Espaces de dimension finie

Documents pareils
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Image d un intervalle par une fonction continue

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Limites finies en un point

Cours de mathématiques

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2

Exercices Corrigés Premières notions sur les espaces vectoriels

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Intégration et probabilités TD1 Espaces mesurés Corrigé

Probabilités sur un univers fini

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

NOMBRES COMPLEXES. Exercice 1 :

Fonctions de plusieurs variables

Intégration et probabilités TD1 Espaces mesurés

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Programmation linéaire et Optimisation. Didier Smets

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Equations cartésiennes d une droite

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Programmation linéaire

Continuité en un point

Algorithmes pour la planification de mouvements en robotique non-holonome

Construction d un cercle tangent à deux cercles donnés.

[ édité le 30 avril 2015 Enoncés 1

Cours d Analyse. Fonctions de plusieurs variables

Chapitre 2 Le problème de l unicité des solutions

3. Conditionnement P (B)


I. Polynômes de Tchebychev

Comparaison de fonctions Développements limités. Chapitre 10

Probabilités sur un univers fini

Calcul fonctionnel holomorphe dans les algèbres de Banach

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Théorie et codage de l information

Simulation de variables aléatoires

Géométrie dans l espace Produit scalaire et équations

Résolution d équations non linéaires

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Introduction à l étude des Corps Finis

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Correction du baccalauréat S Liban juin 2007

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Résolution de systèmes linéaires par des méthodes directes

Université Paris-Dauphine DUMI2E 1ère année, Applications

3 Approximation de solutions d équations

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Pour l épreuve d algèbre, les calculatrices sont interdites.

Programmation linéaire

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Problème 1 : applications du plan affine

Fonctions de deux variables. Mai 2011

Chapitre 2. Matrices

Amphi 3: Espaces complets - Applications linéaires continues

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Chapitre VI - Méthodes de factorisation

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Équations non linéaires

Angles orientés et trigonométrie

Capes Première épreuve

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

CCP PSI Mathématiques 1 : un corrigé

2 Division dans l anneau des polynômes à plusieurs variables

Correction de l examen de la première session

Le théorème de Thalès et sa réciproque

1 Complément sur la projection du nuage des individus

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

DOCM Solutions officielles = n 2 10.

Commun à tous les candidats

Le produit semi-direct

IV- Equations, inéquations dans R, Systèmes d équations

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Cours arithmétique et groupes. Licence première année, premier semestre

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Corrigé du baccalauréat S Asie 21 juin 2010

Logique. Plan du chapitre

Les indices à surplus constant

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Moments des variables aléatoires réelles

Mesures gaussiennes et espaces de Fock

Exemple 4.4. Continuons l exemple précédent. Maintenant on travaille sur les quaternions et on a alors les décompositions

Cours 02 : Problème général de la programmation linéaire

Calcul différentiel. Chapitre Différentiabilité

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 1 : Évolution COURS

LE PRODUIT SCALAIRE ( En première S )

Peut-on imiter le hasard?

Calcul différentiel sur R n Première partie

Étudier si une famille est une base

Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA

CHOIX OPTIMAL DU CONSOMMATEUR. A - Propriétés et détermination du choix optimal

Théorème du point fixe - Théorème de l inversion locale

4. Martingales à temps discret

PRIME D UNE OPTION D ACHAT OU DE VENTE

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

Transcription:

