Continuité en un point



Documents pareils
Image d un intervalle par une fonction continue

Limites finies en un point

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Continuité d une fonction de plusieurs variables

Calcul fonctionnel holomorphe dans les algèbres de Banach

Développements limités, équivalents et calculs de limites

3 Approximation de solutions d équations

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Université Paris-Dauphine DUMI2E 1ère année, Applications

Chapitre 2 Le problème de l unicité des solutions

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Théorème du point fixe - Théorème de l inversion locale

Continuité et dérivabilité d une fonction

Commun à tous les candidats

Chapitre 7 : Intégration sur un intervalle quelconque

Leçon 01 Exercices d'entraînement

Capes Première épreuve

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Exercices - Polynômes : corrigé. Opérations sur les polynômes

I. Polynômes de Tchebychev

La fonction exponentielle

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Suites numériques 4. 1 Autres recettes pour calculer les limites

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

CCP PSI Mathématiques 1 : un corrigé

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Comparaison de fonctions Développements limités. Chapitre 10

La mesure de Lebesgue sur la droite réelle

Sur certaines séries entières particulières

Suites numériques 3. 1 Convergence et limite d une suite

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Développement décimal d un réel

Développements limités. Notion de développement limité

Fonctions de plusieurs variables

Raisonnement par récurrence Suites numériques

Logique. Plan du chapitre

Cours d Analyse. Fonctions de plusieurs variables

Problème 1 : applications du plan affine

Calcul différentiel. Chapitre Différentiabilité

Résolution d équations non linéaires

Cours Fonctions de deux variables

Dérivation : cours. Dérivation dans R

Fonction inverse Fonctions homographiques

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

Correction de l examen de la première session

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

M2 IAD UE MODE Notes de cours (3)

Moments des variables aléatoires réelles

Optimisation des fonctions de plusieurs variables

Calcul différentiel sur R n Première partie

Chapitre 6. Fonction réelle d une variable réelle

Équations non linéaires

Différentiabilité ; Fonctions de plusieurs variables réelles

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

IV- Equations, inéquations dans R, Systèmes d équations

Intégration et probabilités TD1 Espaces mesurés Corrigé

Relation d ordre. Manipulation des relations d ordre. Lycée Pierre de Fermat 2012/2013 Feuille d exercices

I. Ensemble de définition d'une fonction

DOCM Solutions officielles = n 2 10.

Correction du Baccalauréat S Amérique du Nord mai 2007

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Correction du baccalauréat S Liban juin 2007

Fibonacci et les paquerettes

Nombre dérivé et tangente

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Probabilités sur un univers fini

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Séminaire TEST. 1 Présentation du sujet. October 18th, 2013

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Correction du baccalauréat ES/L Métropole 20 juin 2014

Chp. 4. Minimisation d une fonction d une variable

Théorie de la Mesure et Intégration

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

Dérivées d ordres supérieurs. Application à l étude d extrema.

Cours de mathématiques

Probabilités sur un univers fini

1 Définition et premières propriétés des congruences

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

3. Conditionnement P (B)

Rappels sur les suites - Algorithme

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Cours d Analyse I et II

Le produit semi-direct

4. Martingales à temps discret

Etude de fonctions: procédure et exemple

Fonctions de plusieurs variables et applications pour l ingénieur

Approximations variationelles des EDP Notes du Cours de M2

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

O, i, ) ln x. (ln x)2

Chapitre 2. Eléments pour comprendre un énoncé

Complément d information concernant la fiche de concordance

Précision d un résultat et calculs d incertitudes

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Propriétés des options sur actions

Polynômes à plusieurs variables. Résultant

Chapitre VI Fonctions de plusieurs variables

Transcription:

DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à valeurs dans R... Définition.. Continuité en un point de R Définition 4.. Soit f une fonction définie en un point x 0 R. On dit que f est continue en x 0 si f possède une limite quand x tend vers x 0. Comme x 0 D f, l existence d un limite en x 0 entraine que cette limite est égale à f(x 0 ) (proposition 3. du document 3). On peut donc traduire la continuité de f en x 0 par : ε > 0, η > 0 tel que x x 0 < η et x D f impliquent f(x) f(x 0 ) < ε. Cette définition peut aussi être écrite à l aide des voisinages définis dans le document 5 par : V V(f(x 0 )), U V(x 0 ) tel que f(d f U) V Remarquons que si x 0 D f {x 0 }, c est-à-dire si x 0 n est pas isolé dans D f, alors f est continue en x 0 si et seulement si lim f(x) existe et vaut f(x 0 ). x x 0,x x 0 Exemples. ) Les fonctions constantes et les fonctions affines sont continues en tout point. ) Soit f la fonction définie sur R par f(x) = xe(/x) si x 0 et f(0) =. Par définition de la partie entière, on a pour x 0, E(/x) /x < E(/x) +, d où, pour x > 0, f(x) < f(x) + x et, pour x < 0, f(x) + x < f(x). On en déduit que pour tout x R, f(0) f(x) x et donc, en prenant η = ε dans la définition de la continuité, on voit que f est continue en 0. 3). La fonction x x est continue en tout point x 0 R +. En effet soit ε > 0. Si x 0 0 alors x x 0 = x x 0 x + x0 x x 0 x0 et donc η = ε x 0 convient pour montrer la continuité en x 0. Maintenant pour x 0 = 0, si η = ε alors 0 x < η implique x < ε d où la continuité en 0... Continuité et restrictions.... Caractère local du concept de continuité. Proposition 4.. Soit f : D f R, A R et x 0 D f. Si f est continue en x 0 et si x 0 A alors la restriction de f à D f A, notée f A, est aussi continue en x 0. Réciproquement, si f A est continue en x 0 et si A contient un intervalle ouvert contenant x 0 alors f est aussi continue en x 0. 59

60 4. CONTINUITÉ EN UN POINT Preuve. Voir celle du résultat analogue concernant les limites. Remarques. ) Pour la réciproque, il est important que A contienne un intervalle ouvert contenant x 0. Si le résultat était vrai sans cette hypothèse alors toute fonction serait continue en chaque point de son ensemble de définition. En effet si A = {x 0 } alors f A est continue en x 0. ) La proposition précédente montre le caractère local de la notion de continuité : seul le comportement de f dans un voisinage de x 0 intervient pour la continuité de f en x 0.... Continuité à droite et à gauche. On considère f : D f R et x 0 D f. Soit A = [x 0, + [. Si lim x x 0 f A existe, on dit que f est continue à droite en x 0. La continuité à droite de f en x 0 se traduit donc par : ε > 0, η > 0 tel que x D f et x 0 x < x 0 + η impliquent f(x) f(x 0 ) < ε. Si x 0 D f ]x 0, + [, la continuité de f à droite en x 0 équivaut à l existence pour la fonction f d une limite à doite égale à f(x 0 ). On définit de façon analogue la continuité à gauche en x 0. La fonction f est continue à droite et à gauche en x 0 si et seulement si f est continue en x 0. Exemples. ) La fonction partie entière, E : x E(x), est continue en tout point x 0 Z car il existe un intervalle ouvert contenant x 0 sur lequel E est constante. Maintenant, si x 0 Z, alors E est continue à droite en x 0 car il existe un intervalle ouvert contenant x 0 sur lequel la restriction de E à [x 0, + [ est constante. En revanche, E n est pas continue à gauche en x 0 car, pour tout η > 0, il existe x tel que x 0 η < x < x 0 et E(x) E(x 0 ) > /. ) Dans le document 33 (fonctions convexes), on montre que si une fonction f est convexe sur un intervalle ouvert I alors f possède en chaque point x de I une dérivée à gauche f g(x) et une dérivée à droite f d (x). La fonction f g (resp. f d ) est continue à gauche (resp. à droite) en tout point de I. 3). En calcul des probabilités, la fonction de répartition d une variable aléatoire est continue à droite pour toute valeur de la variable..3. Prolongement par continuité. Proposition 4.. Soit f : D f R, a D f \ D f (ce qui signifie : a D f et η > 0, x D f tel que x a < η). La fonction f possède une limite en a si et seulement si il existe un prolongement de f à D f {a} continu en a. Lorsque ce prolongement existe, il est unique et est appelé le prolongement par continuité de f en a. Sa valeur en a est lim f(x). Si la fonction x a f est continue en x 0 D f alors il en est de même pour son prolongement par continuité en a. Preuve. Supposons que f possède un prolongement f à D f {a} continu en a. On a D b f {a} = D f et donc a D b f {a} (a n est pas isolé dans l ensemble de définition de f) et la continuité de f en a entraine f(a) = lim f(x) = lim f(x). x a,x a x a Réciproquement, supposons que f possède une limite en a. On peut définir un prolongement f de f à D f {a} par f(a) = lim x a f(x). On a : lim f(x) = lim f(x) = f(a) x a,x a x a

