taux de pourcentage. 6N6 Tableaux et graphiques Lire, utiliser et interpréter des données à partir d'un tableau. Lire, interpréter et compléter un tableau à double entrée. 2 2
12 6e Organiser des données en choisissant un tableau adapté (à plusieurs colonnes, à double entrée...). 2 Lire et compléter une graduation sur une demi-droite graduée (entiers, décimaux, fractions simples). Lire, utiliser et interpréter un graphique simple (diagrammes en bâtons, graphiques cartésiens). Lire, utiliser et interpréter un graphique simple (diagrammes circulaires ou demi-circulaires). 2 6G Cercle, distance Connaître et utiliser le vocabulaire associé aux éléments géométriques (point, droite, segment,...). Connaître et utiliser le vocabulaire associé à la position d un point (milieu, alignement, appartenance,...). Utiliser des lettres pour désigner des points ou des éléments d une figure. Connaître et utiliser le vocabulaire associé au cercle (centre, rayon, diamètre,...). Reporter une longueur (au compas, à la règle graduée,...). Connaître et utiliser la caractérisation d'équidistance au centre des points d'un cercle. Construire (à la règle et au compas) un triangle connaissant les longueurs de ses côtés. Reproduire ou construire une figure à partir d'un modèle, d'un schéma ou d'un énoncé Reproduire et construire des figures complexes, reconnaître des figures simples dans une figure complexe. Construire une figure simple à l'aide d'un logiciel de géométrie dynamique. [tice] 6G2 Angles droits Connaître et utiliser le vocabulaire associé à la position de deux droites (parallèle, perpendiculaire, sécante,...). Tracer par un point donné la perpendiculaire à une droite donnée. Tracer par un point donné la parallèle à une droite donnée. Connaître et utiliser les propriétés des parallèles et perpendiculaires. Connaître les différents triangles (rectangle, isocèle, équilatéral) et le vocabulaire associé. Connaître les différents quadrilatères (rectangle, losange, carré) et le vocabulaire associé. Connaître les propriétés relatives aux diagonales des quadrilatères particuliers. 6G Symétrie axiale Associer la symétrie axiale à la notion de pliage (constructions sur quadrillage ou calque). Connaître et utiliser la définition de la symétrie axiale. Construire l image d'un point, d'un segment, d'un cercle par une symétrie axiale. Construire ou compléter la figure symétrique par une symétrie axiale ou possédant un axe de symétrie. 6G Espace (pavé droit) Connaître le pavé droit et le vocabulaire de l espace associé. Dessiner ou compléter un patron d un pavé droit. Reconnaître et interpréter une perspective cavalière d un pavé droit. Reconnaître et interpréter le dessin d'un patron d un pavé droit. Dessiner une perspective cavalière d'un pavé droit. Fabriquer un pavé droit de dimensions données à partir du dessin d'un de ses patrons. 6G5 Axes de symétrie Trouver les axes de symétrie éventuels d'une figure. Connaître et utiliser les propriétés de conservation de la symétrie axiale. Connaître et utiliser la définition de la médiatrice d un segment. 2 Connaître et utiliser la caractérisation d'équidistance des points de la médiatrice d un segment. 2 Construire la médiatrice d un segment par différentes méthodes. Connaître et utiliser la définition la bissectrice d un angle. 2 Construire la bissectrice d un angle par différentes méthodes. 6M2 Angles Connaître et utiliser le vocabulaire et les notations associés aux angles (sommet, côtés...). Connaître le vocabulaire (nul, aigu, droit, obtus, plat) et les notations associés aux angles. Comparer des angles sans les mesurer. Mesurer un angle en degrés (avec un rapporteur). 2 Construire un angle de mesure donnée (avec un rapporteur). 2 Connaître les propriétés relatives aux angles des triangles particuliers. 2 6M Aires et périmètres Comparer géométriquement des aires. Déterminer l'aire d'une surface à partir d un pavage simple. Différencier périmètre et aire. Calculer l aire d un rectangle de dimensions données. Connaître et utiliser la formule donnant l'aire d'un rectangle. Calculer l aire d un triangle rectangle.
13 6e Calculer l'aire d'un triangle quelconque dont une hauteur est tracée. 2 Connaître et utiliser la formule donnant l'aire d'un disque Connaître, utiliser et convertir les unités d aire. Comparer des périmètres. Calculer le périmètre d un polygone. Connaître et utiliser la formule donnant le périmètre d un cercle. 2 Connaître, utiliser et convertir les unités de longueur et de masse. 6M Volumes Calculer le volume d un pavé droit par un dénombrement d unités. Connaître et utiliser les unités de volume, les relier aux unités de contenance (savoir que L=dm). Convertir les unités de volume. 2 Construire la médiatrice d un segment par différentes méthodes.
