DIPLÔME NATIONAL DU BREVET. Série Collège MATHÉMATIQUES
|
|
|
- Geneviève Leroux
- il y a 8 ans
- Total affichages :
Transcription
1 Collège Georges Brassens PERSAN Janvier 2011 DIPLÔME NATIONAL DU BREVET Série Collège MATHÉMATIQUES Durée : 2 heures (aucune sortie ne sera acceptée avant ce temps) L emploi de la calculatrice est autorisé. Barème : Activités numériques : Activités géométriques : Problème : Expression écrite et présentation : 12 points 12 points 12 points 4 points
2 ACTIVITES NUMERIQUES 12 POINTS Exercice n 1 (3,5 points) On considère le programme de calcul ci-dessous : choisir un nombre de départ multiplier ce nombre par (-2) ajouter 5 au produit multiplier le résultat par 5 écrire le résultat obtenu. 1) a) Vérifier que, lorsque le nombre de départ est 2, on obtient 5. b) Lorsque le nombre de départ est 3, quel résultat obtient-on? 2) Quel nombre faut-il choisir au départ pour que le résultat obtenu soit 0? 3) Arthur prétend que, pour n importe quel nombre de départ x, l expression (x 5)² - x² permet d obtenir le résultat du programme de calcul. A-t-il raison? Exercice n 2 (5 points) On considère l expression E=5x-22- (5x-2)(x-7) 1) Développer et réduire E. 2) Factoriser E. 3) Calculer E pour x= 25. 4) Résoudre l équation 5x-24x+5=0.
3 Exercice n 3 (3,5 points) (L unité de longueur est le cm). Le quadrilatère ABCD est un carré de côté 22 cm. Les dimensions du rectangle EFGH sont 10-6cm et 10-8cm. Calculer 10-8cm 1/ la longueur AC. 2/ le périmètre de ABCD. 3/ l aire de EFGH. 22 cm 10-6cm cm
4 ACTIVITES GEOMETRIQUES 12 POINTS Exercice n 1 (8 points) Cet exercice est un questionnaire à choix multiples (QCM). Aucune justification n est demandée. Pour chacune des questions, trois réponses sont proposées, une seule est exacte. Compléter le tableau prévu à cet effet dans l annexe (à rendre avec la copie sans oublier de réécrire le numéro de candidat). On répondra par A, B ou C. Réponse A Réponse B Réponse C 1 L arrondi au centième de sin 20 est: 20,00-0,857 0,34 2 Si cos 86 = 4CD, alors on peut écrire : CD = 4 cos86 CD = 4cos86 CD = cos Si dans un triangle TIC rectangle en T, on a tani=1,2 alors : I 50 I 40 impossible Pour les questions ci-après, on considérera la figure suivante : Si T est un point du cercle de diamètre [US] alors : Si, de plus désormais, on sait que TS = 10cm et UT = 8cm, alors : Avec les longueurs données à la question 5, on peut en déduire que : tanust= UTUS On ne peut pas exprimer sinust car le triangle TUS n est pas rectangle. US² = UT² + TS² UST=38,6 UST 52 UST 39 US = 6 cm L aire du triangle UST vaut 40 cm². Pour les questions ci-après, on considérera pour chaque question, la figure qui lui est associée. OT = 8 cm. 7 AMAC= ANAB= BCMN CMCA= BNBA= MNCB AMAC= ANAB= MNBC Si : - M [AC], N [AB] - (MN) // (BC) alors : 8 (AC) et (BN) sont parallèles. On ne peut pas savoir si (AC) et (BN) sont parallèles. (AC) et (BN) ne sont pas parallèles. Que peut-on dire des droites (AC) et (BN)?