[http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 1 Espaces de dimension finie Bases en dimension finie Dimension d un espace Exercice 1 [ 01634 ] [Correction] Soit E l ensemble des fonctions f : R R telles qu il existe a, b, c R pour lesquels : x R, f (x) = (ax 2 + bx + c) cos x (a) Montrer que E est sous-espace vectoriel de F (R, R). (b) Déterminer une base de E et sa dimension. Exercice 2 [ 01635 ] [Correction] Soient p N et E l ensemble des suites réelles p périodiques i.e. l ensemble des suites réelles (u n ) telles que n N, u(n + p) = u(n) Montrer que E est un R-espace vectoriel de dimension finie et déterminer celle-ci. Exercice 3 [ 03848 ] [Correction] Soient p N et E l ensemble des suites complexes p périodiques i.e. l ensemble des suites (u n ) telles que n N, u(n + p) = u(n) (a) Montrer que E est un C-espace vectoriel de dimension finie et déterminer celle-ci. (b) Déterminer une base de E formée de suites géométriques. Exercice 4 [ 01636 ] [Correction] Soit E = R R. Pour tout n N, on pose f n : x x n. (a) Montrer que ( f 0,..., f n ) est libre. (b) En déduire dim E. Exercice 6 [ 01637 ] [Correction] On pose e 1 = (1, 1, 1), e 2 = (1, 1, 0) et e 3 = (0, 1, 1). Montrer que B = ( e 1, e 2, e 3 ) est une base de R 3. Exercice 7 [ 01638 ] [Correction] Soit E un K-espace vectoriel de dimension 3 et e = (e 1, e 2, e 3 ) une base de E. On pose ε 1 = e 2 + 2e 3, ε 2 = e 3 e 1 et ε 3 = e 1 + 2e 2 Montrer que ε = (ε 1, ε 2, ε 3 ) est une base de E. Exercice 8 [ 01639 ] [Correction] Soit E un K-espace vectoriel de dimension 3 et e = (e 1, e 2, e 3 ) une base de E. Soit ε 1 = e 1 + 2e 2 + 2e 3 et ε 2 = e 2 + e 3 Montrer que la famille (ε 1, ε 2 ) est libre et compléter celle-ci en une base de E. Exercice 9 [ 01640 ] [Correction] Soit E un K-espace vectoriel muni d une base e = (e 1,..., e n ). Pour tout i {1,..., n}, on pose ε i = e 1 + + e i. (a) Montrer que ε = (ε 1,..., ε n ) est une base de E. (b) Exprimer les composantes dans ε d un vecteur en fonction de ses composantes dans e. Exercice 5 [ 03638 ] [Correction] Soient E un R-espace vectoriel de dimension finie n N et δ une application à valeurs réelles définie sur l ensemble des sous-espaces vectoriels de E. On suppose F, F sous - espaces vectoriels de E, F F = {0 E } = δ(f + F ) = δ(f) + δ(f ) Déterminer δ. Exercice 10 [ 03724 ] [Correction] [Lemme d échange] Soient (e 1,..., e n ) et (e 1,..., e n) deux bases d un R-espace vectoriel E. Montrer qu il existe j {1,..., n} tel que la famille (e 1,..., e n 1, e j ) soit encore une base de E.

[http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 2 Sous-espaces vectoriels de dimension finie Exercice 11 [ 01641 ] [Correction] Soient F, G deux sous-espaces vectoriels d un K-espace vectoriel E de dimension finie n N. Montrer que si dim F + dim G > n alors F G contient un vecteur non nul. Exercice 16 [ 00182 ] [Correction] Soit E un espace vectoriel de dimension finie. (a) Soient H et H deux hyperplans de E. Montrer que ceux-ci possèdent un supplémentaire commun. (b) Soient F et G deux sous-espaces vectoriels de E tels que dim F = dim G. Montrer que F et G ont un supplémentaire commun. Exercice 12 [ 01642 ] [Correction] Dans R 4 on considère les vecteurs u = (1, 0, 1, 0), v = (0, 1, 1, 0), w = (1, 1, 1, 1), x = (0, 0, 1, 0) et y = (1, 1, 0, 1). Soit F = Vect (u, v, w) et G = Vect (x, y). Quelles sont les dimensions de F, G, F + G et F G? Exercice 13 [ 04134 ] [Correction] Soit U, V et W trois sous-espaces vectoriels d un R-espace vectoriel de dimension finie n. (a) On suppose dim U + dim V > n. Montrer que U V n est pas réduit au vecteur nul. (b) On suppose dim U + dim V + dim W > 2n. Que dire de l espace U V W? Exercice 14 [ 00221 ] [Correction] Soient E un K-espace vectoriel de dimension finie et F 1,..., F n des sous-espaces vectoriels de E. On suppose que E = F 1 + + F n. Montrer qu il existe G 1,..., G n sous-espaces vectoriels tels que : Supplémentarité 1 i n, G i F i et E = G 1 G n Exercice 15 [ 01646 ] [Correction] Dans R 3, déterminer une base et un supplémentaire des sous-espaces vectoriels suivants : (a) F = Vect(u, v) où u = (1, 1, 0) et v = (2, 1, 1) (b) F = Vect(u, v, w) où u = ( 1, 1, 0), v = (2, 0, 1) et w = (1, 1, 1) (c) F = { (x, y, z) R 3 x 2y + 3z = 0 }. Exercice 17 [ 03409 ] [Correction] Montrer que deux sous-espaces vectoriels d un espace vectoriel de dimension finie qui sont de même dimension ont un supplémentaire commun. Exercice 18 [ 00181 ] [Correction] Soient K un sous-corps de C, E un K-espace vectoriel de dimension finie, F 1 et F 2 deux sous-espaces vectoriels de E. (a) On suppose dim F 1 = dim F 2. Montrer qu il existe G sous-espace vectoriel de E tel que F 1 G = F 2 G = E. (b) On suppose que dim F 1 dim F 2. Montrer qu il existe G 1 et G 2 sous-espaces vectoriels de E tels que F 1 G 1 = F 2 G 2 = E et G 2 G 1. Exercice 19 [ 00184 ] [Correction] Soit (e 1,..., e p ) une famille libre de vecteurs de E, F = Vect(e 1,..., e p ) et G un supplémentaire de F dans E. Pour tout a G, on note (a) Montrer que (b) Soient a, b G. Montrer F a = Vect(e 1 + a,..., e p + a) F a G = E a b = F a F b Rang d une famille de vecteurs Exercice 20 [ 01650 ] [Correction] Déterminer le rang des familles de vecteurs suivantes de R 4 : (a) (x 1, x 2, x 3 ) avec x 1 = (1, 1, 1, 1), x 2 = (1, 1, 1, 1) et x 3 = (1, 0, 1, 1).