14 5e Compétence exigible au socle dès à présent Compétence exigible au socle ultérieurement. Compétence non exigible au socle. 2 Compétence sans objet. 5 Cinquième V V V V 5N Priorités, distributivité (décimaux positifs) Priorités opératoires Connaître les priorités opératoires. Effectuer une succession d opérations sur des exemples numériques (calcul mental, posé, instrumenté). Ecrire une expression correspondant à une succession donnée d opérations. Distributivité Développer en utilisant k(a+b)=ka+kb et k(a b)=ka kb sur des exemples numériques. Factoriser en utilisant ka+kb=k(a+b) et ka kb=k(a b) sur des exemples numériques. 5N2 Écritures fractionnaires (positives) Transformer Utiliser l écriture fractionnaire comme l expression d une proportion. Reconnaître des multiples ou diviseurs de nombres entiers (critères, calcul mental, posé, instrumenté). Reconnaître et utiliser des écritures fractionnaires égales sur des exemples numériques. Calculer Diviser deux nombres décimaux (en se ramenant à une division par un entier). Diviser un nombre par 0, ; 0,0 ; 0,00, etc. Donner la valeur approchée décimale (par excès ou par défaut) à l'unité, au dixième, au centième près. Comparer Comparer des écritures fractionnaires de dénominateurs communs ou multiples. 2 Comparer des écritures fractionnaires de dénominateurs différents avec des valeurs approchées. 2 Additionner, soustraire 2 Additionner et soustraire des écritures fractionnaires de dénominateurs communs. Additionner et soustraire des écritures fractionnaires de dénominateurs multiples. 2 Multiplier Multiplier un quotient de nombres entiers par un nombre entier ou décimal sans diviser. Multiplier une écriture fractionnaire par un nombre décimal ou une écriture fractionnaire. 2 5N Nombres relatifs, repérage Notion Connaître les nombres relatifs, utiliser la notion d opposé. Repérage sur un axe Connaître et utiliser le vocabulaire associé au repérage (origine, abscisse). Lire l abscisse d un point donné sur une droite graduée. Placer un point d abscisse donnée sur une droite graduée (y compris quotients exacts ou approchés). Repérage dans le plan Connaître et utiliser le vocabulaire associé au repérage (repère, origine, abscisse, ordonnée, coordonnées). Lire les coordonnées d un point donné dans un plan repéré. Placer un point de coordonnées données dans un plan repéré. Choisir une l'échelle, graduer une droite ou produire un graphique pour y placer des points donnés. Comparer Ranger des nombres relatifs en écriture décimale. 2 Additionner, soustraire Additionner et soustraire deux nombres relatifs. 2 Déterminer la distance entre deux points d abscisses données sur une droite graduée. Somme algébrique Calculer une expression avec des sommes ou différences de nombres relatifs sur des exemples numériques. Écrire une expression portant sur des sommes ou différences de nombres relatifs sur des exemples numériques. 5N Calcul littéral Expressions Utiliser une expression littérale. Produire une expression littérale. Connaître les conventions d'écriture pour simplifier une expression littérale. 2 Distributivité Développer en utilisant k(a+b)=ka+kb et k(a b)=ka kb sur des exemples littéraux. 2
15 5e Factoriser en utilisant ka+kb=k(a+b) et ka kb=k(a b) sur des exemples littéraux. Calculer Tester si une égalité comportant une ou deux inconnues est vraie pour des valeurs numériques données. 2 5N5 Proportionnalité (tableaux) Tableaux Reconnaître si un tableau de valeurs relève de la proportionnalité. Compléter un tableau de proportionnalité en utilisant un rapport de linéarité entier, décimal ou quotient. Compléter un tableau de proportionnalité en utilisant le coefficient entier, décimal ou quotient. Compléter un tableau de proportionnalité en utilisant l image de l unité (règle de trois). Pourcentage Comparer des proportions (effectifs de populations différentes, mélanges). Appliquer un pourcentage. Calculer un pourcentage. 2 Échelle Utiliser l échelle d une carte ou d un dessin. 2 Calculer l échelle d une carte ou d un dessin. Grandeurs Calculer des durées ou des horaires (procédures raisonnées). 5N6 Statistiques Lecture et interprétation Connaître le vocabulaire statistique (population, caractère, effectif...). Lire, utiliser et interpréter un tableau. Lire, utiliser et interpréter une représentation graphique (histogramme, diagrammes divers). Traitement de données Calculer des effectifs. Calculer des fréquences. 2 Regrouper des données en classes d égale amplitude. Graphiques Présenter des données en choisissant un tableau adapté. Représenter des données sous la forme d'un graphique (histogramme, diagrammes divers). 5G Symétrie centrale Notion Connaître et utiliser la définition de la symétrie centrale. Relier la symétrie centrale à la notion de demi-tour (constructions sur quadrillage ou calque). Constructions Construire l image d'un point, d'un segment, d'une droite, d'un cercle par une symétrie centrale. Construire l image d'une demi-droite par une symétrie centrale. Centre de symétrie Trouver le centre de symétrie éventuel d'une figure. Construire ou compléter la figure symétrique par une symétrie centrale ou possédant un centre de symétrie. Propriétés Connaître et utiliser les propriétés de conservation de la symétrie centrale. Savoir que deux droites symétriques sont parallèles. Symétrie axiale Construire l image d'une droite par une symétrie axiale. 5G2 Triangles Angles des triangles Connaître les propriétés relatives aux angles des triangles particuliers. Connaître et utiliser le résultat concernant la somme des angles d un triangle. Savoir appliquer la somme des angles d un triangle aux triangles particuliers. Inégalité triangulaire Connaître et utiliser l inégalité triangulaire. Constructions Construire un triangle connaissant la longueur d un côté et des deux angles qui lui sont adjacents. Construire un triangle connaissant les longueurs de deux côtés et l angle compris entre ces côtés. Construire un triangle connaissant les longueurs des trois côtés (en lien avec l'inégalité triangulaire). Médiatrices, cercle circonscrit Connaître et utiliser la définition de la médiatrice d un segment. 2
16 5e Connaître et utiliser la caractérisation d'équidistance des points de la médiatrice d un segment. Construire la médiatrice d un segment par différentes méthodes. Connaître et construire le cercle circonscrit à un triangle. Médianes, hauteurs Connaître, construire et utiliser (en lien avec le calcul d aire) les médianes d un triangle. Connaître, construire et utiliser (en lien avec le calcul d aire) les hauteurs d un triangle. 5G Parallélogrammes Parallélogramme Connaître et utiliser une définition du parallélogramme. Connaître et utiliser les propriétés du parallélogramme. Connaître et utiliser les propriétés réciproques pour démontrer qu'un quadrilatère est un parallélogramme. Construire un parallélogramme en utilisant ses propriétés. Rectangle, losange, carré Connaître et utiliser une définition du rectangle/losange/carré. Connaître et utiliser les propriétés du rectangle/losange/carré. Connaître et utiliser les propriétés réciproques pour démontrer qu'un parallélogramme est un rectangle/losange/carré. Construire un rectangle/losange/carré en utilisant ses propriétés. 5G Aires (et périmètres) Aires Calculer l aire d un parallélogramme. Calculer l aire d un triangle quelconque. Calculer l aire d un disque. Calculer l aire d une surface plane par décomposition en surfaces simples. Périmètres Calculer le périmètre d une figure. Connaître et utiliser la formule donnant le périmètre d un cercle. 5G5 Angles Mesurer, construire Mesurer un angle en degrés (avec un rapporteur). Construire un angle de mesure donnée (avec un rapporteur). Reproduire un angle avec le compas. Vocabulaire Connaître et utiliser le vocabulaire associé à deux d angles (opposés par le sommet, adjacents, complémentaires, supplémentaires). Connaître et utiliser le vocabulaire associé à trois angles (alternes-internes, alternes-externes, correspondants). Propriétés Caractériser deux droites parallèles par les angles qu'elles forment avec une sécante. Connaître et utiliser les propriétés relatives aux angles formés par deux parallèles et une sécante pour calculer un angle. 5G6 Prismes et cylindres Vocabulaire Connaître le prisme droit et le vocabulaire de l espace associé. Connaître le cylindre de révolution et le vocabulaire de l espace associé. Perspective Reconnaître et interpréter une perspective cavalière d un prisme droit. Dessiner et interpréter une perspective cavalière d un prisme droit. Reconnaître et interpréter une perspective cavalière d un cylindre de révolution. Dessiner et interpréter une perspective cavalière d un cylindre de révolution. Patron Reconnaître et interpréter le dessin d'un patron d un prisme droit. Fabriquer un patron d'un prisme droit de dimensions données (base triangle ou parallélogramme). Reconnaître et interpréter le dessin d'un patron d un cylindre de révolution. Fabriquer un patron d'un cylindre de révolution de rayon donné. Aire latérale Calculer l aire d un solide par décomposition en surfaces simples. Volumes Calculer le volume d un pavé droit. Calculer le volume d un prisme droit. Calculer le volume d un cylindre de révolution. Connaître, utiliser et convertir les unités de volume ou de contenance.