5 Exercice n 2 (2 points) Une erreur s est glissée dans la démonstration suivante. Précise laquelle et réécris la démonstration entièrement sur la copie. L erreur porte soit sur la propriété soit sur la conclusion. On sait que : - (AB) // (CD) - (AD) // (BC) Or, si un quadrilatère est un parallélogramme, alors il a ses côtés opposés de même longueur. Conclusion : ABCD est un parallélogramme. Exercice n 3 (2 points) Dans cet exercice, la figure n est pas représentée en vraie grandeur La tour de Pise fait un angle ABH de 74 avec le sol horizontal. Lorsque le soleil est au zénith (ses rayons sont verticaux), la longueur BH de son ombre sur le sol est de 15m. On arrondira les résultats à 1m près. Calculer à quelle hauteur AH au-dessus du sol se trouve le point A de la tour? PROBLEME 12 points Dans ce problème, on considérera un triangle ABC tel que : AB = 6cm ; AC = 8cm et BC = 10cm. Première partie (2,5 points) 1/ Sur la feuille annexe, construire le triangle ABC en vraie grandeur. 2/ Démontrer que le triangle ABC est rectangle en A. 3/ Calculer l aire A du triangle ABC. Deuxième partie (5 points) 1/ Placer le point M du segment [BC] tel que CM = 6cm. Construire la perpendiculaire à (AC) passant par M, elle coupe (AC) en N. Construire la perpendiculaire à (AB) passant par M, elle coupe (AB) en P. 2/ a) Quelle est la nature du quadrilatère ANMP? Justifier votre réponse par une démonstration en citant une propriété.
6 b) En déduire que les droites (MN) et (AB) sont parallèles. 3/ Calculer les longueurs MN et AN. (indication: penser à calculer CN pour obtenir AN) 4/ En déduire le périmètre p 1 du triangle CNM et le périmètre p 2 du quadrilatère ANMP. Troisième partie (4,5 points) Dans cette partie, on suppose que M est un point quelconque du segment [BC] et on pose CM = x. On rappelle que le triangle ABC est rectangle en A et que (AB) // (MN). 10 1/ Quelles sont les valeurs possibles de x? On donnera la réponse sous la forme x x 6 2/ a) En utilisant le théorème de Thalès, démontrer que : CN=0,8x et MN=0,6x. b) En déduire que: AN=8-0,8x. 8 3/ A l aide des résultats précédents, déduire que : - le périmètre p 1 du triangle CNM est égal à 2,4x. - le périmètre p 2 du quadrilatère ANMP est égal à 16 0,4x. 4/ Déterminer la valeur de x pour laquelle p 1 = p 2. On donnera l arrondi au mm. N du candidat :. ANNEXE A rendre avec la copie
7 ACTIVITES GEOMETRIQUES Exercice n 1 Réponse 1 L arrondi au centième de sin 20 est: 2 Si cos 86 = 4CD, alors on peut écrire : 3 Si dans un triangle TIC rectangle en T, on a tani=1,2 alors : 4 Si T est un point du cercle de diamètre [US] alors : Si, de plus désormais, on sait que : UT = 8cm, alors : Avec les longueurs données à la question 5, on peut en déduire que : Si : - M [AC], N [AB] - (MN) // (BC) alors : TS = 10cm et 8 Que peut-on dire des droites (AC) et (BN)? PROBLEME Construction