[http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Enoncés 3 (b) (x 1, x 2, x 3, x 4 ) avec x 1 = (1, 1, 0, 1), x 2 = (1, 1, 1, 0), x 3 = (2, 0, 1, 1) et x 4 = (0, 2, 1, 1). Exercice 21 [ 01651 ] [Correction] Dans E = R ] 1;1[ on considère : 1 + x f 1 (x) =, f 2(x) = Quel est le rang de la famille ( f 1, f 2, f 3, f 4 )? 1 + x, f 3(x) = 1 2, f 4(x) = Exercice 22 [ 01652 ] [Correction] Soit (x 1,..., x n ) une famille de vecteurs d un K-espace vectoriel E. Montrer que pour p n : rg(x 1,..., x p ) rg(x 1,..., x n ) + p n Hyperplans en dimension finie Exercice 23 [ 01678 ] [Correction] Dans R 3, on considère le sous-espace vectoriel H = { (x, y, z) R 3 x 2y + 3z = 0 } x 2 Exercice 26 [ 01645 ] [Correction] Soit E un espace de dimension finie et F un sous-espace vectoriel de E distinct de E. Montrer que F peut s écrire comme une intersection d un nombre fini d hyperplans. Quel est le nombre minimum d hyperplans nécessaire? Exercice 27 [ 01647 ] [Correction] Soient D une droite vectorielle et H un hyperplan d un K-espace vectoriel E de dimension n N. Montrer que si D H alors D et H sont supplémentaires dans E. Exercice 28 [ 01648 ] [Correction] Soient E un K-espace vectoriel de dimension finie n N, H un hyperplan de E et D une droite vectorielle de E. À quelle condition H et D sont-ils supplémentaires dans E? Exercice 29 [ 00175 ] [Correction] Soient E un espace vectoriel de dimension finie et F un sous-espace vectoriel de E, distinct de E. Montrer que F peut s écrire comme une intersection d un nombre fini d hyperplans. Quel est le nombre minimum d hyperplans nécessaire? Soient u = (1, 2, 1) et v = ( 1, 1, 1). Montrer que B = (u, v) forme une base de H. Exercice 24 [ 01643 ] [Correction] Soit E un K-espace vectoriel de dimension finie supérieure à 2. Soit H 1 et H 2 deux hyperplans de E distincts. Déterminer la dimension de H 1 H 2. Exercice 25 [ 01644 ] [Correction] Soient H un hyperplan et F un sous-espace vectoriel non inclus dans H. Montrer dim F H = dim F 1