17 e Compétence exigible au socle dès à présent. Compétence exigible au socle ultérieurement. 9 Compétence non exigible au socle. 9 Compétence sous-entendue. Quatrième V V V V N Nombres relatifs Additionner, soustraire Additionner et soustraire des nombres relatifs. Savoir supprimer des parenthèses dans une somme algébrique. Multiplier Multiplier deux nombres relatifs. Multiplier plusieurs nombres relatifs. Diviser Diviser deux nombres relatifs. Déterminer une valeur approchée du quotient de deux nombres décimaux relatifs. Expressions Calculer une expression avec des sommes ou produits de nombres relatifs sur des exemples numériques. Écrire une expression portant sur des sommes ou produits de nombres relatifs sur des exemples numériques. N2 Écritures fractionnaires Comparer Comparer deux écritures fractionnaires de nombres relatifs. 2 Connaître et utiliser l équivalence entre a/b=c/d et ad=bc. Additionner, soustraire Additionner et soustraire des écritures fractionnaires de nombres relatifs. 2 Multiplier Multiplier une écriture fractionnaire par un nombre décimal ou une écriture fractionnaire. Multiplier deux écritures fractionnaires de nombres relatifs. 2 Diviser Connaître et utiliser l égalité a/b = a x /b en lien avec la notion d inverse (notations /x ou x-, calculatrice). Diviser deux écritures fractionnaires de nombres relatifs. N Puissances Notations Connaître et utiliser les expressions a^n et a^-n. Comprendre et utiliser les puissances de 0 (y compris avec la calculatrice). Formules Connaître et utiliser les règles de calcul sur les puissances sur des exemples numériques (exposants très simples). Connaître et utiliser les règles de calcul sur les puissances de 0 sur des exemples numériques (exposants relatifs). Écritures Écrire un nombre décimal sous différentes formes à l aide des puissances de 0. Connaître la notation scientifique et l'utiliser pour obtenir un encadrement ou un ordre de grandeur. N Calcul littéral Réduire Réduire une expression littérale du premier degré à une inconnue. Réduire une expression littérale du second degré ou à plusieurs inconnues. Distributivité Développer en utilisant k(a+b)=ka+kb et k(a b)=ka kb sur des exemples littéraux. Factoriser en utilisant ka+kb=k(a+b) et ka kb=k(a b) sur des exemples littéraux. Effectuer un double développement de la forme (a+b)(c+d). Calculer Calculer une expression littérale pour des valeurs données. N5 Équations, ordre Équations et problèmes Tester si une égalité comportant une ou deux inconnues est vraie pour des valeurs numériques données. Mettre en équation un problème conduisant à une équation du premier degré à une inconnue. Résoudre une équation du premier degré à une inconnue. Comparaison Comparer deux nombres relatifs en écriture décimale. Comparer deux quantités en cherchant le signe de leur différence. 2
18 e Écrire des encadrements résultants de la troncature ou d un arrondi à un rang donné d un nombre positif. Ordre et opérations Connaître et utiliser les opérations sur les inégalités : somme d un terme. Connaître et utiliser les opérations sur les inégalités : produit par un facteur. N6 Proportionnalité (utilisation) Caractérisation graphique Connaître et utiliser la caractérisation graphique de la proportionnalité dans un plan repéré. 2 Quatrième proportionnelle Déterminer une quatrième proportionnelle (en particulier par produit en croix). Pourcentages Calculer un pourcentage. Déterminer le pourcentage relatif à un caractère obtenu après la réunion de deux groupes connus. Applications Utiliser l échelle d une carte ou d un dessin. Connaître la notion de vitesse moyenne (reconnaître un mouvement uniforme). Calculer une vitesse moyenne, une distance parcourue ou une durée de parcours à partir des autres données. 2 Connaître, utiliser et convertir des unités de vitesse. 2 N7 Statistiques Moyenne Calculer la moyenne d une série de données. Calculer une moyenne pondérée des valeurs par leurs effectifs. Fréquence Calculer des fréquences. Tableur Créer ou modifier une feuille de calcul, insérer une formule. [tice] Créer un graphique à partir des données d'une feuille de calcul. [tice] G Triangle rectangle Cercle circonscrit Caractériser le triangle rectangle par son inscription dans un demi-cercle dont le diamètre est un côté du triangle. Caractériser les points d'un cercle par la propriété de l'angle droit avec les extrémités d'un diamètre. Pythagore Caractériser le triangle rectangle par le théorème de Pythagore et sa réciproque. Utiliser le théorème de Pythagore pour calculer la longueur d'un côté d'un triangle rectangle. Utiliser la calculatrice pour la déterminer la racine carrée d un nombre. G2 Triangles et parallèles Droite des milieux Connaître et utiliser la propriété de la droite passant par les milieux de deux côtés d'un triangle. Connaître et utiliser la propriété de la droite passant par le milieu d un côté et parallèle à un 2nd côté d'un triangle. Connaître et utiliser la propriété de la longueur d un segment reliant les milieux de deux côtés d un triangle. Thalès Connaître et utiliser la propriété de Thalès dans le triangle (proportionnalité des longueurs). 2 Agrandir ou réduire une figure (angles conservés, longueurs proportionnelles). 2 G Distances et tangentes Distance d'un point à une droite Connaître et utiliser la notion de distance d un point à une droite. Tangente à un cercle Connaître, construire et utiliser la tangente à un cercle en un point. Bissectrice d'un angle Connaître et utiliser la définition la bissectrice d un angle. Construire la bissectrice d un angle par différentes méthodes. Connaître et utiliser la caractérisation d'équidistance des points de la bissectrice d un angle. Connaître et construire le cercle inscrit dans un triangle. Médiatrice d'un segment Construire la médiatrice d un segment par différentes méthodes. G Cosinus (d'un angle aigu) Calculer une longueur Connaître et utiliser le cosinus pour calculer la longueur d un côté de l angle droit d un triangle rectangle. Connaître et utiliser le cosinus pour calculer la longueur de l hypoténuse d un triangle rectangle.