. OPÉRATIONS ALGÉBRIQUES ET COMPOSITION 6 ce qui montre que f est continue en a. Considérons maintenant x 0 D f. Si f est continue en x 0 alors sa restriction f l est aussi. Réciproquement, supposons f continue en x 0, posons η = x 0 a et soit ε > 0. Il existe η > 0 tel que x x 0 < η et x D f impliquent f(x) f(x 0 ) < ε. Soit η = min(η, η ). On a η > 0 et x x 0 < η entraine x a. Il en résulte que si x x 0 < η et x D b f alors f(x) f(x 0 ) < ε et la fonction f est continue en x 0. (On peut aussi dire que D f étant ouvert dans D f {a}, la continuité de f en un point de D f équivaut à celle de f.) Pour l unicité du prolongement, soit g un prolongement de f à D f {a}, continue en a. Comme a n est pas isolé dans D f {a} (tout voisinage de a contient des élément de D f et donc des éléments de D f {a} distincts de a) la continuité de g en a entraine : d où g = f. g(a) = lim g(x) = lim f(x) = f(a) x a,x a x a Exemples. ) Une fonction f, definie sur un intervalle I, est dérivable en un point x 0 de I si et seulement si la fonction x0 definie sur I {x 0 } par x0 (x) = f(x) f(x 0) x x 0 est prolongeable par continuité à I. De plus, on a f (x 0 ) = x0 (x 0 ). ) On définit la fonction f sur R + par f(x) = x ln x. On sait que lim x 0 f(x) = 0 et donc on peut prolonger f par continuité en 0 par la fonction f en posant f(0) = 0... Opérations algébriques.. Opérations algébriques et composition Lemme 4.. Soit f; D f R et x 0 D f. () Si f est continue en x 0 alors f est bornée dans un voisinage de x 0. () Si f est continue en x 0 et si f(x 0 ) 0 alors f est non nul et majorée par f(x 0 ) dans un voisinage de x 0. Preuve. Pour la preuve de. reprendre celle du résultat analogue concernant les limites.. Il existe η > 0 tel que x x 0 < η et x D f impliquent f(x) f(x 0 ) < f(x 0). Comme l on a f(x 0 ) f(x) f(x) f(x 0 ), x x 0 < η et x D f impliquent f(x 0) < f(x) d où le résultat. Proposition 4.3. Soit f et g deux fonctions continues en un point x 0 R. () Pour tout (λ, µ) R, la fonction λf + µg est continue en x 0. () La fonction f.g est continue en x 0. (3) Si f(x 0 ) 0 alors la fonction f est continue en x 0.