[http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Corrections 4 Corrections Exercice 1 : [énoncé] (a) E = Vect( f 0, f 1, f 2 ) avec f 0 (x) = cos x, f 1 (x) = x cos x et f 2 (x) = x 2 cos x. E est donc un sous-espace vectoriel et ( f 0, f 1, f 2 ) en est une famille génératrice. (b) Supposons α f 0 + β f 1 + γ f 2 = 0. On a x R, (α + βx + γx 2 ) cos x = 0. Pour x = 2nπ, on obtient α + 2nπβ + 4n 2 π 2 γ = 0 pour tout n N. Si γ 0 alors α + 2nπβ + 4n 2 π 2 γ ±. C est exclu. Nécessairement γ = 0. On a alors α + 2nπβ = 0 pour tout n N. Pour n = 0, puis n = 1 on obtient successivement α = β = 0. Finalement ( f 0, f 1, f 2 ) est une famille libre. C est donc une base de E et dim E = 3 Exercice 2 : [énoncé] On vérifie aisément que E est un sous-espace vectoriel de R N. Pour tout 0 i p 1, on note e i la suite définie par { [ ] 1 si n = i p e i (n) = 0 sinon On vérifie aisément que les suites e 0,..., e p 1 sont linéairement indépendantes et on a p 1 u E, u = u(i)e i La famille (e 0,..., e p 1 ) est donc une base de E et par suite dim E = p. Exercice 3 : [énoncé] (a) On vérifie aisément que E est un sous-espace vectoriel de C N. Pour tout 0 i p 1, on note e i la suite définie par [ ] 1 si n = i p e i (n) = 0 sinon On vérifie aisément que les suites e 0,..., e p 1 sont linéairement indépendantes et on a p 1 u E, u = u(i)e i La famille (e 0,..., e p 1 ) est donc une base de E et par suite dim E = p. i=0 i=0 (b) Soit q C. La suite géométrique (q n ) est élément de E si, et seulement si, n N, q n+p = q n ce qui équivaut à affirmer que q est une racine p-ième de l unité. Considérons alors les suites u 1,..., u p avec u j (n) = ( e 2iπ j/p) n = ω n 2iπ j/p j avec ω j = e Les suites u 1,..., u p sont éléments de E. Pour affirmer qu elles constituent une base de E, il suffit de vérifier qu elles forment une famille libre. Supposons Pour n N, on a l équation λ j u j = 0 λ j ω n j = 0 Soit k {1,..., p} fixé. En multipliant l équation précédente par ω n k et en sommant les équations obtenues pour n = 0, 1,..., p 1, on obtient En permutant les deux sommes p 1 n=0 λ j p 1 ( ) λ j ω j ω 1 n k = 0 n=0 ( ) ω j ω 1 n k = 0 Le nombre ω j ω 1 k est une racine p-ième de l unité et, lorsque j k, celle-ci diffère de 1, de sorte que p 1 ( ) ω j ω 1 n si j k k = 0 p si j = k On obtient ainsi n=0 λ p pδ j,k = 0 et donc λ k = 0. Ceci valant pour tout k {1,..., p}, on peut conclure à la liberté de la famille (u 1,..., u p ).