19 e Utiliser la touche cos de la calculatrice pour déterminer une valeur approchée. Calculer un angle Connaître et utiliser le cosinus pour calculer un angle aigu d un triangle rectangle. Utiliser la touche cos^- de la calculatrice pour déterminer une valeur approchée. G5 Pyramides et cônes Vocabulaire Connaître la pyramide et le vocabulaire de l espace associé. Connaître le cône de révolution et le vocabulaire de l espace associé. Perspective Reconnaître et interpréter une perspective cavalière d une pyramide. Dessiner et interpréter une perspective cavalière d une pyramide. Reconnaître et interpréter une perspective cavalière d un cône de révolution. Dessiner et interpréter une perspective cavalière d un cône de révolution. Patron Reconnaître et interpréter le dessin d'un patron d une pyramide. Fabriquer un patron d'une pyramide (à base régulière ou dont la hauteur est une arête latérale). Reconnaître et interpréter le dessin d'un patron d un cône de révolution. Fabriquer un patron d'un cône de révolution de rayon donné. Volumes Savoir utiliser la formule V=B h/. Calculer le volume d une pyramide. Calculer le volume d un cône de révolution.
20 e Compétence exigible au socle dès à présent Compétence exigible au socle ultérieurement. Compétence non exigible au socle. Compétence sans objet. Troisième V V V N Nombres entiers et rationnels PGCD Connaître et utiliser un algorithme donnant le PGCD de deux nombres entiers (soustractions, Euclide). Calculer le PGCD de deux nombres entiers. Déterminer si deux nombres entiers sont premiers entre eux (notion de PGCD). Fractions : simplification Simplifier une fraction. Rendre une fraction irréductible. Fractions : calculs Comparer des écritures fractionnaires de nombres relatifs. Additionner et soustraire des écritures fractionnaires de nombres relatifs. Multiplier deux écritures fractionnaires de nombres relatifs. Utiliser les règles de calcul sur les puissances sur des exemples (exposants relatifs) N2 Calcul littéral et équations Développer, factoriser Factoriser des expressions algébriques dans lesquelles le facteur est apparent. Connaître les identités remarquables. Développer en utilisant une identité remarquable sur des exemples numériques ou littéraux. Factoriser en utilisant une identité remarquable sur des exemples numériques ou littéraux. Équations Mettre en équation un problème conduisant à une équation du premier degré à une inconnue. Résoudre une équation produit de deux expressions du premier degré. N Racines carrées Notion Connaître et utiliser la notion de racine carrée d un nombre (en lien avec la calculatrice). Utiliser les égalités ( a)²=a et (a²)=a avec a>0 sur des exemples numériques. Calculs Connaître et utiliser les règles de calcul sur les radicaux pour une forme plus adaptée à une situation Équations Résoudre l'équation x²=a avec a>0 sur des exemples numériques. N Systèmes d'équations Résoudre algébriquement un système de deux équations du premier degré et en donner une interprétation graphique. Interpréter graphiquement la résolution d'un système de deux équations. N5 Inégalités et inéquations Résoudre une inéquation du premier degré et représenter ses solutions sur une droite graduée. Représenter les solutions d'une inéquation sur une droite graduée. N6 Puissances et grandeurs Puissances Connaître et utiliser les règles de calcul sur les puissances sur des exemples (exposants relatifs). Vitesse et grandeurs Calculer une vitesse moyenne, une distance parcourue ou une durée de parcours à partir des autres données. Connaître, utiliser et convertir des unités de vitesse. Convertir des grandeurs produits ou quotients (masse volumique, kwh, m /s, tours/s,...). N7 Notions de fonctions Notion de fonction Déterminer l'image d'un nombre par une fonction déterminée par une courbe, un tableau de données ou une formule. Connaître et utiliser le vocabulaire : fonction, image, antécédent, courbe représentative,... Connaître et utiliser la notation x > f(x). N8 Fonctions linéaires et affines Fonction linéaire Déterminer par le calcul l'image et l'antécédent d'un nombre donné dans une fonction linéaire. Déterminer une fonction linéaire à partir de la donnée d'un nombre non nul et de son image. Représenter graphiquement une fonction linéaire.
