Documents pareils
Probabilités III Introduction à l évaluation d options

Le modèle de Black et Scholes

TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options

MATHS FINANCIERES. Projet OMEGA

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

Valorisation d es des options Novembre 2007

Propriétés des options sur actions

Théorie Financière 8 P. rod i u t its dé dérivés

Liste des notes techniques... xxi Liste des encadrés... xxiii Préface à l édition internationale... xxv Préface à l édition francophone...

Dérivés Financiers Options

Mathématiques pour la finance Définition, Evaluation et Couverture des Options vanilles Version 2012

Master IMEA 1 Calcul Stochastique et Finance Feuille de T.D. n o 1

Prix et couverture d une option d achat

Options, Futures, Parité call put

NOTICE MÉTHODOLOGIQUE SUR LES OPTIONS DE CHANGE

TRAVAIL D ETUDE ET DE RECHERCHE. Utilisation des arbres binomiaux pour le pricing des options américaines

LISTE D EXERCICES 2 (à la maison)

QUESTIONS D ENTRETIENS EN FINANCE DE MARCHE

Résumé des communications des Intervenants

PRIME D UNE OPTION D ACHAT OU DE VENTE

Options et Volatilité (introduction)

Finance, Navier-Stokes, et la calibration

Calibration de Modèles et Couverture de Produits Dérivés

MARTINGALES POUR LA FINANCE

Options exotiques. April 18, 2000

Introduction aux Mathématiques Financières. Ecole Centrale Paris. Lionel Gabet, Frédéric Abergel, Ioane Muni Toke

Qu est-ce-qu un Warrant?

Résumé

Introduction à la finance quantitative présenté par N. Champagnat IECL et INRIA

Couverture des risques dans les marchés financiers

Calcul Stochastique pour la finance. Romuald ELIE

Introduction au pricing d option en finance

Chapitre 14 Cours à terme et futures. Plan

Le call 6 mois strike 35 coûte 6 EUR ; le call 6 mois strike 40 coûte 4 EUR. L action sous-jacente cote EUR.

2- Comment les traders gèrent les risques

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Petite introduction aux mathématiques des dérivés financiers (notes de cours, version provisoire)

LES OPTIONS DE CHANGE DE SECONDE GÉNÉRATION : UN APERÇU

Pratique des options Grecs et stratégies de trading. F. Wellers

Avertissement sur les risques liés aux instruments financiers Clients professionnels

GUIDE DES WARRANTS. Donnez du levier à votre portefeuille!

Processus aléatoires avec application en finance

Ask : Back office : Bar-chart : Bear : Bid : Blue chip : Bond/Junk Bond : Bull : Call : Call warrant/put warrant :

Produits structurés. Sacha Duparc, Développement & Trading Produits Structurés

INTRODUCTION INTRODUCTION

Les techniques des marchés financiers

CHAPITRE 2 : MARCHE DES CHANGES A TERME ET PRODUITS DERIVES

Les Turbos. Guide Pédagogique. Produits à effet de levier avec barrière désactivante. Produits présentant un risque de perte en capital

TURBOS WARRANTS CERTIFICATS. Les Turbos Produits à effet de levier avec barrière désactivante. Produits non garantis en capital.

Hedging delta et gamma neutre d un option digitale

PROJET MODELE DE TAUX

Surface de volatilité

Chapitre 2 Le problème de l unicité des solutions

AVERTISSEMENT ET INFORMATION SUR LES RISQUES LIES A LA NEGOCIATION DES CONTRATS A TERME ET DES ACTIONS

Pratique des produits dérivés P3 : futures, forwards

Guide WHS FX options. Commencer à trader les options FX. Prevoyez la tendance sur les marchés des devises ou couvrez vos positions avec les options FX

PRODUITS DE BOURSE GUIDE DES WARRANTS. Donnez du levier à votre portefeuille! Produits non garantis en capital et à effet de levier

Manuel de référence Options sur actions

LES MARCHÉS DÉRIVÉS DE CHANGE. Finance internationale 9éme ed. Y. Simon & D. Lautier

Théorie Financière 2. Valeur actuelle Evaluation d obligations

WARRANTS TURBOS CERTIFICATS. Les Warrants. Découvrir et apprendre à maîtriser l effet de levier