[http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Corrections 5 Exercice 4 : [énoncé] (a) Supposons λ 0 f 0 + + λ n f n = 0. On a x R : λ 0 + λ 1 x + + λ n x n = 0. Si λ n 0 alors λ 0 + λ 1 x + + λ n x n ± c est absurde. x + Nécessairement λ n = 0 puis de même λ n 1 =... = λ 0 = 0. Finalement ( f 0,..., f n ) est libre. (b) Par suite n + 1 dim E pour tout n N, donc dim E = + Exercice 5 : [énoncé] Pour F = F = {0 E }, on obtient δ({0 E }) = 0 Pour x 0 E, posons f (x) = δ(vect x). On a évidemment x 0 E, λ R, f (λx) = f (x) Soient x et y non colinéaires. On a Or on a aussi Vect(x) Vect(y) = Vect(x, y) Vect(x, y) = Vect(x, x + y) = Vect(x) Vect(x + y) car x et x + y ne sont pas colinéaires. On en déduit f (x) + f (y) = f (x) + f (x + y) Ainsi f (x + y) = f (x) et de façon analogue f (x + y) = f (y) donc f (x) = f (y). Finalement la fonction f est constante. En posant α la valeur de cette constante, on peut affirmer f = α. dim car, par introduction d une base, un sous-espace vectoriel peut s écrire comme somme directe de droites vectorielles engendrées par ces vecteurs de base. Exercice 6 : [énoncé] Supposons λ 1 e 1 + λ 2 e 2 + λ 3 e 3 = 0. On a λ 1 + λ 2 = 0 λ 1 + λ 2 + λ 3 = 0 λ 1 + λ 3 = 0 qui donne λ 1 = λ 2 = λ 3 = 0. La famille B est une famille libre formée de 3 = dim R 3 vecteurs de R 3, c est donc une base de R 3. Exercice 7 : [énoncé] Supposons λ 1 ε 1 + λ 2 ε 2 + λ 3 ε 3 = 0 E. On a Or (e 1, e 2, e 3 ) est libre donc (λ 3 λ 2 )e 1 + (λ 1 + 2λ 3 )e 2 + (2λ 1 + λ 2 )e 3 = 0 E λ 3 λ 2 = 0 λ 1 + 2λ 3 = 0 2λ 1 + λ 2 = 0 puis λ 1 = λ 2 = λ 3 = 0. La famille ε est une famille libre formée de 3 = dim E vecteurs de E, c est donc une base de E. Exercice 8 : [énoncé] Les vecteurs ε 1 et ε 2 ne sont pas colinéaires donc forme une famille libre. Pour ε 3 = e 2 (ou encore par exemple ε 3 = e 3 mais surtout pas ε 3 = e 1 ), on montre que la famille (ε 1, ε 2, ε 3 ) est libre et donc une base de E. Exercice 9 : [énoncé] (a) Supposons λ 1 ε 1 + + λ n ε n = 0 E. On a (λ 1 + + λ n )e 1 + + λ n e n = 0 E donc λ 1 + λ 2 + + λ n = 0 λ 2 + + λ n = 0. λ n = 0 qui donne λ 1 =... = λ n = 0. La famille ε est une famille libre formée de n = dim E vecteurs de E, c est donc une base de E. (b) λ 1 ε 1 + + λ n ε n = µ 1 e 1 + + µ n e n donne λ 1 + λ 2 + + λ n = µ 1 puis λ 2 + + λ n = µ 2. λ n = µ n λ 1 = µ 1 µ 2.. λ n 1 = µ n 1 µ n λ n = µ n

[http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Corrections 6 Exercice 10 : [énoncé] Par l absurde, supposons la famille (e 1,..., e n 1, e j ) liée pour chaque j {1,..., n}. Puisque la sous-famille (e 1,..., e n 1 ) est libre, le vecteur e j est combinaison linéaire des vecteurs e 1,..., e n 1 et donc Cela entraîne ce qui est absurde. Exercice 11 : [énoncé] On sait donc j {1,..., n}, e j Vect(e 1,..., e n 1 ) e n E = Vect(e 1,..., e n) Vect(e 1,..., e n 1 ) dim F + G = dim F + dim G dim F G dim F G = dim F + dim G dim F + G or dim F + G dim E = n donc dim F G > 0. Par suite F G possède un vecteur non nul. Exercice 12 : [énoncé] (u, v, w) forme une famille libre donc une base de F. Ainsi dim F = 3. (x, y) forme une famille libre donc une base de G. Ainsi dim G = 2. (u, v, w, x) forme une famille libre donc une base de R 4. Ainsi F + G = E et dim F + G = 4. Enfin dim F G = dim F + dim G dim F + G = 1 Exercice 13 : [énoncé] (a) Puisque U + V E, on a dim(u + V) n. La formule des quatre dimensions donne alors dim U + dim V dim(u V) = dim(u + V) n L hypothèse de travail fournit alors dim(u V) > 0. (b) Introduisons l espace W = U V. Par la fomule des quatre dimensions On a donc dim W = dim U + dim V dim(u + V) dim U + dim V n dim W + dim W dim U + dim V + dim W n > n L étude précédent assure alors que l espace U V W = W W n est pas réduit à l espace nul. Exercice 14 : [énoncé] Posons G 1 = F 1, G 2 le supplémentaire de G 1 F 2 dans F 2, et plus généralement G i le supplémentaire de (G 1 G i 1 ) F i dans F i. Les G i existent, ce sont des sous-espaces vectoriels, G i F i et G 1 G n. Soit x E. On peut écrire x = n x i avec x i F i. Or x i = y i 1 + + yi i avec yi j G j car F i = ((G 1 G i 1 ) F i ) G i. Par suite x = z 1 + + z n avec z k = n l=k yl k G k. Par suite E = G 1 G n. Exercice 15 : [énoncé] (a) (u, v) est libre (car les deux vecteurs ne sont pas colinéaires) et (u, v) génératrice de F. C est donc une base de F. D = Vect(w) avec w = (1, 0, 0) est un supplémentaire de F car la famille (u, v, w) est une base de R 3. (b) w = u + v donc F = Vect(u, v). (u, v) est libre (car les deux vecteurs ne sont pas colinéaires) et (u, v) génératrice de F. C est donc une base de F. D = Vect(t) avec t = (1, 0, 0) est un supplémentaire de F car la famille (u, v, t) est une base de R 3. (c) F = {(2y 3z, y, z) y, z R} = Vect(u, v) avec u = (2, 1, 0) et v = ( 3, 0, 1). (u, v) est libre (car les deux vecteurs ne sont pas colinéaires) et (u, v) génératrice de F. C est donc une base de F. D = Vect(w) avec w = (1, 0, 0) est un supplémentaire de F car la famille (u, v, w) est une base de R 3. Exercice 16 : [énoncé] (a) Si H = H alors n importe quel supplémentaire de H est convenable et il en existe. Sinon, on a H H et H H donc il existe x H et x H tels que x H et x H. On a alors x + x H H et par suite Vect(x + x ) est supplémentaire commun à H et H. (b) Raisonnons par récurrence décroissante sur n = dim F = dim G {0 1,..., dim E}. Si n = dim E et n = dim E 1 : ok Supposons la propriété établie au rang n + 1 {1..., dim E}. Soient F et G deux sous-espaces vectoriels de dimension n. Si F = G alors n importe quel supplémentaire de F est convenable. Sinon, on a F G et G F donc il existe x F et x G tels que x G et x F. On a alors x + x F G. Posons F = F Vect(x + x ) et G = G Vect(x + x ).