8 CORRECTION DU BREVET BLANC N 1 ACTIVITES NUMERIQUES Exercice 1 : 1) a) [2 (-2) + 5 ] 5 = (-4 + 5) 5 = 1 5 = 5 3) Le programme de calcul donne : (-2x + 5) 5 = 5 (-2x) = -10x + 25 Selon Arthur, (x 5)² - x² = (x² - 2 x 5 + 5²) x² = x² -10x + 25 x² = - 10x + 25 b) [3 (-2) + 5 ] 5 = (-6+ 5) 5 = -1 5 = -5 On obtient la même expression littérale donc Arthur a raison. 2) On doit résoudre : [ x (-2) + 5 ] 5 = 0 Soit (-2x + 5) 5 = 0 Si un produit de facteurs est nul alors l un au-moins des facteurs est nul. -2x + 5 = 0-2x = -5 x = -5-2 = 2,5 Pour obtenir 0 à l aide du programme de calcul, il fallait choisir au départ le nombre 2,5. Exercice 2 : 1) E=5x-22- (5x-2)(x-7) E= [(5x)²- 2 5x 2+2²] [5x x + 5 (-7) + (-2) x + (-2) (-7)] E= [ 25x² - 20x + 4 ] [5x² + (-35) + (-2x) + 14 ] E= 25x² - 20x + 4 5x² x 14 E= 20x² - 18 x ) E=5x-22- (5x-2)(x-7) E = 5x-2 (5x-2)- (5x-2) (x-7) E = 5x-2 [5x-2- x-7] E = 5x-2 ( 5x-2-x+7) E = 5x-2 (4x+5) 3) pour x = 25 E = 5x-2 (4x+5) E= ( ) E=2-2 (85+ 5) E=0 (85+ 5) E = 0. 4) Résoudre 5x-24x+5=0 Si un produit de facteurs est nul alors l un au-moins des facteurs est nul. On doit résoudre : 5x-2=0 et 4x+5=0 5x = x = 0 5 5x = 2 4x = -5 x = 25 x = -54 Conclusion : Les solutions de cette équation sont : x = 25 et x = -54 Exercice 3: 1/ Dans le triangle ABC rectangle en B D après le théorème de Pythagore, on a : AC²=AB²+BC² AC²=222+ (22)² AC²=2² 2²+2² 2² AC²= AC2=8+8 AC2=16 AC= 16=4 cm. 2/ Périmètre d un carré = 4 côté Périmètre de ABCD = 4 22 = 82 cm. 3/ Aire d un rectangle = Longueur largeur Aire de EFGH = = 10(-6)+(-8) = cm². ACTIVITES GEOMETRIQUES Exercice 1: 1/ C 2/ B 3/ A 4/ C 5/ C 6/ B 7/ C 8/ A Exercice 2: L erreur portait sur la propriété. Démonstration corrigée : On sait que : - (AB) // (CD) - (AD) // (BC)
9 Or, si un quadrilatère a ses côtés opposés parallèles, alors c est un parallélogramme. Conclusion : ABCD est un parallélogramme. Exercice 3: On sait que : le triangle ABH est rectangle en B. (On appelle [AB] son hypoténuse, [AH] le côté opposé à l angle ABH et [BH] le côté adjacent à ABH) tanabh = AHBH tan74 = AH15 J utilise un produit en croix pour trouver AH : AH = 15 tan74 AH 52 m (arrondi au mètre près). PROBLEME Première partie : 2/ On sait que : dans le triangle ABC, [BC] est le plus grand côté ; donc si le triangle est rectangle, il le sera en A. BC² = 10² = 100 AB² + AC² = 6² + 8² = = 100 On calcule d une part BC² et d autre part AB² + AC². On constate que : BC² = AB² + AC² Donc, d après la réciproque du théorème de Pythagore, le triangle ABC est rectangle en A. 3/ Aire d un triangle = Base hauteur correspondante2 en particulier: pour un triangle rectangle, les côtés de l angle droit forment une base et sa hauteur correspondante.
10 Donc Aire A du triangle ABC = AB AC2 = 6 82=24 cm². Deuxième partie : 2/ a) On sait que : le quadrilatère ANMP a 3 angles droits. Or, si un quadrilatère a 3 angles droits alors c est un rectangle. Donc ANMP est un rectangle. b) On sait que : (AB) (AC) et (MN) (AC) Or, si deux droites sont perpendiculaires à une même troisième alors elles sont parallèles. Donc : (AB) // (MN) 3/ On sait que : - les droites (BM) et (AN) sont sécantes en C - (AB) // (MN) alors, d après le théorème de Thalès, on a : CMCB= CNCA= MNAB soit en remplaçant par les valeurs numériques : 610= CN8= MN6 j utilise alors un produit en croix : CN= = 4,8 cm et MN = = 3,6 cm. AN = CA CN car N [AC] AN = 8 4,8 AN = 3,2 cm.