Calibration de modèles et couverture de produits dérivés

Exercice du cours Gestion Financière à Court Terme : «Analyse d un reverse convertible»

CARACTERISTIQUES ET EVALUATION DES CONTRATS D OPTION. Finance internationale, 9ème éd. Y. Simon & D. Lautier

CERTIFICATS TURBOS INFINIS BEST Instruments dérivés au sens du Règlement Européen 809/2004 du 29 avril 2004

NYSE EURONEXT LES OPTIONS : MODE D EMPLOI

DIPLOME D'ETUDES APPROFONDIES EN ECONOMIE ET FINANCE THEORIE DES MARCHES FINANCIERS. Semestre d hiver

AOF. mini-guide. bourse. «Comment utiliser. Comment investir en Bourse? les options?

ERRATA ET AJOUTS. ( t) 2 s2 dt (4.7) Chapitre 2, p. 64, l équation se lit comme suit : Taux effectif = 1+

de calibration Master 2: Calibration de modèles: présentation et simulation d

L ÉVALUATION DES OPTIONS AVEC PRIME DE LIQUIDITÉ

3. Conditionnement P (B)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

Contribution sur le thème relatif au point de vue et au rôle des actuaires vis-à-vis des nouvelles normes comptables

Performance creates trust

ESSEC Cours Wealth management

un environnement économique et politique

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Génération de scénarios économiques

3 Approximation de solutions d équations

Mathématiques et finance

Les Obligations Convertibles (introduction)

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

Le multicurving et l importance du spread de base dans l évaluation actuelle des swaps de taux. Alexandre Nakhle

Estimation du coût de l incessibilité des BSA

Manuel de référence Options sur devises

Manuel d Utilisateur - Logiciel ModAFi. Jonathan ANJOU - Maud EYZAT - Kévin NAVARRO

TD de Macroéconomie Université d Aix-Marseille 2 Licence 2 EM Enseignant: Benjamin KEDDAD

Gestion économique du produit agricole, dossier 3, Arnaud Diemer, IHEDREA, MCF Clermont-Ferrand LES MARCHES A TERME

Marchés Financiers, Mouvement Brownien, Arbitrage et Martingales: naissance d un corpus de Finance Mathématique à partir de 1973

Limites finies en un point

I DEFINITION DES WARRANTS...

L essentiel des marchés financiers

SECTION 5 : OPERATIONS SUR PRODUITS DERIVES

Calcul et gestion de taux

Transcription:

Les mathématiques de la finance Université d été de Sourdun Olivier Bardou olivier.bardou@gdfsuez.com 28 août 2012

De quoi allons nous parler? des principales hypothèses de modélisation des marchés, des outils mathématiques employés en finance, à temps discret et continu, de l évolution de la philosophie (dominante) de modélisation au cours du XX ième siècle,

Prix de marché ou processus aléatoires?

Prix de marché ou processus aléatoires?

A quoi s intéresse un mathématicien de la finance? Au comportement des acteurs de marché, A la modélisation des marchés et des dynamiques de prix, A la valorisation des produits dérivés, A la mesure et à la gestion des risques.

Notion de produits dérivés L apparition de marchés (d actions, de devises, de matières premières...) implique l apparition de risques nouveaux résultant de l évolution aléatoires des prix sur ces marchés. Les produits dérivés (ou options, ou actifs contingents) sont des contrats permettant de transférer à une contrepartie le risque auquel on est exposé, moyennant le paiement d une prime.

Contrats forwards Un contrat forward est un engagement ferme à acheter ou à vendre un actif à une date future (la maturité) et à un prix convenus à l avance.

Options d achat et de vente Une option d achat (respectivement de vente) donne à son détenteur le droit (mais pas l obligation) d acquérir (respectivement de vendre) une unité du sous-jacent S à une date donnée T (la maturité) et ce pour un prix K fixé l avance (le strike). Le vendeur de l option doit se couvrir pour être en mesure d honorer ses engagements. Le détenteur de l option est confronté à un problème de gestion qui dépend de la structure de son portefeuille.