6 4. CONTINUITÉ EN UN POINT Preuve. a) Il suffit d utiliser l inégalité triangulaire. b) On peut écrire g(x)f(x) g(x 0 )f(x 0 ) f(x 0 ) g(x) g(x 0 ) + g(x) f(x) f(x 0 ) ( ) Le lemme 4. entraine qu il existe η > 0 et M R + tels que x x 0 < η et x D g impliquent g(x) < M. Posons M = max(m, f(x 0 ) ) et remarquons que M > 0. Soit ε > 0. La continuité de f en x 0 entraine qu il existe η > 0 tel que si x D f et x x 0 < η alors f(x) f(x 0 ) < ε M. Maintenant la continuité de g entraine qu il existe η 3 > 0 tel que si x D g et x x 0 < η 3 alors g(x) g(x 0 ) < ε M. En utilisant ( ), on voit que x D f D g et x x 0 < min(η, η, η 3 ) impliquent ε. g(x)f(x) g(x 0 )f(x 0 ) < f(x 0 ) M + M. ε M ε/ + ε/ = ε et f.g est continue en x 0. c) Le lemme 4. entraine qu il existe η > 0 tel que x x 0 < η et x D f impliquent f(x) < f(x 0 ). Pour tout x ]x 0 η, x 0 + η [ D f on peut écrire : f(x) f(x 0 ) = f(x) f(x 0) f(x) f(x 0 f(x 0 ) f(x 0) f(x) = f(x 0 ) f(x 0 ) f(x 0) f(x). La continuité de f en x 0 entraine l existence de η > 0 tel que x x 0 < η et x D f impliquent f(x) f(x 0 ) < ε. f(x 0). Soit η = min(η, η ). Si x D /f et x x 0 < η alors f(x) f(x 0 ) < ε d où la continuité de f en x 0. ( On notera dans cette preuve l utilisation implicite de la proposition 4. car en fait on a montré que c est la restriction de f à ]x 0 η, x 0 + η [ qui est continue en x 0.) Exemples ) Le quotient de deux fonctions f et g, continues en x 0, est continue en x 0 si g(x 0 ) 0. ) En partant de la continuité de l application identique en tout point de R on montre, en utilisant plusieurs fois la proposition précédente, qu il en est de même pour les fonctions polynômes. Les fonctions fractions rationnelles sont continues en tout point où le dénominateur n est pas nul, c est-à-dire en tout point de leur ensemble de définition... Composition. Proposition 4.4. Soit f une fonction de R dans R continue en x 0 et g une fonction de R dans R continue en f(x 0 ). La fonction g f est continue en x 0. Preuve. Soit ε > 0. Il existe η > 0 tel que x f(x 0 ) < η et x D g impliquent g(x) g(f(x 0 )) < ε. Par continuité de f, il existe η > 0 tel que x x 0 < η et x D f entrainent f(x) f(x 0 ) < η Donc pour tout x D g f D f, si x x 0 < η alors f(x) f(x 0 ) < η d où g(f(x)) g(f(x 0 )) < ε ce qui montre la continuité de g f en x 0.