[http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Corrections 7 Comme dim F = dim G = n + 1, par hypothèse de récurrence, F et G possède un supplémentaire commun H et par suite H Vect(x + x ) est supplémentaire commun à F et G. Récurrence établie. Exercice 17 : [énoncé] Notons F et G les sous-espaces vectoriels de même dimension d un espace vectoriel E. Raisonnons par récurrence décroissante sur n = dim F = dim G {0, 1,..., dim E}. Si n = dim E, l espace nul est un supplémentaire commun. Supposons la propriété établie au rang n + 1 {1,..., dim E}. Soient F et G deux sous-espaces vectoriels de dimension n. Si F = G alors n importe quel supplémentaire de F est convenable. Sinon, on a F G et G F donc il existe x F et x G tels que x G et x F. On a alors x + x F G. Posons F = F Vect(x + x ) et G = G Vect(x + x ). Comme dim F = dim G = n + 1, par hypothèse de récurrence, F et G possèdent un supplémentaire commun H et par suite H Vect(x + x ) est supplémentaire commun à F et G. Récurrence établie. Exercice 18 : [énoncé] (a) Par récurrence sur p = dim E dim F 1. Si dim E dim F 1 = 0 alors G = {0 E } convient. Supposons la propriété établie au rang p 0. Soient F 1 et F 2 de même dimension tels que dim E dim F 1 = p + 1. Si F 1 = F 2 l existence d un supplémentaire à tout sous-espace vectoriel en dimension finie permet de conclure. Sinon, on a F 1 F 2 et F 2 F 1 ce qui assure l existence de x 1 F 1 \ F 2 et de x 2 F 2 \ F 1. Le vecteur x = x 1 + x 2 n appartient ni à F 1, ni à F 2. On pose alors F 1 = F 1 Vect(x) et F 2 = F 2 Vect(x). On peut appliquer l hypothèse de récurrence à F 1 et F 2 : on obtient l existence d un supplémentaire commun G à F 1 et F 2. G = G Vect(x) est alors supplémentaire commun à F 1 et F 2. Récurrence établie. (b) Soit F 1 un sous-espace vectoriel contenant F 1 et de même dimension que F 2. F 1 et F 2 possèdent un supplémentaire commun G. Considérons H un supplémentaire de F 1 dans F 1. En posant G 1 = H G et G 2 = G on conclut. Exercice 19 : [énoncé] (a) Soit x F a G, on peut écrire Mais alors x = λ i e i = x λ i (e i + a) λ i.a F G = {0 E } donc λ 1 =... = λ p = 0 puis x = 0 E. Soit x E, on peut écrire x = u + v avec u = p λ i.e i F et v G. On a alors x = λ i (e i + a) + v λ i a F a + G Ainsi F a G = E. (b) Par contraposée : Si F a = F b alors on peut écrire On a alors e 1 + a = λ i e i e 1 = λ i (e i + b) λ i b a F G donc λ 1 = 1 et 2 i p, λ i = 0. La relation initiale donne alors e 1 + a = e 1 + b puis a = b. Exercice 20 : [énoncé] (a) (x 1, x 2, x 3 ) est libre donc rg(x 1, x 2, x 3 ) = 3. (b) Comme x 3 = x 1 + x 2 et x 4 = x 2, on a Vect(x 1, x 2, x 3, x 4 ) = Vect(x 1, x 2 ). Comme (x 1, x 2 ) est libre, on a rg(x 1, x 2, x 3, x 4 ) = rg(x 1, x 2 ) = 2. Exercice 21 : [énoncé] On a donc f 1 (x) = car ( f 3, f 4 ) est libre. 1 + x 2 = f 3(x) + f 4 (x), f 2 (x) = rg( f 1, f 2, f 3, f 4 ) = rg( f 3, f 4 ) = 2 2 = f 3(x) f 4 (x)