Payoff f d une option d achat La détention d un call permet de se prémunir contre des variations à la hausse du prix du sous-jacent. Profit Prime C de l option K S

Payoff f d une option de vente La détention d un put permet de se prémunir contre des variations à la baisse du prix du sous-jacent. Profit Prime P de l option K S

Produits structurés Un butterfly consiste en l achat de deux calls de strike K 1 et K 3 et la vente de 2 calls, de strike K 2 =(K 1 + K 3 )/2. Profit Prime de l option S K 1 K 2 K3 Stratégie anticipant une faible variation du cours du sous-jacent autour du strike K 2.

Produits structurés Un straddle désigne l achat simultané d un call et d un put de même strike K. Profit Prime de l option K S Stratégie anticipant une variation significative de l actif sous-jacent autour du strike K.

Comment valorise-t-on les produits dérivés? La réponse à cette question est le principal objet des mathématiques financières. Pour y répondre, il est nécessaire de définir un cadre théorique reposant sur des hypothèses bien identifiées. L hypothèse fondamentale la plus communément retenue (et débattue) est celle d Absence d Opportunité d Arbitrage (AOA).

Première illustration : relation de parité spot-forwards Supposons un taux de placement sans risque r. En l absence d opportunité d arbitrage, le prix (spot) S du sous-jacent aujourd hui (t = 0) et son prix forward F pour une livraison à la date T vérifient la relation F 0,T = S 0 e rt. Tout au moins si le sous-jacent peut-être stocké à coût nul...

Seconde illustration : relation de parité call-put Supposons par exemple que C P > S T Ke rt. Aujourd hui, on achète une action et un put, et on vend un call, ce qui dégage un profit C P S 0. Si cette somme est positive, on la place au taux r, sinon on l emprunte au même taux. A la date d exercice, soit S T > K, alors le call est exercé, l action livrée, on encaisse la somme K et on solde l emprunt ou le prêt. soit S T < K, alors le put est exercé et on solde le prêt ou l emprunt. Dans les deux cas, la richesse finale est K + e rt (C P S 0 ) > 0. Il y a donc arbitrage. En l absence d opportunité d arbitrage (AOA), la relation de parité call-put est donc nécessairement vérifiée : C P = S T + Ke rt.

Pour aller plus loin, il faut quelques outils mathématiques... Le mouvement Brownien est l un des objets mathématiques fondamentaux en mathématiques financières. Parmi les grands noms à l origine de son étude citons Brown (1827) Thiele (1880) Bachelier (1900) Einstein (1905) Wiener (1923)

Définition du mouvement Brownien Le mouvement Brownien standard, ou processus de Wiener, est un processus à accroissements indépendants et stationnaires tel que, pour s t, W t W s est de loi N (0, t s). En 1900, Louis Bachelier propose dans sa thèse de modéliser les cours des actifs financiers par un tel processus.

Trajectoires de mouvement brownien

Formule de Bachelier (1900) Elle repose sur le principe fondamental énoncé par Louis Bachelier : L espérance mathématique du spéculateur est nulle dont il déduit la valeur d une option d achat : ( ) S0 K C =(S 0 K)N σ σ ( ) S0 K Tn T σ T où n(x) = e x 2 2 2π est la densité de la loi normale standard et N, la fonction de répartition de cette même loi. Dans cette formule, le paramètre σ représente l écart-type des prix sur un intervalle de temps unitaire.

Formule de Sprenkle (1961) Sprenkle est le premier à proposer un modèle de prix log-normal qui modélise la positivité des prix. C = S 0 e ρt N (d 1 ) (1 A)KN (d 2 ) avec d 1 = ln S 0 K +(ρ+ σ 2 2 )T σ et d T 2 = d 1 σ T. Le paramètre ρ est le rendement moyen de l action et A modélise l aversion au risque de l investisseur. Le paramètre σ représente désormais la volatilité du sous-jacent, i.e. l écart-type non plus des prix mais de leurs rendements.

Formule de Boness (1964) Dans l étape suivante, Boness prend en compte la valeur temps en actualisant la valeur de l action par son rendement ρ. C = S 0 N (d 1 ) Ke ρt N (d 2 ) avec d 1 = ln S 0 K +(ρ+ σ 2 2 )T σ et d T 2 = d 1 σ T. (Rappelez-vous de la relation de parité spot-forward...)