21 e Caractériser l'appartenance d'un point M(x,y) à la représentation graphique d'une fonction linéaire Lire la représentation graphique d'une fonction linéaire (image, antécédent, coefficient directeur). Fonction affine Déterminer par le calcul l'image et l'antécédent d'un nombre donné dans une fonction affine. Déterminer une fonction affine à partir de la donnée de deux nombres et de leurs images. Représenter graphiquement une fonction affine. Caractériser l'appartenance d'un point M(x,y) à la représentation graphique d'une fonction affine par la relation y=ax+b. Lire la représentation graphique d'une fonction affine (image, antécédent, coefficient directeur, ordonnée à l'origine). Proportionnalité Connaître et utiliser la caractérisation graphique de la proportionnalité dans un plan repéré. Établir le lien entre appliquer un pourcentage et multiplier par le coefficient correspondant. N9 Statistiques Médiane, étendue Déterminer une valeur médiane d'une série statistique (liste, tableau, graphique) et en donner la signification. Déterminer les quartiles d'une série statistique (liste, tableau, graphique) et en donner la signification. Déterminer l'étendue d'une série statistique (liste, tableau, graphique). Exprimer et exploiter les résultats de mesures d'une grandeur (notion d'incertitude, validité,...). Probabilités Comprendre et utiliser des notions élémentaires de probabilité. Calculer des probabilités dans des contextes familiers. G Théorème de Thalès Connaître et utiliser le théorème de Thalès. Connaître et utiliser la réciproque du théorème de Thalès. Agrandir ou réduire une figure (angles conservés, longueurs proportionnelles). G2 Trigonométrie Cosinus Connaître et utiliser les relations du cosinus dans un triangle rectangle. Utiliser les touches cos / cos - de la calculatrice pour déterminer une valeur approchée. Sinus Connaître et utiliser les relations du sinus dans un triangle rectangle. Utiliser les touches sin / sin - de la calculatrice pour déterminer une valeur approchée. Tangente Connaître et utiliser les relations de la tangente dans un triangle rectangle. Utiliser les touches tan / tan - de la calculatrice pour déterminer une valeur approchée. G Géométrie dans l'espace Boule, sphère Connaître la sphère et ses grands cercles. Représenter une sphère et certains de ses grands cercles (en lien avec les méridiens et les parallèles). Sections Connaître la nature de la section d'une sphère par un plan. Connaître et utiliser les sections du cube et du pavé droit par un plan parallèle à une face ou une arête. Connaître et utiliser les sections du cylindre de révolution par un plan parallèle ou perpendiculaire à son axe. Connaître et utiliser les sections du cône de révolution et d'une pyramide par un plan parallèle à la base. Aires et volumes Calculer l aire d'une sphère de rayon donné. Calculer le volume d une boule de rayon donné. Calculer le rayon du cercle intersection connaissant le rayon de la sphère et la distance du plan au centre de la sphère. Représenter la sphère et certains de ses grands cercles (liaison avec les méridiens et les parallèles). Connaître et utiliser l'effet d'un agrandissement ou d'une réduction de rapport k sur les aires ( k2) et sur les volumes ( k). G Angles et polygones Angle inscrit Connaître et utiliser la relation entre un angle inscrit et un angle au centre qui intercepte le même arc. Connaître et utiliser la relation entre deux angles inscrits sur un même cercle interceptant le même arc. Polygones réguliers Construire un triangle équilatéral ou un carré connaissant son centre et un sommet. Construire un hexagone régulier ou un octogone régulier connaissant son centre et un sommet.
22 Fin 6ème Compétences exigibles au socle en fin de 6ème (révisions pour le 5ème) 6 Sixième 6N Nombres entiers et décimaux Écriture Connaître l écriture décimale et utiliser la valeur des chiffres en fonction de leur rang dans l'écriture. Connaître et utiliser les fractions décimales pour écrire ou décomposer un nombre décimal. Comparaisons Comparer deux nombres entiers ou décimaux, ranger une liste de nombres. Encadrer un nombre, intercaler un nombre entre deux autres. Repérage sur un axe Placer un nombre sur une demi-droite graduée. Lire l abscisse d un point ou en donner un encadrement. Lire et compléter une graduation sur une demi-droite graduée (entiers, décimaux, fractions simples). 6N2 Opérations sur les nombres entiers Addition, soustraction, multiplication Connaître les tables d'addition et de multiplication et les résultats qui en dérivent. Calculer une addition de nombres entiers (calcul mental, posé, instrumenté). Calculer une soustraction de nombres entiers (calcul mental, posé, instrumenté). Calculer une multiplication de nombres entiers (calcul mental, posé, instrumenté). Connaître la signification du vocabulaire : somme, différence, produit. Division euclidienne Reconnaître les situations qui peuvent être traitées à l'aide d'une division euclidienne. Interpréter le résultat d une division euclidienne (quotient et reste). Calculer une division euclidienne (calcul mental, posé, instrumenté). Diviseurs et multiples Connaître et utiliser les critères de divisibilité par 2 ; 5 ; 0. 6N Opérations sur les nombres décimaux Addition, soustraction, multiplication Calculer une addition de nombres décimaux (calcul mental, posé, instrumenté). Calculer une soustraction de nombres décimaux (calcul mental, posé, instrumenté). Calculer une multiplication de nombres décimaux (calcul mental, posé, instrumenté). Multiplier un nombre par 0 ; 00 ; 000, etc. Choisir les opérations qui conviennent au traitement d'une situation donnée. Calculer des durées ou des horaires (ligne de temps, procédures personnelles). Division décimale Calculer le quotient (exact ou approché) d un nombre entier ou décimal par un nombre entier. Diviser par 0 ; 00 ; 000, etc. Valeurs approchées Établir un ordre de grandeur (somme, produit). 6N Fractions Écritures Connaître le vocabulaire associé aux écritures fractionnaires (numérateur, dénominateur). Proportion, pourcentages Connaître le sens de l'expression «prendre...% de». Appliquer un taux de pourcentage. 6N5 Proportionnalité (situations) Reconnaître si une situation relève de la proportionnalité. Traiter une situation de proportionnalité en utilisant un rapport de linéarité entier ou décimal. Traiter une situation de proportionnalité en utilisant le coefficient entier ou décimal. 6N6 Statistiques Tableaux Lire, utiliser et interpréter des données à partir d'un tableau. Lire, interpréter et compléter un tableau à double entrée. Graphiques Lire, utiliser et interpréter un graphique simple (diagrammes en bâtons, graphiques cartésiens). 6G Éléments de géométrie Points, droites, segments... Connaître et utiliser le vocabulaire associé aux éléments géométriques (point, droite, segment,...).
23 Fin 6ème Connaître et utiliser le vocabulaire associé à la position d un point (milieu, alignement, appartenance,...). Utiliser des lettres pour désigner des points ou des éléments d une figure. Cercles Connaître et utiliser le vocabulaire associé au cercle (centre, rayon, diamètre,...). Reporter une longueur (au compas, à la règle graduée,...). Connaître et utiliser la caractérisation d'équidistance au centre des points d'un cercle. 6G2 Droites Connaître et utiliser le vocabulaire associé à la position de deux droites (parallèle, perpendiculaire, sécante,...). Tracer par un point donné la perpendiculaire à une droite donnée. Tracer par un point donné la parallèle à une droite donnée. Connaître et utiliser les propriétés des parallèles et perpendiculaires. 6G Triangles, quadrilatères Triangles Connaître les différents triangles (rectangle, isocèle, équilatéral) et le vocabulaire associé. Construire un triangle connaissant les longueurs de ses côtés. Quadrilatères Connaître les différents quadrilatères (rectangle, losange, carré) et le vocabulaire associé. Figures Reproduire, compléter ou construire une figure à partir d'un modèle, d un schéma ou d un énoncé. Construire une figure simple à l'aide d'un logiciel de géométrie dynamique. [tice] 6G Angles Connaître et utiliser le vocabulaire et les notations associés aux angles (sommet, côtés...). 6G5 Symétrie axiale Constructions Construire l image d'un point, d'un segment, d'un cercle par une symétrie axiale. Propriétés 6G6 Axes de symétrie Figures Construire ou compléter la figure symétrique par une symétrie axiale ou possédant un axe de symétrie. 6G7 Espace (pavé droit) Vocabulaire Connaître le pavé droit et le vocabulaire de l espace associé. Perspective Reconnaître et interpréter une perspective cavalière d un pavé droit. Reconnaître et interpréter le dessin d'un patron d un pavé droit. Patron Fabriquer un pavé droit de dimensions données à partir du dessin d'un de ses patrons. Volumes Calculer le volume d un pavé droit par un dénombrement d unités. Connaître et utiliser les unités de volume, les relier aux unités de contenance (savoir que L=dm). 6G8 Aires et périmètres Aires Comparer des aires. Déterminer l'aire d'une surface à partir d un pavage simple. Différencier périmètre et aire. Calculer l aire d un rectangle de dimensions données. Connaître et utiliser la formule donnant l'aire d'un rectangle. Calculer l aire d un triangle rectangle. Connaître, utiliser et convertir les unités d aire. Périmètres Comparer des périmètres. Calculer le périmètre d un polygone. Connaître, utiliser et convertir les unités de longueur et de masse.