11 4/ Périmètre p 1 du triangle CNM = CN + CM + MN Périmètre p 2 du rectangle ANMP = 2 AN + 2 MN = 4, ,6 = 2 3, ,6 = 14,4 cm. = 13,6 cm. Troisième partie : 1/ 0 x 10 2/ a) On sait que : - les droites (BM) et (AN) sont sécantes en C - (AB) // (MN) alors, d après le théorème de Thalès, on a : CMCB= CNCA= MNAB soit : x10= CN8= MN6 j utilise alors un produit en croix : CN= x 810 = 0,8x. et MN = 6 x10 = 0,6x. AN = CA CN car N [AC] AN = 8 0,8x. 3/ Périmètre p 1 du triangle CNM = CN + CM + MN Périmètre p 2 du rectangle ANMP = 0,8x + x + 0,6x = 2 AN + 2 MN
12 = (0, ,6)x = 2 (8 0,8x) + 2 0,6x = 2,4x = ,8x + 2 0,6x 4/ On doit résoudre l équation p 1 = p 2 = 16 1,6x + 1,2x = 16 0,4x. soit 2,4x = 16 0,4x 2,4x + 0,4x = 16 2,8x = 16 x = 162,8 x 5,7. (arrondi au mm)
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Le seul ami de Batman
Le seul ami de Batman Avant de devenir un héros de cinéma en 1989, Batman est depuis plus de 50 ans un fameux personnage de bandes dessinées aux États-Unis. Il fut créé en mai 1939 dans les pages de Détective
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
Le contexte. Le questionnement du P.E.R. :
Le contexte Ce travail a débuté en janvier. Le P.E.R. engagé depuis fin septembre a permis de faire émerger ou de réactiver : Des raisons d être de la géométrie : Calculer des grandeurs inaccessibles et
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Comment démontrer que deux droites sont perpendiculaires?
omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré
Seconde MESURER LA TERRE Page 1 MESURER LA TERRE
Seconde MESURER LA TERRE Page 1 TRAVAUX DIRIGES MESURER LA TERRE -580-570 -335-230 +400 IX - XI siècles 1670 1669/1716 1736/1743 THALES (-à Milet) considère la terre comme une grande galette, dans une
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant
Thème 17: Optimisation
OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir
Mathématiques et petites voitures
Mathématiques et petites voitures Thomas Lefebvre 10 avril 2015 Résumé Ce document présente diérentes applications des mathématiques dans le domaine du slot-racing. Table des matières 1 Périmètre et circuit
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Corrigé du baccalauréat S Asie 21 juin 2010
Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
Trois personnes mangent dans un restaurant. Le serveur
29=30 Trois personnes mangent dans un restaurant. Le serveur leur amène une addition de 30 francs. Les trois personnes décident de partager la facture en trois, soit 10 francs chacun. Le serveur rapporte
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Correction du baccalauréat S Liban juin 2007
Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau
2.4 Représentation graphique, tableau de Karnaugh
2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)
EXAMEN : CAP ADAL SESSION 20 N du sujet : 02. FOLIO : /6 Rédiger les réponses sur ce document qui sera intégralement remis à la fin de l épreuve. L usage de la calculatrice est autorisé. Exercice : (7
6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013
Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane
Développer, factoriser pour résoudre
Développer, factoriser pour résoudre Avec le vocabulaire Associer à chaque epression un terme A B A différence produit A+ B A B inverse quotient A B A opposé somme Écrire la somme de et du carré de + Écrire
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
La médiatrice d un segment
EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
5 ème Chapitre 4 Triangles
5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE
DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de
COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?
Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
Chapitre 14. La diagonale du carré
Chapitre 4 La diagonale du carré Préambule Examinons un puzzle tout simple : on se donne deux carrés de même aire et on demande, au moyen de quelques découpages, de construire un nouveau carré qui aurait
Séquence 2. Repérage dans le plan Équations de droites. Sommaire
Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
Brevet 2007 L intégrale d avril 2007 à mars 2008
Brevet 2007 L intégrale d avril 2007 à mars 2008 Pondichéry avril 2007................................................. 3 Amérique du Nord juin 2007......................................... 7 Antilles
Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.
Les Angles I) Angles complémentaires, angles supplémentaires 1) Angles complémentaires Deux angles complémentaires sont deux angles dont la somme des mesures est égale à 90 41 et 49 41 49 90 donc Les angles
Problèmes sur le chapitre 5
Problèmes sur le chapitre 5 (Version du 13 janvier 2015 (10h38)) 501 Le calcul des réactions d appui dans les problèmes schématisés ci-dessous est-il possible par les équations de la statique Si oui, écrire
Révision mars 2015. 2. Un terrain que la famille Boisvert veut acheter mesure 100m par 200m. Calcule la longueur de ses diagonales.
Révision mars 2015 1. Mario part de sa maison. Pour se rendre au restaurant, sa famille doit conduire 11,5 km vers le nord et ensuite ils doivent tourner vers l ouest pendant 5,4km. Calcule la distance
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.
«Aucune investigation humaine ne peut être qualifiée de science véritable si elle ne peut être démontrée mathématiquement.» Léonard de Vinci MATHEMATIQUES Les mathématiques revêtaient un caractère particulier
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Algèbre binaire et Circuits logiques (2007-2008)
Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits
Exercices de géométrie
Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente
SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES
SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES MES 1 Les mesures de longueurs MES 2 Lecture de l heure MES 3 Les mesures de masse MES 4 Comparer des longueurs, périmètres.
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
UN TOURNOI A GAGNER ENSEMBLE
UN TOURNOI A GAGNER ENSEMBLE Ce tournoi réunit 3 classes de CM1, CM2 et 6, chaque équipe essaye de réussir le plus grand nombre possible des 82 exercices proposés. Objectifs généraux : Pour les 6, accueillir
BACCALAUREAT GENERAL MATHÉMATIQUES
BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :
Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES Exercice 1 Dans un repère orthonormé on donne les points A( 1;2 ), ( 5; 6) et les droites a 3x + 2y = 5 et b 4x 3y + 10 = 0. B, 1 C 5; 2, 1 D 7; 2 1)
Fonction quadratique et trajectoire
Fonction quadratique et trajectoire saé La sécurité routière On peut établir que la vitesse maimale permise sur une chaussée mouillée doit être inférieure à celle permise sur une chaussée sèche La vitesse
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
L ALGORITHMIQUE. Algorithme
L ALGORITHMIQUE Inspirée par l informatique, cette démarche permet de résoudre beaucoup de problèmes. Quelques algorithmes ont été vus en 3 ième et cette année, au cours de leçons, nous verrons quelques
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer
Ch.G3 : Distances et tangentes
4 e - programme 2011 mathématiques ch.g3 cahier élève Page 1 sur 14 1 DISTC D U PIT À U DRIT Ch.G3 : Distances et tangentes 1.1 Définition ex 1 DÉFIITI 1 : Soit une droite et un point n'appartenant pas
CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»
Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.
Sommaire de la séquence 10
Sommaire de la séquence 10 Séance 1........................................................................................................ J étudie un problème concret................................................................................
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
point On obtient ainsi le ou les points d inter- entre deux objets».
Déplacer un objet Cliquer sur le bouton «Déplacer». On peut ainsi rendre la figure dynamique. Attraper l objet à déplacer avec la souris. Ici, on veut déplacer le point A du triangle point ABC. A du triangle
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
EVALUATIONS FIN CM1. Mathématiques. Livret élève
Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
Vecteurs. I Translation. 1. Définition :
Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