[http://mp.cpgedupuydelome.fr] édité le 28 décembre 2016 Corrections 8 Exercice 22 : [énoncé] Vect(x 1,..., x n ) = Vect(x 1,..., x p ) + Vect(x p+1,..., x n ). donc rg(x 1,..., x n ) rg(x 1,..., x p ) + rg(x p+1,..., x n ) rg(x 1,..., x p ) + n p. Exercice 23 : [énoncé] u, v H car ces vecteurs vérifient l équation définissant H. (u, v) est libre et dim H = 2 car H est un hyperplan de R 3. On secoue, hop, hop, le résultat tombe. Exercice 24 : [énoncé] H 1 + H 2 est un sous-espace vectoriel de E qui contient H 1 donc dim H 1 + H 2 = n 1 ou n. Si dim H 1 + H 2 = n 1 alors par inclusion et égalité des dimensions : H 2 = H 1 + H 2 = H 1. C est exclu, il reste dim H 1 + H 2 = n et alors dim H 1 H 2 = dim H 1 + dim H 2 dim H 1 + H 2 = n 2. Exercice 25 : [énoncé] On a F F + H E et F H donc F + H = E d où dim F H = dim F 1 via le théorème des quatre dimensions. Supposons D H. Soit x D H. Si x 0 E alors D = Vect(x) H ce qui est exclu. Nécessairement D H = {0 E }. De plus dim H + dim D = dim E donc H D = E Exercice 29 : [énoncé] Posons n = dim E et p = dim F. Soit B = (e 1,..., e p ) une base de F que l on complète en (e 1,..., e n ) base de E. Posons H i = Vect(e 1,..., ê i,..., e n ) Par double inclusion, on montre F = n i=p+1 On ne peut construire une intersection avoir moins d hyperplans car on peut montrer par récurrence que l intersection de q hyperplans est de dimension supérieure à n q. Ainsi, le nombre minimum d hyperplans intersecté pour écrire F est de n p. H i Exercice 26 : [énoncé] Posons n = dim E et p = dim F. Soit B = (e 1,..., e p ) une base de F que l on complète en (e 1,..., e n ) base de E. Posons H i = Vect(e 1,..., ê i,..., e n ) où ê i signifie que le terme est absent de la liste. Par double inclusion F = H p+1... H n. On ne peut pas avoir moins d hyperplans dans cette intersection puisque par récurrence on peut montrer que l intersection de q hyperplans est de dimension supérieure à n q. Exercice 27 : [énoncé] D + H est un sous-espace vectoriel de E contenant H donc dim D + H = n 1 ou n. Si dim D + H = n 1 alors par inclusion et égalité des dimensions D + H = H or D D + H et D H, ceci est donc exclu. Il reste dim D + H = n d où D + H = E. Puisque D + H = E et dim D + dim H = dim E, D et H sont supplémentaires dans E. Exercice 28 : [énoncé] Si D H alors H et D ne sont pas supplémentaires car H D = D {0 E }