24 Fin 5ème Compétences exigibles au socle en fin de 5ème (révisions pour la ème) 5 Cinquième 5N Priorités, distributivité (décimaux positifs) Priorités opératoires Connaître les priorités opératoires. Distributivité Développer en utilisant k(a+b)=ka+kb et k(a b)=ka kb sur des exemples numériques. Factoriser en utilisant ka+kb=k(a+b) et ka kb=k(a b) sur des exemples numériques. 5N2 Écritures fractionnaires (positives) Transformer Utiliser l écriture fractionnaire comme l expression d une proportion. Reconnaître des multiples ou diviseurs de nombres entiers (critères, calcul mental, posé, instrumenté). Reconnaître et utiliser des écritures fractionnaires égales sur des exemples numériques. Calculer Diviser deux nombres décimaux (en se ramenant à une division par un entier). Diviser un nombre par 0, ; 0,0 ; 0,00, etc. Donner la valeur approchée décimale (par excès ou par défaut) à l'unité, au dixième, au centième près. Comparer Additionner, soustraire Additionner et soustraire des écritures fractionnaires de dénominateurs communs. Multiplier Multiplier un quotient de nombres entiers par un nombre entier ou décimal sans diviser. 5N Nombres relatifs, repérage Notion Connaître les nombres relatifs, utiliser la notion d opposé. Repérage sur un axe Lire l abscisse d un point donné sur une droite graduée. Placer un point d abscisse donnée sur une droite graduée (y compris quotients exacts ou approchés). Repérage dans le plan Lire les coordonnées d un point donné dans un plan repéré. Placer un point de coordonnées données dans un plan repéré. 5N Calcul littéral Expressions Utiliser une expression littérale. 5N5 Proportionnalité (tableaux) Tableaux Reconnaître si un tableau de valeurs relève de la proportionnalité. Compléter un tableau de proportionnalité en utilisant un rapport de linéarité entier, décimal ou quotient. Compléter un tableau de proportionnalité en utilisant le coefficient entier, décimal ou quotient. Compléter un tableau de proportionnalité en utilisant l image de l unité (règle de trois). Pourcentage Comparer des proportions (effectifs de populations différentes, mélanges). Appliquer un pourcentage. Grandeurs Calculer des durées ou des horaires (procédures raisonnées). 5N6 Statistiques Lecture et interprétation Lire, utiliser et interpréter un tableau. Lire, utiliser et interpréter une représentation graphique (histogramme, diagrammes divers). Traitement de données Calculer des effectifs. Regrouper des données en classes d égale amplitude. Graphiques Présenter des données en choisissant un tableau adapté. Représenter des données sous la forme d'un graphique (histogramme, diagrammes divers). 5G Symétrie centrale Constructions Construire l image d'un point, d'un segment, d'une droite, d'un cercle par une symétrie centrale.
25 Fin 5ème Centre de symétrie Construire ou compléter la figure symétrique par une symétrie centrale ou possédant un centre de symétrie. Symétrie axiale Construire l image d'une droite par une symétrie axiale. 5G2 Triangles Angles des triangles Connaître les propriétés relatives aux angles des triangles particuliers. Connaître et utiliser le résultat concernant la somme des angles d un triangle. Savoir appliquer la somme des angles d un triangle aux triangles particuliers. Inégalité triangulaire Connaître et utiliser l inégalité triangulaire. Constructions Construire un triangle connaissant la longueur d un côté et des deux angles qui lui sont adjacents. Construire un triangle connaissant les longueurs de deux côtés et l angle compris entre ces côtés. Construire un triangle connaissant les longueurs des trois côtés (en lien avec l'inégalité triangulaire). Médiatrices, cercle circonscrit Connaître et utiliser la définition de la médiatrice d un segment. Connaître et utiliser la caractérisation d'équidistance des points de la médiatrice d un segment. Connaître et construire le cercle circonscrit à un triangle. 5G Parallélogrammes Parallélogramme Connaître et utiliser une définition du parallélogramme. Connaître et utiliser les propriétés du parallélogramme. Connaître et utiliser les propriétés réciproques pour démontrer qu'un quadrilatère est un parallélogramme. Construire un parallélogramme en utilisant ses propriétés. Rectangle, losange, carré Connaître et utiliser une définition du rectangle/losange/carré. Connaître et utiliser les propriétés du rectangle/losange/carré. Connaître et utiliser les propriétés réciproques pour démontrer qu'un parallélogramme est un rectangle/losange/carré. Construire un rectangle/losange/carré en utilisant ses propriétés. 5G Aires (et périmètres) Aires Calculer l aire d une surface plane par décomposition en surfaces simples. Périmètres Calculer le périmètre d une figure. Connaître et utiliser la formule donnant le périmètre d un cercle. 5G5 Angles Mesurer, construire Mesurer un angle en degrés (avec un rapporteur). Construire un angle de mesure donnée (avec un rapporteur). Reproduire un angle avec le compas. 5G6 Prismes et cylindres Vocabulaire Connaître le prisme droit et le vocabulaire de l espace associé. Connaître le cylindre de révolution et le vocabulaire de l espace associé. Perspective Reconnaître et interpréter une perspective cavalière d un prisme droit. Dessiner et Interpréter une... Reconnaître et interpréter une perspective cavalière d un cylindre de révolution. Dessiner et Interpréter une... Patron Reconnaître et interpréter le dessin d'un patron d un prisme droit / d'un cylindre de révolution Aire latérale Calculer l aire d un solide par décomposition en surfaces simples. Volumes Calculer le volume d un pavé droit. Connaître, utiliser et convertir les unités de volume ou de contenance.