Formule de Samuelson (1965) Un an plus tard, Samuelson autorise l option d achat à avoir un rendement α différent de celui de l action. C = S 0 e (ρ α)t N (d 1 ) Ke αt N (d 2 ) avec d 1 = ln S 0 K +(ρ+ σ 2 2 )T σ et d T 2 = d 1 σ T

Citons encore... Samuelson et Merton qui, en 1969, font le lien entre la valeur de l option et la stratégie de couverture de l investisseur ou encore Thorp et Kassouf qui proposent en 1967 une formule de pricing des warrants similaire à celle de Sprenkle.

Formule de Black et Scholes (1973) En introduisant un taux d actualisation de référence r et en explicitant le lien avec la couverture, Black et Scholes franchissent la dernière étape, qui leur vaudra (ainsi qu à R. Merton) le prix Nobel d économie en 1997. C = S 0 N (d 1 ) Ke rt N (d 2 ) avec d 1 = ln S 0 K +(r+ σ 2 2 )T σ et d T 2 = d 1 σ T. Quels sont les outils mathématiques qui permettent d obtenir cette formule? Comment l approche de Black et Scholes fait-elle le lien entre valorisation et gestion des risques?

Modèle de marché de Black et Scholes Dans le modèle de Black et Scholes, le marché est constitué de deux actifs, l un risqué et l autre sans risque (le numéraire), dont la dynamique est donnée par les équations différentielles stochastiques (EDS) : ds t S t = µdt + σdw t ds 0 t S 0 t = rdt L hypothèse de normalité ne porte pas sur les prix eux-mêmes (comme dans le modèle de Bachelier) mais sur leurs rendements : ds t S t N (µdt, σ 2 dt).

Modèle de marché de Black et Scholes Dans le modèle de Black et Scholes, le marché est constitué de deux actifs, l un risqué et l autre sans risque (le numéraire), dont la dynamique est donnée par les équations différentielles stochastiques (EDS) : ds t S t = µdt + σdw t ds 0 t S 0 t = rdt et donc S 0 t = S 0 0e rt L hypothèse de normalité ne porte pas sur les prix eux-mêmes (comme dans le modèle de Bachelier) mais sur leurs rendements : ds t S t N (µdt, σ 2 dt). Au-delà de l intuition, et étant donné que les trajectoires du mouvement Brownien ne sont pas différentiables, quel sens donner à la première équation?

Stratégie de trading Si un investisseur possède à la date t 0 une quantité f (t 0 ) d actions valorisées S t0, à la date t 1, la valeur incrémentale de son portefeuille sera f (t 0 )(S t1 S t0 ). Si ce même investisseur fait maintenant évoluer son portefeuille aux dates t 1, t 2,... t n 1 suivant une stratégie de trading (f ti ) i=0..n 1, le bénéfice (ou la perte) de cette stratégie sera (f S) tn = n 1 i=0 f (t i) ( S ti+1 S ti ) Que devient cette somme f S quand le pas de temps qui sépare deux dates de trading tend vers 0? Comme S n est pas un processus à variation fini, il n est pas possible de donner à la limite de cette somme le sens d une intégrale de Riemann.

Définition de l intégrale stochastique En 1930, Norbert Wiener est le premier àdéfinir la notion d intégrale stochastique par rapport au mouvement Brownien W, et ce pour des fonctions f déterministes : T 0 f t dw t.

Formule d Itô En 1951, Kiyoshi Itô étend la notion d intégrale stochastique et définit un calcul différentiel d ordre 2 pour les processus aléatoires. Soit f : R + R R, une fonction de classe C 1,2, t f t f (t, W t )=f (0, 0)+ 0 s (s, W f s) ds+ 0 x (s, W s) dw s + 1 t 2 f 2 0 x 2 (s, W s) ds

Application au modèle de Black et Scholes En appliquant la formule d Itô à la fonction on vérifie que le processus σ2 (µ f (t, x) =S 0 e 2 )t+σx σ2 (µ S t = f (t, W t )=S 0 e 2 )t+σwt est bien solution de l Equation Différentielle Stochastique (EDS) ds t = µs t dt + σs t dw t

Notion d AOA dans le cas discret Soit K, l ensemble des actifs contingents de L 0 réplicables à coût nul i.e. qui puissent se répresenter par une intégrale stochastique f S pour une intégrande f adaptée à la filtration du processus S. Un marché financier satisfait la condition d Absence d Opportunité d Arbitrage si K L 0 + = {0}.