3. IMAGE D UNE SUITE CONVERGENTE PAR UNE FONCTION CONTINUE 63 Exemple. L inégalité x x 0 x x 0 entraine la continuité de la fonction valeur absolue en tout point de R. Si une fonction f à valeurs réelles est continue en x 0 alors il en est de même pour la fonction x f(x). Remarque. Pour établir la continuité de f en x 0 lorsque la fonction f est continue en x 0 et f(x 0 ) 0 on peut d abord montrer la continuité en tout point de R de l application x x et utiliser la proposition 4.4. Pour montrer la continuité de x x, soit ε > 0 et a 0. On a, pour x 0, x a = x a x a. Montrons que si x a < a / alors x a <. On a a x x a a / a d où a / x, ( a )/ a x et a x. Soit η = min( a /, ε a ). Si x a] < η a alors : x a = x a < x a a.ε a = ε et l application x x est continue au point a. 3. Image d une suite convergente par une fonction continue Proposition 4.5. Soit (x n ) une suite réelle convergente, de limite l. Pour toute fonction f de R dans R continue en l et telle que {x n n N} D f, la suite (f(x n )) converge vers f(l). Réciproquement, si pour toute suite réelle (x n ) convergente vers l D f et telle que {x n n N} D f, la suite (f(x n )) converge alors f est continue au point l. Preuve. Supposons f continue au point l et soit (x n ) une suite convergente de limite l, vérifiant {x n n N} D f. Soit ε > 0. Il existe η > 0 tel que x x 0 < η et x D f impliquent f(x) f(l) < ε. La convergence de (x n ) entraine l existence d un entier naturel N tel que si n N alors x n l < η. On a donc, pour n N, f(x n ) f(l) < ε ce qui montre que la suite (f(x n )) converge vers f(l). Supposons maintenant que f ne soit pas continue au point l D f. Il existe ε > 0 tel que pour tout η > 0, il existe x D f tel que f(x) f(l) ε. Soit y n D f, n N, tel que y n l < /n et f(y n ) f(l) > ε. Considérons la suite (x n )) de points de D f définie par x n = l et x n+ = y n. Comme la suite (y n ) converge vers l, il en est de même pour la suite (x n ). En revanche, la suite (f(x n )) est divergente car f(x n+ f(x n) = f(y n ) f(l) > ε. Donc si l image par f de toute suite qui converge vers l est une suite convergente alors f est continue au point l. Remarques ) On peut aussi énoncer la partie réciproque de la proposition précédente sous la forme : si pour toute suite réelle (x n ) convergente vers l D f et telle que {x n n N} D f, la suite (f(x n )) converge vers f(l) alors f est continue au point l. On démontre ce résultat en considérant la suite (y n ) qui intervient dans la preuve de la proposition. ) La proposition précédente est souvent utilisée pour montrer qu une fonction f n est pas continue en un point x 0. Pour cela il suffit de trouver une suite (x n ) de points de D f convergente vers x 0 et telle que la suite (f(x n )) soit divergente ou convergente mais avec une limite différente

64 4. CONTINUITÉ EN UN POINT de f(x 0 ). Par cette méthode, on peut montrer que la fonction f définie sur R par f(0) = 0 et f(x) = cos si x 0 n est pas continue en 0. x 3) Soit f : D f R tel que f(d f ) D f, et (x n ) une suite de points de D f définie par son premier terme x 0 D f et la relation de récurrence x n+ = f(x n ). Si (x n ) converge vers l et si f est continue au point l alors l = f(l). Lorsque de plus la fonction f est continue en tout point de D f, ce résultat montre que la limite éventuelle d une suite (x n ) de D f qui satisfait la relation de récurrence x n+ = f(x n ) est à rechercher parmi les solutions de l équation f(x) = x. On appelle valeur d adhérence d une suite (x n ) toute limite d une suite convergente extraite de (x n ). Si (x n ) converge vers l alors l est sa seule valeur d adhrence. Une suite bornée possède au moins une valeur d adhérence (thorème de Bolzano-Weierstrass) et une suite bornée ayant une seule valeur d adhérence l converge vers l. La proposition suivante est une généralisation d une partie de la proposition 4.5 Proposition 4.6. Soit f une application continue de [a, b] dans [a, b], (x n ) une suite définie par x 0 [a, b], x n+ = f(x n ) et A l ensemble des valeurs d adhérence de (x n ). On a f(a) = A. Preuve. Si α est une valeur d adhérence de (x n ) alors il existe ϕ : N N strictement croissante telle que α = lim x ϕ(n). La suite bornée (x ϕ(n) ) n>0 possède une valeur d adhérence n β : il existe ψ : N N strictement croissante telle que β = lim x ϕ(ψ(n)). La fonction f étant n continue, la suite (x ϕ(ψ(n)) ) converge vers f(β) et (x ϕ(ψ(n)) ) étant extraite de (x ϕ(n) ), on a f(β) = α. De plus, β est une valeur d adhérence de (x n ) car x ϕ(ψ(n)) est une suite extraite de (x n ). Considérons maintenant la suite de terme général x ϕ(n)+ = f(x ϕ(n) ). Par continuité de f, elle converge vers f(α) qui est une valeur d adhérence de (x n ) car n ϕ(n) + est strictement croissante. Finalement f(a) = A.