26 Fin ème Compétences exigibles au socle en fin de ème (révisions pour la ème) Quatrième N Nombres relatifs Additionner, soustraire Additionner et soustraire des nombres relatifs. Multiplier Multiplier deux nombres relatifs. Multiplier plusieurs nombres relatifs. Diviser Diviser deux nombres relatifs. Déterminer une valeur approchée du quotient de deux nombres décimaux relatifs. N2 Écritures fractionnaires Comparer Comparer deux écritures fractionnaires positives de dénominateurs communs ou multiples. Multiplier Multiplier une écriture fractionnaire par un nombre décimal ou une écriture fractionnaire. N Puissances Notations Connaître et utiliser les expressions a^n et a^-n. Connaître et utiliser les puissances de 0 (y compris avec la calculatrice). Formules Connaître et utiliser les règles de calcul sur les puissances sur des exemples numériques (exposants très simples). Connaître et utiliser les règles de calcul sur les puissances de 0 sur des exemples numériques (exposants relatifs). N Calcul littéral Réduire Transformer et réduire une expression littérale du premier degré à une inconnue. Distributivité Développer en utilisant k(a+b)=ka+kb et k(a b)=ka kb sur des exemples littéraux. Factoriser en utilisant ka+kb=k(a+b) et ka kb=k(a b) sur des exemples littéraux. Calculer Calculer une expression littérale pour des valeurs données. N5 Équations, ordre Équations et problèmes Tester si une égalité comportant une ou deux inconnues est vraie pour des valeurs numériques données. Comparaison Comparer deux nombres relatifs en écriture décimale. Ordre et opérations Connaître et utiliser les opérations sur les inégalités : somme d un terme. N6 Proportionnalité (utilisation) Quatrième proportionnelle Déterminer une quatrième proportionnelle (en particulier par produit en croix). Pourcentages Calculer un pourcentage. Applications Utiliser l échelle d une carte ou d un dessin. Connaître la notion de vitesse moyenne (reconnaître un mouvement uniforme). N7 Statistiques Moyenne Calculer la moyenne d une série de données. Fréquence Calculer des fréquences. Tableur Créer ou modifier une feuille de calcul, insérer une formule. [tice] Créer un graphique à partir des données d'une feuille de calcul. [tice] G Triangle rectangle Pythagore Caractériser le triangle rectangle par le théorème de Pythagore et sa réciproque. Utiliser le théorème de Pythagore pour calculer la longueur d'un côté d'un triangle rectangle.
27 Fin ème G2 Triangles et parallèles Droite des milieux Connaître et utiliser la propriété de la droite passant par les milieux de deux côtés d'un triangle. Connaître et utiliser la propriété de la longueur d un segment reliant les milieux de deux côtés d un triangle. G Distances et tangentes Bissectrice d'un angle Connaître et utiliser la définition la bissectrice d un angle. G Cosinus (d'un angle aigu) G5 Pyramides et cônes Volumes Utiliser la calculatrice pour la déterminer la racine carrée d un nombre. Savoir utiliser la formule V=B h/.
28 B2i Domaine : S'approprier un environnement informatique de travail. : m'identifier sur un réseau ou un site et mettre fin à cette identification. 2 : accéder aux logiciels et aux documents disponibles à partir de mon espace de travail. : organiser mes espaces de stockage. : lire les propriétés d'un fichier : nom, format, taille, dates de création et de dernière modification. 5 : paramétrer l impression (prévisualisation, quantité, partie de documents ). 6 : faire un autre choix que celui proposé par défaut (lieu d enregistrement, format, imprimante ). Domaine 2 : Adopter une attitude responsable. : Je connais les droits et devoirs indiqués dans la charte d usage des TIC et la procédure d'alerte de mon établissement. 2 : Je protège ma vie privée en ne donnant sur internet des renseignements me concernant qu avec l accord de mon responsable légal. : Lorsque j utilise ou transmets des documents, je vérifie que j en ai le droit. : Je m'interroge sur les résultats des traitements informatiques (calcul, représentation graphique, correcteur...). 5 : J applique des règles de prudence contre les risques de malveillance (virus, spam...). 6 : Je sécurise mes données (gestion des mots de passe, fermeture de session, sauvegarde). 7 : Je mets mes compétences informatiques au service d'une production collective. Domaine : Créer, produire, traiter, exploiter des données. : modifier la mise en forme des caractères et des paragraphes, paginer automatiquement. 2 : utiliser l outil de recherche et de remplacement dans un document. : regrouper dans un même document plusieurs éléments (texte, image, tableau, son, graphique, vidéo ) : créer, modifier une feuille de calcul, insérer une formule. 5 : réaliser un graphique de type donné. 6 : utiliser un outil de simulation (ou de modélisation) en étant conscient de ses limites. 7 : traiter un fichier image ou son à l aide d un logiciel dédié notamment pour modifier ses propriétés élémentaires. Domaine : S'informer, se documenter. : rechercher des références de documents à l aide du logiciel documentaire présent au CDI. 2 : utiliser les fonctions principales d'un logiciel de navigation sur le web (paramétrage, gestion des favoris, affichages et impression). : chercher et sélectionner l'information demandée : relever des éléments me permettant de connaître l origine de l information (auteur, date, source ). 5 : sélectionner des résultats lors d'une recherche (et donner des arguments permettant de justifier mon choix). Domaine 5 : Communiquer, échanger. : Lorsque j'envoie ou je publie des informations, je réfléchis aux lecteurs possibles en fonction de l'outil utilisé. 2 : Je sais ouvrir et enregistrer un fichier joint à un message ou à une publication. : Je sais envoyer ou publier un message avec un fichier joint. : Je sais utiliser un carnet d adresses ou un annuaire pour choisir un destinataire.