Un modèle de marché simplifié Le marché évolue sur une seule période, il est composé d un actif sans risque qui croît au taux r, d un actif risqué s de valeur connue à la date initiale et qui peut prendre deux valeurs en fin de période. Et nous cherchons à valoriser un produit dérivé de payoff f.

En résumé s 0 s 2 1 = s 0(1 + b), f 2 s 1 1 = s 0(1 + a), f 1

Condition d absence d opportunité d arbitrage (AOA) Le marché comporte des arbitrages s il est possible de construire une stratégie qui conduit presque sûrement à un gain strictement positif. Pour que le marché soit viable, il faut supposer que a < r < b.

Valorisation des produits dérivés L enjeu de la valorisation d une option d achat est double puisqu il s agit de déterminer un prix sur lequel le vendeur et l acheteur puissent se mettre d accord, de permettre au vendeur de se construire une stratégie de gestion pour faire face à ses obligations.

Notion de portefeuille de couverture La stratégie en question est spécifiée par deux variables ϕ 1 et ϕ 2 qui représentent les quantités d actif non risqué et risqué achetées (ou vendues) à l origine. Ainsi, la valeur du portefeuille Φ=( ϕ 1,ϕ 2 ) au cours du temps est donnée par V 0 (Φ) = ϕ 1 + ϕ 2 s 0 et V 1 (Φ) = ϕ 1 (1 + r)+ϕ 2 s 1 1 ou V 1 (Φ) = ϕ 1 (1 + r)+ϕ 2 s 2 1

Optimisation de portefeuille Le vendeur veut émettre son option au prix C (f )=inf {x R + : Φ, V 0 (Φ) = x et V 1 (Φ) f }.

Optimisation de portefeuille L acheteur cherche quant à lui à acquérir l option au prix C (f )=sup {x R + : Φ, V 0 (Φ) = x et V 1 (Φ) f }.

Optimisation de portefeuille En saturant la contrainte, il est possible de montrer que le portefeuille de couverture du vendeur est solution du système linéaire : { ϕ 1 (1 + r)+ϕ 2 s 1 1 = f 1 ϕ 1 (1 + r)+ϕ 2 s 2 1 = f 2 Le portefeuille de gestion de l acheteur serait ( ϕ 1,, ϕ 2, ).

Optimisation de portefeuille La solution est donnée par ϕ 1, = [ 1 f 1 s 1 f 2 f 1 ] 1 1 + r s 2 1 s1 1 ϕ 2, = f 2 f 1 s 2 1 s1 1 Ce dernier terme reprèsente le delta de l option.

Optimisation de portefeuille De ce fait, les deux parties peuvent se mettre d accord sur le prix C (f ) (= C (f )=V 0 (Φ )) = s2 1 s 0(1 + r) (s 2 1 s1 1 )(1 + r) f 1 + s 0(1 + r) s 1 1 2 (s 2 1 f s1 1 )(1 + r)

Interprétation probabiliste La condition d AOA a < r < b est équivalente au fait que q := s2 1 s 0(1 + r) s 2 1 s1 1 = b r (0, 1). (1) b a

Interprétation probabiliste Par construction, le prix de l option d achat est l espérance actualisée des flux sous la probabilité risque neutre Q ainsi définie : [ ] f C(f ) = E Q 1 + r = q f 1 2 f +(1 q) 1 + r 1 + r.

Extension à n périodes s 0 s 0 (1 + b) 2 s 0 (1 + b) 1 q q. s 0 (1 + a) f 3 f 2 f 1

Extension à n périodes Sous la probabilité Q précédemment définie, les prix actualisés ont la propriété de martingale : [ ] S j+1 E Q (1 + r) j+1 S j = s j = q s j(1 + a) (1 + r) j+1 +(1 q) s j(1 + b) (1 + r) j+1 s j = (1 + r) j.

Valorisation dans le modèle de Cox-Ross-Rubinstein (1979) Dans ce modèle, le prix de l option d achat est donnée par : C(n) = 1 (1 + r) n n j=0 En imposant les relations suivantes, n! (n j)! j! qj (1 q) n j ( S 0 (1 + a) j (1 + b) n j K ) + r = RT N, ln(1 + a 1 + r )= σ N et ln( 1 + b 1 + r )= σ N il est possible de vérifier que lim C(n) =S 0N (d 1 ) Ke RT N (d 2 ). n + La prime donnée par ce modèle binomial converge vers la formule de Black et Scholes.

Retour au temps continu : martingale et AOA Sur un espace de probabilité (Ω, F, P) muni d une filtration (F t ) t 0, une famille adaptée (M t ) t 0 de variables aléatoires intégrables est une martingale si s t, E [M t F s ]=M s. Théorème fondamental de la valorisation des actifs contingents : Un marché financier vérifie l hypothèse d AOA si, et seulement si, il existe une probabilité dite risque-neutre, équivalente à la la probabilité historique, et sous laquelle, les prix (spot) actualisés au taux sans risque sont des martingales.

Théorème de Girsanov Soit (θ t ) 0 t T, un processus adaptévérifiant T 0 θ2 s ds < + p.s. et tel que le processus (L t ) 0 t T défini par ( T L t = exp θ s dw s 1 T ) θs 2 ds 0 2 0 est une martingale. Alors, sous la probabilité Q, de densité L T par rapport à P, le processus (B t ) 0 t T défini par B t = W t + t 0 θ s ds est un mouvement Brownien standard.

Théorème de représentation des martingales Soit (F t ) 0 t T, la filtration naturelle d un mouvement brownien standard (B t ) 0 t T. Soit (M t ) 0 t T, une martingale de carré intégrable par rapport à la filtration (F [ t ) 0 t T. Alors il existe un processus adapté (H t ) 0 t T, tel que ] T E 0 H2 s ds < + et t [0, T], M t = M 0 + t 0 H s db s p.s.

Conclusion (temporaire) Il résulte du théorème de Girsanov et du théorème de représentation des martingales que, presque sûrement, [ (S T K) + = E Q (ST K) + e rt] T + δ u d S u. 0 Sous la probabilité risque neutre Q, la dynamique des prix actualisés S t = S t e rt est donnée par d S t = σ S t db t.

Un mot de plus sur le rôle de la volatilité Le modèle de Black et Scholes conduit à voir le prix des produits dérivés comme une fonction de la volatilité de leurs sous-jacents, seul paramètre non observable du modèle. L inversion de cette fonction permet de déterminer la volatilité (implicite) qui correspond aux options déjàcôtées sur les marchés. Contrairement aux hypothèses du modèle, les observations empiriques montrent une dépendance de cette volatilité à la maturité et au strike. Le modèle de Dupire (1994) permet d expliciter cette dépendance : C C T + rk K σ(t, K) = 2 K 2 2 C K 2

Une approche phénoménologique En pratique, plus que la modélisation physique de l évolution des sous-jacents, c est donc sur la caractérisation de la volatilité que portent les efforts des opérationnels. Malgré une proximité mathématique, la philosophie de modélisation a donc fondamentalement évolué depuis Bachelier, passant d une approche physique à une approche phénoménologique : la valorisation des options ne repose pas tant sur la modélisation des prix que sur l identification d un consensus sur la volatilité, la prime de ces options fait l objet d une représentation probabiliste qui ne repose pas fondamentalement sur la caractérisation de la probabilité historique du marché.

Merci!

Bibliographie sélective E. Benhamou, Options, pre-black Scholes E. Derman, Real-World Quantitative Finance H. Géman, De Bachelier à Black-Scholes-Merton D. Lamberton et B. Lapeyre, Introduction au calcul stochastique appliqué à la finance, Ellipses R. Jarrow et P. Protter, A Short History of Stochastic Integration and Mathematical Finance. The early years, 1880 1970, W. Schachermayer, Introduction to the Mathematics of Financial Markets, Ecole d été de Saint Flour, 2000