29 C Compétences LA MAITRISE DES TECHNIQUES USUELLES DE L INFORMATION ET DE LA COMMUNICATION Domaine : S'approprier un environnement informatique de travail. : utiliser, gérer des espaces de stockage à disposition 2 : utiliser les périphériques à disposition : utiliser les logiciels et les services à disposition Domaine 2 : Adopter une attitude responsable. : connaître et respecter les règles élémentaires du droit relatif à sa pratique 2 : protéger sa personne et ses données : faire preuve d esprit critique face à l'information et à son traitement : participer à des travaux collaboratifs en connaissant les enjeux et en respectant les règles Domaine : Créer, produire, traiter, exploiter des données. : - saisir et mettre en page un texte 2 : traiter une image, un son ou une vidéo : organiser la composition du document, prévoir sa présentation en fonction de sa destination : différencier une situation simulée ou modélisée d'une situation réelle Domaine : S'informer, se documenter. : consulter des bases de données documentaires en mode simple (plein texte) 2 : identifier, trier et évaluer des ressources : chercher et sélectionner l'information demandée Domaine 5 : Communiquer, échanger. : écrire, envoyer, diffuser, publier 2 : recevoir un commentaire, un message y compris avec pièces jointes : exploiter les spécificités des différentes situations de communication en temps réel ou différé
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
I. RACINE CARREE D UN NOMBRE POSITIF : La racine carrée d un nombre positif a est le nombre positif noté a dont le carré est a.
OURS 3 EME RINES RREES PGE 1/1 ONTENUS OMPETENES EXIGILES OMMENTIRES alculs élémentaires sur les radicaux Racine carrée d un nombre positif Savoir que si a désigne un nombre positif, a est le nombre positif
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Le contexte. Le questionnement du P.E.R. :
Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et
EVALUATIONS MI-PARCOURS CM2
Les enseignants de CM2 de la circonscription de METZ-SUD proposent EVALUATIONS MI-PARCOURS CM2 Mathématiques Livret enseignant NOMBRES ET CALCUL Circonscription de METZ-SUD Page 1 Séquence 1 : Exercice
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Diviser un nombre décimal par 10 ; 100 ; 1 000
Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les
Paris et New-York sont-ils les sommets d'un carré?
page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2
Sites web éducatifs et ressources en mathématiques
Sites web éducatifs et ressources en mathématiques Exercices en ligne pour le primaire Calcul mental élémentaire : http://www.csaffluents.qc.ca/wlamen/tables-sous.html Problèmes de soustraction/addition
Indications pour une progression au CM1 et au CM2
Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»
Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
TBI et mathématique. Pour vous soutenir dans votre enseignement des mathématiques. Les outils du logiciel Notebook. les ressources internet
TBI et mathématique Pour vous soutenir dans votre enseignement des mathématiques Dessin tiré du site www.recitus.qc.ca Les outils du logiciel Notebook et les ressources internet Document préparé par France
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
Les TICE en cours de Mathématiques au collège. Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème
Les TICE en cours de Mathématiques au collège Quelques pistes de travail pour les classes de 6 ème, 5 ème et 4 ème Généralités page 2 Différents outils page 4 Classe de 6 ème page 5 Classe de 5 ème page
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
LES NOMBRES DECIMAUX. I. Les programmes
LES NOMBRES DECIMAUX I. Les programmes Au cycle des approfondissements (Cours Moyen), une toute première approche des fractions est entreprise, dans le but d aider à la compréhension des nombres décimaux.
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
Comment démontrer que deux droites sont perpendiculaires?
omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré
Sommaire de la séquence 10
Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................
Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.
Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Technique opératoire de la division (1)
Unité 17 Technique opératoire de la division (1) Effectuer un calcul posé : division euclidienne de deux entiers. 1 Trois camarades jouent aux cartes. Manu fait la distribution en donnant à chaque joueur
Triangles isométriques Triangles semblables
Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction
MAT2027 Activités sur Geogebra
MAT2027 Activités sur Geogebra NOTE: Il n est pas interdit d utiliser du papier et un crayon!! En particulier, quand vous demandez des informations sur les différentes mesures dans une construction, il
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
Problèmes de dénombrement.
Problèmes de dénombrement. 1. On se déplace dans le tableau suivant, pour aller de la case D (départ) à la case (arrivée). Les déplacements utilisés sont exclusivement les suivants : ller d une case vers
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Introduction au maillage pour le calcul scientifique
Introduction au maillage pour le calcul scientifique CEA DAM Île-de-France, Bruyères-le-Châtel [email protected] Présentation adaptée du tutorial de Steve Owen, Sandia National Laboratories, Albuquerque,
Document d aide au suivi scolaire
Document d aide au suivi scolaire Ecoles Famille Le lien Enfant D une école à l autre «Enfants du voyage et de familles non sédentaires» Nom :... Prénom(s) :... Date de naissance :... Ce document garde
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Exercice numéro 1 - L'escalier
Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Le seul ami de Batman
Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
5 ème Chapitre 4 Triangles
5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du
Cours de tracés de Charpente, Le TRAIT
Page 1/5 Cours de tracés de Charpente, Le TRAIT Recherches de vraies grandeurs, angles de coupes, surfaces. Les Méthodes : Le tracé et les calculs Chaque chapitre ou fichier comportent une explication
La médiatrice d un segment
EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :
Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
"#$%&!'#$'$&%(%$)&!*$++,)(-,&!.,!/0! 123456768!'$9#!/,&!&9:,(&!;!.,!/<-'#,9=,!.,!+0(>-+0(%?9,&!.9!1536!&,&&%$)!@;AB!
!!! "#$%&!'#$'$&%(%$)&!*$++,)(-,&!.,!/0! 123456768!'$9#!/,&!&9:,(&!;!.,!/
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse
N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,
Plan du cours : électricité 1
Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)
Séquence 2. Repérage dans le plan Équations de droites. Sommaire
Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis
ÉVALUATION EN FIN DE CM1. Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES
ÉVALUATION EN FIN DE CM1 Année scolaire 2014 2015 LIVRET DE L'ÉLÈVE MATHÉMATIQUES NOM :....... Prénom :....... Né le :./../ École :............ Classe : Domaine Score de réussite NOMBRES ET CALCUL GÉOMÉTRIE
Fonction inverse Fonctions homographiques
Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................
Le chiffre est le signe, le nombre est la valeur.
Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.
Démontrer qu'un point est le milieu d'un segment
émntrer qu'un pint est le milieu d'un segment P 1 Si un pint est sur un segment et à égale distance de ses etrémités alrs ce pint est le milieu du segment. P 2 Si un quadrilatère est un alrs ses diagnales
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier
Chapitre 2 : Vecteurs
1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Maple: premiers calculs et premières applications
TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
